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1 Introduction

We start from a realistic notion that most major investments are at least partially irreversible
due to the fact that firms cannot disinvest without costs after having carried out their investment
decision. This is because physical capital is not only industry-specific, but also firm-specific so
that it may not be very usable for a different firm in the same industry. Even in the absence of
firm-specific investments, partial irreversibility will quite likely be true due to the ”lemons” problem
meaning that the resale value is usually below the purchase cost. In the seminal book by Dixit and
Pindyck (1994) various approaches and applications are excellently reviewed and extended (see also
complementary surveys in terms of further research by Bertola (1998) and Caballero (1999)). In
what follows we focus on an important issue of how taxation will affect investment behavior in the
framework of irreversible investments under uncertainty. First we summarize briefly what has been
done in this literature and after that we present a new research question concerning the potential
role of progressive taxation in terms of optimal investing threshold, which we elaborate in this paper.

There are several recent studies in the framework of irreversible investment under uncertainty
where justifications for the neutral tax system have been analyzed using real option theory. Niemann
(1999) has shown that in the presence of uncertainty and irreversible investments the neutrality of
both the cash flow tax and the Johansson-Samuelson tax system hold by extending the depreciation
base. For further discussion about these tax schemes, see e.g. chapter 5 in Sinn (1987). Pennings
(2000) has studied the impact of a subsidy to investment with a taxation of future profits on an
irreversible investment and has shown that such a combination by raising a zero expected revenue
will decrease the threshold value of investment, so that the expected investment goes up. Panteghini
(2004) compares an ACE (Allowance for Corporate Equity) system with a CBIT (Comprehensive
Business Income Tax) system in an open economy using a real option approach and suggests that
preference for an ACE system is a realistic result.

One should also ask: what happens if tax rates are uncertain? Niemann (2004) demonstrates
that both under risk neutrality and risk aversion higher tax rate uncertainty has an ambiguous
investment effect depending among others on depreciation deductions. Moreover, he shows that
the neutrality results under perfect foresight for the cash flow tax and the Johansson-Samuelson
tax will also hold under tax rate uncertainty independent of whether investors are risk neutral
or risk averse (see also Niemann and Sureth (2004)). Sureth (2002) investigates the impacts of
taxes using a contingent claims analysis instead of a dynamic programming approach and shows
that uncertainty and complete irreversibility do not violate the neutrality property of a Johansson-
Samuelson tax. He obtains the same finding as Neumann (2004) that the neutrality of a cash flow
and a Johansson-Samuelson tax system holds also in the case of risk averse investor behavior. Lund
(1992) has also applied the contingent claims analysis to evaluate the impact of petroleum taxation
under uncertainty on companies’ behavior. His main focus is in a numerical approach.

What are the effects of corporate tax asymmetries on irreversible investments under a tax
scheme, where tax base is given by the firm’s return, net of an imputation rate? This issue has
been studied in Panteghini (2001a), (2001b) and (2002) under various investment strategies. He
has demonstrated that this asymmetric scheme may also be neutral under both income and capital
uncertainty. Neutrality is an implication of Bernanke’s (1983) Bad News Principle, according to
which irreversible decisions are affected only by unfavorable events. Under the tax system proposed,
the corporate tax is levied in the good states so that tax asymmetries exploit the asymmetric effect
of uncertainty to guarantee neutrality.

Alvarez et. al (1998) have analyzed a more general issue in a dynamic stochastic adjustment



model of firm behavior. In particular, they asked: what are the anticipatory effects of a corporate
tax reform when the firms are realistically uncertain both about the timing and contents of the
expected reform either in terms of tax cuts or in terms of tax base reductions? They show among
others that future tax cut expectation causes the firms to accelerate optimal investment, while
expected reduction in the tax base will have an opposite effect. In several OECD countries in the
1980s and 1990s a tax-cut plus base-broadening tax reform has been implemented and the authors
show among others that under plausible assumptions this type of reform cannot be revenue-neutral.
In Alvarez et. al (2000) it is shown that a corporate tax policy in a model with tax advantage to
debt and expectations about a forthcoming tax reform may have significant incentive effects. In
particular, under the assumptions made a tax cut plus base-broadening tax reform will cause a big
short run investment spurt.

Hassett and Metcalf (1999) have studied the impact of tax policy uncertainty, associated for
potential changes in investment tax credits, both on firm level and aggregate investment. Under
geometric Brownian motion of value process higher uncertainty slows down investment despite the
implicit subsidy arising from the variations in tax credit, but when tax policy is modelled as a
stationary jump process higher tax policy uncertainty can have the opposite effect. In both model
specifications higher tax policy uncertainty will imply a loss of tax revenues to the government
(see also Metcalf and Hassett (1995)). Agliardi (2001) has assumed the possibility of investment
scrapping so that investment can be considered as partially irreversible, and studied the impacts
of tax policy including a corporate cash flow tax and a subsidy to asset values also in the case
of tax policy uncertainty. He models the tax policy process in a way alternative to Hassett and
Metcalf (1994) by assuming that the price of capital follows a different stochastic process. Naturally,
he concludes that it may discourage investment and encourage the earlier shutdown of projects.
Brennan and Schwartz (1986) have studied the case of partially reversible investment for the decision
to open or close a mine.

To conclude, in the existing recent literature, where corporation taxation issues have been stud-
ied in the irreversible investment framework under uncertainty by using real option theory, taxation
has been assumed to be proportional. This means that the marginal tax rate and the average tax
rate are constant and therefore equal. But in practice this is not an appropriate assumption even
though the marginal tax rate would be constant if there are tax exemptions meaning that taxes
have to be paid only after some exemption threshold. In this case taxation is not proportional, but
progressive. Therefore, a practically important issue is to ask: what are the implications of progres-
sive taxation in terms of investment behavior under uncertainty? Tax progression means either that
the marginal tax rate is constant but, due to tax exemption, the average tax rate increases with
the tax base. Another definition of tax progression is that in terms the tax base the marginal tax
rate increases (see e.g. the seminal paper by Musgrave and Thin (1948) and a textbook analysis in
Lambert (2001)).

The purpose of our paper is to analyze the following important issue, which to our best knowl-
edge has not been previously studied in the literature: what is the impact of tax progression -
defined as a higher average tax rate in terms of tax base - on irreversible investment under uncer-
tainty? We provide several new and interesting findings about this practically realistic modelling of
taxation: Under progressive taxation with positive tax rate and tax exemption, we demonstrate how
the impact of the tax rate on the optimal investment threshold depends on the relative size between
the tax exemption and sunk cost of investment. More precisely, if tax exemption threshold is below
the sunk cost of investment, then higher tax rate will increase the optimal investment threshold
and decrease the value of investment opportunity by decreasing the net-of-tax payoff. The negative



relationship under these assumptions is natural; higher tax rate raises the size of tax deduction, and
decreases the marginal revenue from investment project. Since the latter effect dominates whenever
the tax exemption threshold is below the sunk cost of investment, we find that higher taxation slows
down rational investments in that case.

However, when the tax exemption threshold exceeds the sunk cost of irreversible investment,
then depending on the relationship between volatility and other parameters of the problem, there
are three different regimes in terms of optimal investment threshold. First, for a set of sufficiently
low volatilities, increased volatility decelerates investment by increasing the harvesting threshold,
but the tax rate does not affect the optimal policy. Second, as volatility becomes larger, the optimal
harvesting threshold coincides with the tax exemption threshold, and therefore becomes independent
of both volatility and tax rate. Third, for a set of sufficiently high volatilities, the optimal investment
threshold depends again positively on volatility, but interestingly, negatively on tax rate. Hence,
under this latter condition there is "tax paradox”, according to which higher tax rate accelerates
rational investment by increasing the current investment incentives! It is worth noticing that these
observations results also from the fact that in our framework government works as a risk-sharer via
tax exemption.

We proceed as follows: In section 2 we present a framework to study the impact of progressive
taxation under irreversible investment with stochastic value process and characterize new theoretical
results. Section 3 illustrates our findings explicitly through numerical calculations. Finally, there is
a concluding section.

2 Tax Exemption and Irreversible Investment

In this section we characterize the optimal irreversible investment problem under stochastic value
process with progressive taxation, i.e. when both the tax rate and the tax exemption are positive so
that the average tax rate increases with the tax base, ceteris paribus. More precisely, we proceed as
follows: First, we specify the underlying value dynamics. Second, we demonstrate how the impact
of the tax rate on the optimal investment threshold depends on the relative size between the tax
exemption and the sunk cost of investment. Third, we state a set of weak conditions under which
higher volatility will increase both the value and the exercise threshold of the optimal policy. Finally,
we also illustrate the significance of progressive taxation as a risk-sharing device.

As usually, we assume that the random dynamics of the underlying value process are described
by the It6 stochastic differential equation

dX; = M(Xt)dt + UU(Xt)th, Xo==x (21)

where both the drift ¢ : Ry — R and the volatility coefficient ¢ : Ry — R, are assumed to
be sufficiently smooth (at least continuous) mappings for guaranteeing the existence of a solution
for (2.1) and n > 0 is a known non-negative multiplier. The underlying value dynamics becomes
deterministic as the volatility multiplier vanishes, that is, as n | 0. Moreover, the assumed positivity
of the volatility coefficient o(z) implies that an increase in the value of the multiplier n can be
interpreted as an increase in the overall volatility of the underlying value dynamics. In line with
standard models applied in economics, we assume that the upper boundary oo is natural for X;.
Thus, although the underlying value may be expected to increase, it is never expected to become
infinitely high in finite time. We also assume that the lower boundary is either natural, exit, or
regular. In case it is regular, we assume then it is killing and, therefore, that the underlying value



process ceases to exist whenever it hits the lower boundary of its state-space. As usually, we denote
the differential operator associated to the controlled diffusion as

1y o, d? d
Ay = U (fﬁ)@ +M($)%-
We also denote as v, (z) the increasing and as ¢, (z) the decreasing fundamental solutions of the
ordinary linear second order differential equation (A,u)(x) = ru(xz) (cf. Borodin and Salmi-

nen (2002), pp. 17-19). Moreover, the constant Wronskian of these solutions is denoted as

B = (¥))(2)ey(x) — @)y (@)by (2))/Sl(x), where

Si(x) = exp <_/m>

denotes the density of the scale function of the underlying diffusion.

Having characterized the underlying stochastic value dynamics, we now plan to consider the
optimal timing problem of an irreversible investment opportunity in the presence of both value
uncertainty and progressive taxation with positive tax rate and tax exemption. More precisely, we
now plan to consider the optimal timing problem

Vy(z) = sup E; [e7" max(m(X,),0)] , (2.2)

T<T0
where 7 is an arbitrary stopping time, 79 = inf{t > 0 : X; < 0} < oo denotes the potentially
infinite date at which the underlying value dynamics vanish (and can, therefore, be interpreted as
a liquidation date), and

m(z)=x—c—tlx—2)",

where Z € R, is a known exogenously given exemption threshold satisfying the condition tZ < ¢. Our
first results, characterizing the optimal investment rule in the case where exercising the investment
opportunity at states below the exemption threshold z is suboptimal, are now summarized in

Lemma 2.1. Assume that & < ¢ and that for allt € [0,1) there is a unique &; such that

L—t)(u(z) —r(z— ) Ert(E —c), == iy (2.3)

Then, the value of the optimal policy reads as

Va(x) = 1y (z) sup

y>x wT] (y) (24)

(L%M—@—Wq:{ﬂ—ﬂx—@—m)xZﬁM)

(1-1) w:&%» z < i (n)

where the optimal investment threshold x;(n) € ((c—tx)/(1—1t), 00) is the unique root of the ordinary

first order condition (1 — t)[1hy(xf (1)) — ¥y (xf(n)(xF () — ¢)] = oy (xf(0)t(T — ¢). Moreover, the
optimal tnvestment threshold is an increasing function and the value of the investment opportunity
is a decreasing function of the tax rate t.

Proof. See Appendix A. O

Lemma 2.1 states a set of weak conditions under which a unique investment threshold at which
the irreversible investment opportunity should be exercised exists and is above the Marshallian
trigger (¢ —tx)/(1 —t) at which the net present value of the project becomes positive. According
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to Lemma 2.1 increased tax rate decelerates investment and decreases the value of the investment
opportunity whenever the tax exemption threshold is below the sunk cost of investment. The reason
for this observation is due to the fact that although higher tax rate increases the size of the tax
deduction tZ it simultaneously decreases the after tax net revenues (1 — ¢)z of the firm. Since the
latter effect dominates whenever the tax exemption threshold is below the sunk cost of investment
we find that the overall impact of increased taxation on the optimal investment policy and its value
is negative.
The optimal investment rule in the case where £ > ¢ is now summarized in

Theorem 2.2. Assume that ¢ € (tz,z) and that for all t € [0,1) there is a unique &; such that
inequality (2.3) is satisfied. Then, the value of the optimal policy reads as

[y—c—t(y—:f)+
%(?J)

(A) If & > x{(n) > x;(n) then the investment opportunity is exercised at the investment threshold
x§(n) and the value of the optimal policy reads as

V() = 1y (x) sup

y>x

(2.5)

(2.6)

where the optimal investment threshold x§(n) > c is the unique root of the first order condition

Un(x5(n) = Py (a5(n) (25(n) = ©)-
(B) If xi(n) > T > xf(n) then the investment opportunity is exercised at the exemption threshold T
and the value of the optimal policy reads as

(2.7)

Vi (2) = {(1—t)(x—c)+t(£—c) >

(z — c):izgg r<T

(C) If zi(n) > x;(n) > T then the investment opportunity is exercised at the investment threshold
xf(n) and the value of the optimal policy reads as

(1 =t)(x —c) + 1z —¢) x> wi(n)

M= (- @) — o) 4 1@ - ) 2w < i)

e\l (a7 (m) £\

where the optimal investment threshold z;(n) > (¢ — tz)/(1 —t) is the unique root of the first order

condition (1—1t)[4y(x} (1)) — ¥y (x5 (0))(2F (1) — )] = ¥y, (zF(n))t(Z —c). Moreover, increased tazation
accelerates investment dy decreasing the optimal exercise threshold. That is, dzj(n)/dt < 0.

(2.8)

Proof. See Appendix B. O

Theorem 2.2 demonstrates that if the tax exemption threshold Z is greater than the sunk cost ¢
then there are three different cases which may arise depending on the relative sizes of the parameters
of the problem. Interestingly, we find that under the conditions of Theorem 2.2 a higher tax rate
has an positive impact on rational investment. This accelerating effect of increased taxation on
the optimal investment policy is based on its negative effect on the after tax costs of investment.
More precisely, it is now clear that for all x > Z the after tax net investment costs are ¢ — tZ.
This, in turn, means that the investor can deduct ¢tz from the tax base. Since this deduction



is an increasing function of the tax rate, we find that although a higher tax rate decreases the
profitability of an irreversible investment project, it simultaneously decreases the net investment
costs. Since the latter effect dominates the former when tZ < ¢ < Z, we find that the net effect of
increased taxation on optimal investment is unambiguously positive. It is also worth noticing that
Theorem 2.2 also demonstrates that among the potential regimes there are two interesting special
cases resulting into non-standard optimal investment behavior. First, in both regimes (A) and (B),
the optimal investment rule is independent of the tax rate and, therefore, on those regimes marginal
changes in the tax policy do not affect investment behavior. Second, in regime (B) the investment
opportunity is exercised at the exemption threshold which is a constant. Consequently, the optimal
investment rule characterized in regime (B) is also independent of volatility. This observation is
important since it characterizes the significance of the exceptional incentive effects of tax exemption
on optimal investment in two ways (cost deduction and risk-sharing).

Our main results on the comparative static properties of the optimal policy and its value are
now summarized in the following.

Theorem 2.3. Assume that the net appreciation rate u(x) —rx is non-increasing and that 1(0) <0
whenever 0 is attainable for the underlying value process. Assume also that for allt € [0,1) there is
a unique Iy such that inequality (2.3) is satisfied. Then, increased volatility increases the value of
the investment opportunity and decelerates rational exercise by increasing or leaving unchanged the
optimal investment threshold at which the opportunity should be exercised. More precisely, if 1 > n
then z3(n) > xf(n) and Vi(x) > Vy(x) for all t € [0,1).

Proof. See Appendix C. O

Theorem 2.3 states a set of weak conditions under which increased volatility unambiguously
increases both the value and the exercise threshold of the optimal policy. This observation is of
interest since as Theorem 2.2 clearly indicates, increased volatility may result into a transition from
the regime (A) towards regime (B) and then further into regime (C). Moreover, since increased
volatility does not affect the optimal investment threshold in regime (B), we observe that the set
where investment is volatility-independent may be relatively large. In order to characterize such a
situation explicitly, we now prove the following key result illustrating the significance of progressive
taxation as a risk-sharing device.

Theorem 2.4. Assume that the conditions of Theorem 2.8 are satisfied, that tT < ¢ < %, that
wz) < r(x —c), and that limy o Py (T) /15 (T) > (T — ¢)/(1 —t). Then there are two critical
volatility multipliers ] < n5 satisfying the conditions

Ui (%) = e (2)(T = ©) (2.9)

and

(1= 0o (7) = v (2)(@ — 0. (2.10)

Moreover, if n < nj then the conditions of part (A) of Theorem 2.2 are satisfied and the value reads
as in (2.6), if nf < n < n; then the conditions of part (B) of Theorem 2.2 are satisfied and the value
reads as in (2.7), and if n > 03 then the conditions of part (C) of Theorem 2.2 are satisfied and the
value reads as in (2.8).

Proof. See Appendix D. O



Essentially Theorem 2.4 states a set of conditions under which the the optimal threshold can
be characterized as a non-decreasing function of the underlying volatility according to the definition

ri(n) n=>n;
=4 n<n<n;

z5(n) n<ni

This result is important since it is valid for a broad class of processes modelling the underlying
stochastic revenue dynamics. Especially, it is worth emphasizing that the condition that u(z) <
r(Z — ¢) is sufficient for the existence of a critical volatility multiplier nj. Thus, the transition from
from regime (A) to regime (B) as volatility increases is always guaranteed as long as the exemption
threshold dominates the optimal investment threshold in the absence of uncertainty and taxation.
Hence, a regime where investment is independent of both volatility and taxation always exists as
long as the exemption threshold dominates the optimal investment threshold in the absence of
uncertainty and taxation. If u(z) > r(z — ¢) then a critical volatility multiplier n} satisfying (2.9)
does not exist and in that case the only potential regimes are either (B) or (C).

3 Explicit Illustration

After having characterized our new theoretical results concerning the relationship between the tax
rate and the investment threshold as well as the relationship between the investment threshold and
the volatility of value process, we now illustrate our results explicitly within a frequently applied
setting. More specifically, we show how the relationship between the investment threshold, tax rate
and volatility depends on the relative size of the tax exemption and the sunk cost. In particular,
under progressive taxation when tax exemption exceeds sunk cost of investment there is a non-empty
set of volatilities where the optimal investing threshold does not depend on the volatility of value
process at all.

Let us assume that the underlying value dynamics evolve according to an ordinary geometric
Brownian motion characterized by the stochastic differential equation

dX; = /,LXtdt + o XdWy, Xo ==z,

where ¢ € Ry and o0 € R, are exogenously given constants. It is now a standard exercise to
demonstrate that in this case the fundamental solutions read as v, (z) = 2% and @, (z) = 2%,

where
1 p 1 pu 2 o
=5 02+\/<2 02) Tz

1o 1w 2 o
50—2 o2 \/(2 02> o

denotes the negative root of the quadratic characteristic equation o?a(a — 1) — 2ua — 2r = 0. Given
these observations we find that our Lemma 2.1 can be re-expressed in this particular example as

denotes the positive and

Lemma 3.1. Assume that T < c¢ and that the absence of speculative bubbles condition r > pu,
guaranteeing the finiteness of the value of the optimal policy, is satisfied. Then, the value of the



optimal policy reads as

= {0 e )

where
() = ay(c—tx) _ <1 B 1) r(c—tx)
(g —1)(1—1) Bo) (r—p)(L—1t)
1s the optimal investment threshold at which the irreversible investment opportunity should be exer-
cised. The optimal investment threshold satisfies the inequalities

oxf(o) ay(c— )
o = la—na-mn="
oxf(o) 20, (c — tz)
9o (aw—D(—tolay -5

Thus, in the present example both increased tax rate and increased wolatility raises the optimal
investment threshold and, therefore, postpone the rational exercise of the investment opportunity.
Especially, if T < c then along the iso-incentive curve where investment incentives remain unchanged

the following holds

dt 1 -t(e—ta)
doldsi0)=0  o(c—z)(ay — By) <0

An important implication of Lemma 3.1 is that
r(c—1tz) S (c—tx)
(r=p)@-t) " (1-t)
This means that the optimal investment threshold dominates the certainty trigger characterizing

the optimal policy in the absence of volatility. This trigger, in turn, dominates the Marshallian
threshold at which the net present value of the project becomes positive.

x; (o) >

t
0.6

0.5 X, = constant
0.4
0.3
0.2

0.1

o
0.05 0.1 0.15 0.2 0.25

Figure 1: The iso-incentive curve

In order to characterize the case where the tax exemption rule is beneficial for the investment
opportunity (i.e., when tZ < ¢ < ) we first observe that if » > u then in the absence of taxation
the optimal investment threshold satisfies the conditions

limxzj(o) =
al0 0(@) (r—p)



and o (o)
xo(o) 205C
9o (ag—Dolag— 8 "

Thus, we find that the results of our main Theorem 2.2 can now be expressed as follows.

Theorem 3.2. Assume that tz < ¢ < Z, r > p, and rc < (r — p)x. Then there are two critical
volatility coefficients o7 < o5 satisfying the conditions

T =0y (T —c) (3.2)
and
(1-1)7 = as3(T — ). (3.3)

(A) If o < o] then the investment opportunity is exercised at the investment threshold x§(o) and
the value of the optimal policy reads as
V() = {x:c—t(m—x): ) x>x§(a) (3.4)
(z5(0) = o) (a/a5(0)* 2 < z5(0).

(B) If 0] < 0 < 05 then the investment opportunity is exercised at the exemption threshold T and
the value of the optimal policy reads as

2 = 1-t)xz—c)+t(T—¢c) xz>7
V(@) {(g-c—c)(x/z)% T < T (3:5)

(C) If 0 > o5 then the investment opportunity is exercised at the investment threshold x} (o) and
the value of the optimal policy reads as

%
V,(x) = { c)_ x > xf(0) (3.6)
(1 =1t)(zf(0) = ¢) +£(T — o)) (z/x(0))* = <zi(o)

Theorem 3.2 states a set of conditions under which the optimal investment rule is determined
by the volatility of the underlying value process. Interestingly, as we already argued in the general
analysis of the optimal investment problem, we find that if the conditions of Theorem 3.2 are satis-
fied, then there is a non-empty set of volatilities (the set (¢, 0%)) where the optimal investment rule
is completely independent of the volatility of the value process. A second important consequence of
Theorem 3.2 is that depending on the volatility of the underlying value dynamics, the optimal in-
vestment rule may be independent of the tax rate (on the set (0,07%)). Consequently, as was already
indicated by our Theorem 2.4, there is a regime where the optimal investment policy is independent
of both the tax rate and the volatility of the underlying value process. Under such circumstances
neither the tax rate nor the volatility will have no effect on the investment threshold even while
they do affect the value of the investment opportunity. These observations are explicitly illustrated
in Figure 2. Finally, as was already found in our Theorem 2.4, for sufficiently high volatilities an
increased tax rate will accelerate rational investment by decreasing the optimal investment thresh-
old while increased volatility will have the opposite effect by decreasing the investment incentives.
This means that under such circumstances the tax authorities may weaken the negative impact of
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Figure 2: The optimal exercise threshold as a function of the volatility coefficient o

volatility on rational investment by raising the tax rate. Hence our model emphasizes the signif-
icance of an active tax policy as a stabilizing mechanism in the presence of progressive taxation,
irreversibility, and uncertainty (cf. Dixit and Pindyck (1994), p. 14).

It is, however, worth noticing that if r¢ > (r — u)Z then equation (3.2) does not have an interior
root and, therefore, in that case the only possible regimes are either (B) or (C). Finally, since
r(c—tz) rc

o) = - T o e ol)

we observe that if (1 —¢t)uz > r(Z — ¢) then neither equation (3.2) nor equation (3.3) can have an
interior root and, therefore, in that case the only possible regime is (C).

4 Conclusions

In this paper we have analyzed the following issue: what is the impact of tax progression - defined
as a higher average tax rate in terms of tax base - on irreversible investment under uncertainty? We
have demonstrated several new and interesting findings about this practically realistic modelling
of taxation. Under progressive taxation with tax rate and tax exemption, we have shown how the
impact of the tax rate on the optimal investment threshold depends on the relative size between the
tax exemption and the sunk cost of investment. If the tax exemption threshold is below the sunk
cost of investment, then higher tax rate will increase the optimal investment threshold and decrease
the value of investment opportunity by decreasing the net-of-tax payoff. The negative relationship
under these assumptions is natural; higher tax rate raises the size of tax deduction, and decreases
the marginal revenue from investment project. Since the latter effect dominates whenever the tax
exemption threshold is below the sunk cost of investment, we find that a higher tax rate decelerates
optimal investments.

But when the tax exemption threshold exceeds the sunk cost of irreversible investment, then de-
pending on the relationship between volatility and other parameters of the problem, there are three
different regimes in terms of optimal investment threshold. First, for a set of sufficiently low volatil-
ities, increased volatility decelerates investment by increasing the harvesting threshold, but tax rate
does not affect the optimal policy. Second, as volatility becomes larger, the optimal harvesting
threshold coincides with the tax exemption, and therefore becomes independent of both volatility
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and tax rate. Third, for a set of sufficiently high volatilities, the optimal investment threshold
depends again positively on volatility, but interestingly, negatively on tax rate. Under this latter
condition there is ”tax paradox”, according to which higher tax rate accelerates rational invest-
ment by increasing the current investment incentives! It is worth noticing that these observations
results also from the fact that in our framework government works as a risk-sharer via tax exemption.
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Appendix

A Proof of Lemma 2.1

Proof. The proof of (2.3) and (2.4) is analogous with the proof of Lemma 2.1 in Alvarez and Koskela
(2004). It is now clear that the first order optimality condition characterizing the optimal investment
threshold can be expressed as

Pylzi(m) . ot
)~ @ == -0
Implicit differentiation now yields
dri(n) (@i () (e — @)

gt (0= 02 () (i)~ (A1)

by the inequality ¢ > Z and the local convexity of the increasing fundamental solution v, (x) at the
optimal boundary. Finally, since the exercise payoff # —c—t(z — )" is a decreasing mapping of the
tax rate ¢t on the set (Z,00) we find that increased taxation decreases the value of the investment
opportunity. ]

B Proof of Theorem 2.2

Proof. In order to prove the results of our theorem, we first consider the mapping

bole)  U() W@ v d [(1-bHo— (c—t7)
Fi(x)=(1—-t — r—c)| — t(x —c) = —
D=0 5w 5@ Y s T e G
It is now clear from this definition that
Fy(z) = (1 - t)Fy(z) — ?7875(;3 —¢)

implying that

F(z) = (1= ) Fy(x) — rg(@)m, (2)H(z — ) = (1 = ) (u(z) — r(2 — ¢)) — 1t(Z — )by (x)my ().

Hence, our assumption (2.3) presented in the text implies that for all ¢ € [0,1) the mapping Fi(x)
satisfies the monotonicity condition

=

<0x

Fj(z)

VIIA

Tt

Moreover, since Lemma 2.1 guarantees the existence of a unique threshold z}(n) € ((c —tz)/(1 —
t),00) satisfying the condition Fy(zf(n)) = 0 we find that (1 —t)Fo(xf(n)) = oy (xf(n)t(z —
c)/Sy(zf(n)) > 0 proving that xf(n) > xf(n). We also find that Fy(z) is decreasing on the set
where Fy(x) is decreasing.

Given these observations, assume first that z > «{(n) > x}(n). Then, the mapping (z—c)/vy(x)
attains its global maximum on the set (0,Z). Since Fy(x) is decreasing on the set where Fy(z)
is decreasing we find that z(j(n) = argmax{(z — ¢ —t(x — Z)")/¢y(x)} and, therefore, that the
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proposed value function dominates the exercise payoff (z — ¢ — t(z — z)") for all z € Ry. Consider
now the mappings

V! (x 'z
L (2) = gy vale) = G Vi)

and
LV e

It is now a straightforward exercise in ordinary differentiation to demonstrate that L;}n () =
L:Dn (x) =0 for all z € (0,z§(n)), Lipn (x) = (u(x) = r(z — c))hy(x)my(x) < 0 and prn () = (u(z) —
r(@—c))p(@)ml () < 0 for all (wj(n), 2), L, (2) = (1) () —r(a—0))+rt(c—2) by (@)mly(x) < 0
and Lj, (v) = (1 —t)(pu(z) —r(z — ¢)) + rt(c — 2))py(x)my(x) < 0 for all (Z,00). Moreover, since
Ly, (z) is non-positive and L, (v) is non-negative for all x € R, we observe that the proposed value
function satisfies the conditions of Proposition 3.3 in Salminen (1985) and, therefore, constitutes a
r-excessive majorant of the exercise payoff x —c —t(z —z)™. Since the value is the smallest of these
majorants, we find that the proposed value is indeed the value of the optimal policy thus completing
the proof of part (A) of our theorem. Establishing part (B) and part (C) is analogous. O

C Proof of Theorem 2.3

Proof. Denote as v;(x) the increasing fundamental solution of the ordinary linear second order
differential equation 7202 (z)u” (x)/2 + p(x)u/(z) — ru(z) = 0, where 7 satisfies the inequality 1 > 1.
As was established in Alvarez (2004b), the assumed monotonicity of the net appreciation rate
wu(xz) —rz and the boundary condition requiring that 1(0) < 0 whenever 0 is attainable for X; imply
that the increasing fundamental solutions 1, (x) and 1;(x) are strictly convex and satisfy for all
x € Ry and y € [x,00) the inequalities

(o) _ ) ) U@
o) =) ™ @ T @)

Given the representation (2.5), presented in the text, we immediately observe that

¢n(x) %(9«“) . T
wy)] wﬁ@)} = V()

which proves that increased volatility increases the value of the investment opportunity. On the
other hand, if g(x) is non-decreasing, continuous, and continuously differentiable outside on R, \D,
where D is a countable set of points in Ry, then for all z € Ry\D it holds that

Ua@) d [g@) ] _ . vy ()
V@) do ) =@ bi(@)

V,(z) = sup [<y ety -5

up < sup [(y—c—t(y—ff’)

y>z

Un(2)
V()

i) d [g(x) ]

~gle) <4 () - @) de [y(a)

—g(x)

which shows that g(x)/v;(x) is non-decreasing at any extreme point of g(x)/v,(x). Since the
exercise payoff x — ¢ — t(x — Z) satisfies these conditions and the maximum of the mapping (z —
¢ —t(x — z)*)/¢y(2z) is unique, we find that increased volatility increases the optimal investment
threshold, that is, that x} () > =} (n). O
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D Proof of Theorem 2.4

Proof. As was established in Lemma 2.1, the equation

(1 = t)py(z) = (@) ((1 = t)x — (c — t7))

has a unique root z;(n) for all ¢t € [0,1). According to (A.1) the assumption ¢Z < ¢ < Z implies that
the optimal threshold is a decreasing mapping of the tax rate ¢ and, therefore, that z7(n) < z§(n)
for all t € (0,1). However, as was in turn established in Theorem 2.3, increased volatility increases
the optimal investment threshold and, therefore, we find that x3(n) > zj(n) > lim, oz (n) for
all tax rates t € (0,1) and all n > 0. Since the optimal investment threshold satisfies in the
absence of uncertainty and taxation (i.e. when ¢ = 0 and n = 0) the ordinary first order condition
p(z§(0)) = r(x5(0) —c¢) we find that the assumed monotonicity of the net appreciation rate p(x)—rx
and the assumption p(Z) < r(z — ¢) imply that z > x{{(0) and, therefore, that z{(n) < Z as long as
n < nj. On the other hand, since ¢, (z)/; () is increasing as a function of the volatility multiplier
1, the condition limy,—, ¥y (T) /4, (%) > (T — ¢)/(1 — t) implies that (1 — )y, (T) > ¢;,(7)(Z — ¢) for
a sufficiently great volatility multiplier 7 and, therefore, that there is critical volatility multiplier 73
such that z7(n) > z as long as n > n5. The rest of the alleged results follow directly from Theorem
2.1.

O
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