Two at the Top: Quality Differentiation in Markets with Switching Costs

Thomas Gehrig
University of Freiburg, and CEPR

and

Rune Stenbacka
Swedish School of Economics and Business Administration, and RUESG,
University of Helsinki, and HECER

Discussion Paper No. 55
March 2005

ISSN 1795-0562
Two at the Top: Quality Differentiation in Markets with Switching Costs*

Abstract

We explore the effects of switching costs on the subgame perfect quality decisions of oligopolists with repeated price competition. We establish a strong strategic quality premium. We show that competition for the establishment of customer relationships will eliminate low-quality firms in period 1 and that low-quality firms can survive only based on poaching profits. The equilibrium configuration is characterized by an agglomeration of two providers of top-quality as soon as switching cost heterogeneity is sufficiently significant. We demonstrate a finiteness property, according to which the two top-quality firms dominate the market with a joint market share exceeding 50%.

Keywords: quality choice, switching costs, poaching, natural oligopoly.

JEL-classification: D43, L15

Thomas Gehrig
Institut zur Erforschung der Wirtschaftlichen Entwicklung
Universität Freiburg
D-79085 Freiburg
GERMANY
e-mail: thomas.gehrig@vwl.uni-freiburg.de

Rune Stenbacka
Department of Economics
Swedish School of Economics
P.O. Box 479
FI-00101 Helsinki
FINLAND
e-mail: rune.stenbacka@hanken.fi

* We would like to thank for the comments of participants of the EU-CEPR-Conference “Economics of Networks” in Brussels and the conference “Competition Strategies and Customer Relations” in Helsinki, and, particularly, Juuso Välimäki as well as our discussants Chris Doyle, Klaus Schmidt and Pierre Regibeau. We gratefully acknowledge the hospitality of the Economics Department at the University of Pennsylvania and financial support of the Hanken Foundation, the Yrjö Jahnsson Foundation, the Deutsche Forschungsgemeinschaft and the Volkswagenstiftung.
1. Introduction

In existing models of vertical product differentiation firms typically relax price competition by choosing different levels of quality (Shaked and Sutton, 1982). Nevertheless in many industries it appears that several competing firms simultaneously supply products located at the highest available level of the quality spectrum. The rating industry is dominated by the rivals Standard & Poors and Moodys. The auction houses Sotheby’s and Christie’s are the dominant auction houses for art auctions and these rivals exhibit a roughly similar economic performance. The aircraft industry is characterized by fairly symmetric duopoly competition between Airbus and Boeing and it is indeed hard to find evidence of systematic quality differences between their products. In these examples, rivalry between the two leading firms is intense, but yet no single firm seems to clearly dominate its rival(s) in terms of quality. Similarly, in the micro-processor industry each generation of microprocessors is clearly dominated by two firms, Intel and AMD (American Microprocessor Devices). Finally, the United States General Accounting Office’s report to a Senate committee (2003) documents in great detail that the accounting and audit services industry has a structure with two dominant accounting firms when the client firms are classified according to their industrial sector. In fact, for a spectrum of different investigated industrial sectors the two dominant accounting firms have a joint market share in the range between 70 % and 95 %.

These observations are at striking variance with the predictions of the existing literature on vertical product differentiation. Virtually all the existing models of vertical product differentiation, where firms offer quality-differentiated products, have the property that only one firm provides the highest quality product, and all other firms offer products representing distinctly lower qualities. In these models the top-quality firm typically enjoys the highest mark-up, market share and profit.¹ None of these models generates market structures where there could be any agglomeration of competitors offering similar (or even identical) vertical characteristics.

On a more general level, the idea of firms offering identical commodities and competing in prices has virtually no theoretical basis in industrial economics. In equilibrium firms will typically offer differentiated, and hence different products.

In this paper we argue that the traditional vertical differentiation literature has neglected switching costs as a crucial characteristic of those industries, where quality competition is an important dimension. If an airline demands an extra set of jets of a given size class, it might have
strong incentives to stay with the incumbent provider in order to economize on the cost of training new crews and mechanics as well as spare parts and maintenance. In other words, switching the aircraft may be quite expensive for an airline. Likewise accountants familiar with a company from previous encounters will cause less of a burden to management time than a new accounting team. Again, switching accountants imposes potentially significant switching costs on management.

In the presence of switching costs, incumbents have an interest to exploit their monopoly power on those captive clients with an established customer relationship. On the other hand, the very same firm may aggressively poach for new customers, currently loyal to a rival. Hence, switching cost also invite price discrimination between attached and unattached consumers.

In this study we show that switching costs and the possibility to price discriminate generate systematic and interesting interactions with product choice. In particular, switching costs will help to segment the market. Hence, even in a duopoly two high-quality firms are able to share the market and still earn positive profits in the presence of switching costs. While intense ex ante price competition reduces any advantages to incumbency, competition for poaching revenues is limited when the top quality is offered by only two firms.

We focus on vertically differentiated markets where switching cost heterogeneity dominates relative to income heterogeneity. We prove that low-quality producers have a particularly strong incentive to close the quality gap to high-quality producers despite the bite of price competition. Under such circumstances the equilibrium configuration will be characterized by an agglomeration of two firms at the top of the quality spectrum. In this sense our result differs strongly from standard vertical differentiation models, where the degree of differentiation is always strictly positive and no two firms would offer identical qualities. In our model the incentives created by poaching profits dominate relative to the competition-relaxing effects of quality differentiation. This holds true as long as the poaching profits survive, i.e. as long as no more than two firms produce the top quality. However, our results do not invalidate the property of a natural oligopoly found in earlier models of vertical product differentiation (for example, Shaked and Sutton (1982) and (1983)), since entry is limited by the profitability of poaching revenues. In particular, our theory predicts that there will never be more than two firms at the top of the quality spectrum.

1 See, for example, Shaked and Sutton (1982), (1983) or Gehrig (1996).
Our analysis is structured as follows. Section 2 presents the basic model of consumers with switching costs. Sections 3 and 4 analyze price and quality competition for duopolistic industries where the consumers have a fixed income level. Section 5 generalizes the duopoly result to the case of simultaneous income and switching cost heterogeneity. Section 6 explores some implications of our theory for industrial structure and welfare. Finally, Section 7 offers concluding comments.

2. A Model of Quality Choice with Switching Costs

We consider a market with repeat purchases of non-durable commodities or services in two periods. In this respect our model can be seen as a dynamic extension of Shaked and Sutton (1982). The commodities can be offered at different quality levels \(q \in [\nu, \omega] \), where \(\omega (\nu) \) denotes the highest (lowest) available quality \((\nu > 0) \).

Consumers value quality. However, they trade off quality against the value of their residual commodity basket, which we simply measure by the income \(y \) available for this composite commodity. Their preferences in a given period are represented as

\[
U_t(q_t, y_t) = q_t y_t, \quad t = 1, 2.
\]

Aggregate inter-temporal utility is separable across time periods. Future consumption is discounted at the rate \(0 < \delta \leq 1 \) according to

\[
U(q_1, y_1, q_2, y_2) = U_1(q_1, y_1) + \delta U_2(q_2, y_2).
\]

Consumers are assumed to face consumer-specific switching costs. Following Chen (1997) we assume that the switching costs \(s \) of a consumer with income \(y \) are uniformly distributed on \([0, \bar{s}]\) with \(\bar{s} < y \). The parameter \(\bar{s} \) captures the magnitude of the switching cost differentiation and the switching costs are assumed to be lower than the income under all circumstances.

The switching costs \(s \) can be justified by, for example an inspection cost, which has to be paid each time a new product is acquired. This inspection cost may, for example, capture a learning cost, e.g. the opportunity cost of getting acquainted with a new piece of software or a new operating system. As another example, the switching cost could capture the initial x-ray a dentist typically takes before starting any operation. It has to be paid each time another dentist is
selected. Likewise a tax consultant needs to be familiarized with the personal income situation for each new customer.

We initially assume that income is fixed at \(y_t = y \) in order to highlight a configuration where switching cost heterogeneity dominates completely relative to income heterogeneity. This assumption is at variance with Shaked and Sutton (1982), who require positive income dispersion in order to allow for entry of more than one firm. Since in our framework entry is possibly even in the absence of income heterogeneity, we concentrate on the simpler case with fixed income.\(^2\) Furthermore, this case allows us to separate the effects of switching cost differentiation from the implications of heterogeneity in income. For simplicity assume that production takes place at constant and identical marginal costs normalized to zero.\(^3\)

The timing of decisions is as follows: With an established industry structure firms select product quality. Then for given and mutually observed qualities the competing firms determine prices in several two rounds of competition. In the second round of price competition we allow for history dependent pricing. In particular, firms can discriminate between its own customers and those consumers with an established customer relationship with a rival. Thus firms are allowed to poach the rivals’ customers, while they typically treat their loyal customers differently. Prices to loyal customers are denoted by \(p_1^i \) and \(p_2^i \), while poaching prices in period 2 are denoted by \(r^i \) for firms \(i=H,L \).

For most of the sequel we are interested in the set of subgame perfect Nash equilibria of this three-stage game. Section 3 analyses the price equilibrium in periods 1 and 2 before section 4 presents the analysis of the quality choice. In section 5 we generalize our model to simultaneously capture income and switching cost heterogeneity.

3. **Price Competition with Fixed Qualities**

In this section we analyze price competition for fixed quality choices. Further, we assume that the consumers are all endowed with the same income, \(y \). We will here analyze the case of duopoly and subsequently discuss the general case with more than 2 firms in Section 6. Let \(q_L \leq q_H \).\(^4\)

\(^2\) We demonstrate in Section 5 that our main results carry over to the more complex case with income heterogeneity.

\(^3\) While the assumption of identical costs for commodities of different qualities may not seem realistic, Shaked and Sutton (1982) show that even under this extreme assumption firms may still strategically select the production of different qualities in order to relax price competition.

\(^4\)
a) Duopolistic Price Competition in Period 2

In period 2 firms can price discriminate on the basis of customer purchase histories. Firms want to charge particularly attractive prices to rivals’ customers in order to poach them away from their competitors, while at the same time exploit locked-in customers up to the limit determined by the customer-specific switching cost. However, the poaching prices of rivals pose a competitive threat to the exploitation of locked-in customers and for that reason incumbent firms may have to charge low enough prices to loyal customers in order to prevent those from being successfully poached by competitors.

Poaching will induce switching only if the poaching offers undercut incumbent prices by more than the switching cost. A former buyer of the high-quality product \((q_H) \) will switch to a low-quality product \((q_L) \) if and only if

\[
q_H (y - p_2^H) < q_L (y - r^H - s) \quad (3a)
\]

and a former buyer of a low-quality product will switch if and only if

\[
q_L (y - p_2^L) < q_H (y - r^L - s) \quad (3b)
\]

Consequently, switching will occur especially for consumers with low switching costs, whereas consumers with higher switching costs tend to be more loyal.

Let \(\Delta = q_H - q_L \). Then the critical level of switching costs, below which the customer finds it optimal to switch to the competitor, is given by

\[
\hat{s}_H = \frac{1}{q_L} \left(q_H p_2^H - q_L r^H - \Delta y \right) \quad (4a)
\]

for former customers of the high-quality product, whereas the critical switching costs is

\[
\hat{s}_L = \frac{1}{q_H} \left(q_L p_2^L - q_H r^L + \Delta y \right) \quad (4b)
\]

for customers belonging to the inherited market share of the low-quality firm.

Let us consider price competition in period 2 for formerly high quality consumers first. Both the incumbent and the poaching firm maximize expected profits given by

4 At this stage it does not matter which firm, 1 or 2, provides the higher quality. We also consider identical qualities.
5 We have introduced switching costs in a multiplicative way so as to keep the model as close to Shaked and Sutton (1982). This specification has also been used by, for example, Gabszewicz and Thisse (1979), (1980). Strictly speaking this imposes the structure that the effective switching costs increase with the quality of the product one
respectively. Likewise the objective functions in the market segment of former customers of the low-quality firm read as:

\[\max_{r_L} p_L^L (\bar{s} - \hat{s}_L) \quad , \quad (6a) \]

\[\max_{p_H^L} p_H^L (\bar{s} - \hat{s}_L) \quad . \quad (6b) \]

Due to price discrimination the period-2 market is separated into segments of former buyers of the high-quality product and former buyers of the low-quality product. Competition for former buyers of the high-quality product involves the high-quality incumbent and the low-quality poacher, while competition for the former buyers of the low-quality product involves the low-quality incumbent and the high-quality poacher.

Standard analysis generates equilibrium prices and the corresponding profits from incumbency and from poaching.

Proposition 3.1 (Period-2 Prices): When \(\bar{s} \geq \frac{q_H - q_L}{q_L} \) equilibrium prices in period 2 are:

\[
\begin{pmatrix}
 p_H^L \\
 r_H^L \\
\end{pmatrix} = \frac{1}{3q_H q_L} \begin{pmatrix}
 q_L \left((q_H - q_L) y + 2q_L \bar{s} \right) \\
 q_H \left(- (q_H - q_L) y + q_L \bar{s} \right) \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
 r_L \\
 p_L^L \\
\end{pmatrix} = \frac{1}{3q_H q_L} \begin{pmatrix}
 q_L \left((q_H - q_L) y + q_H \bar{s} \right) \\
 q_H \left(- (q_H - q_L) y + 2q_H \bar{s} \right) \\
\end{pmatrix} .
\]

Proof: The first order conditions of the quadratic objective functions (5a) and (5b.) read

\[
\begin{pmatrix}
 q_H p_H^L \\
 q_L r_H^L \\
\end{pmatrix} = \begin{pmatrix}
 2 & -1 \\
 -1 & 2 \\
\end{pmatrix}^{-1} \begin{pmatrix}
 y \Delta + q_L \bar{s} \\
 - \Delta y \\
\end{pmatrix}.
\]

switches to. However, this is not a critical assumption from the point of view of our qualitative results and an earlier version of this paper has focused on switching costs, which enter in an additive way.
Moreover the first order conditions of (6a) and (6b) read
\[
\begin{pmatrix} q_H r^L \\ q_L p_2^L \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} -y\Delta + q_H \bar{s} \\ \Delta y \end{pmatrix}.
\] (8b)

Straightforward calculations yield the statements of Proposition 3.1.

The inequality \(\bar{s} \geq \max \left\{ \frac{q_H}{q_L} - 1 \right\} y, \quad \frac{1}{2} \left[1 - \frac{q_L}{q_H} \right] y \right\} \) states a sufficient condition for interior solutions with feasible poaching and incumbency prices. Hence \(\bar{s} \geq \frac{q_H - q_L}{q_L} y \) is required for an interior optimum.

Q.E.D.

From (7a) and (7b) we can see that more dispersed switching costs unambiguously lead to higher period-2 prices. This captures the intuitive idea that a higher switching cost threshold makes it possible for firms to exploit locked-in customers to a higher extent. In addition, higher switching costs increase the returns from poaching leading to a higher poaching price in equilibrium. Overall, a more concentrated distribution of switching costs (lower \(\bar{s} \)) intensifies period-2 competition and leads to lower equilibrium prices

The condition \(\bar{s} \geq \frac{q_H - q_L}{q_L} y \) turns out to be a sufficient condition for switching to emerge in equilibrium. In fact, if \(\bar{s} \leq \frac{q_H - q_L}{q_L} y \) the L-firm does not engage in poaching, i.e. \(r^H = 0 \), whereas it charges marginal cost prices \(p_2^L = 0 \) to customers belonging to its own market segment if \(\bar{s} \leq \left(\frac{1}{2} - \frac{q_L}{2q_H} \right) y \).

Naturally, in equilibrium the poaching price is always lower than the incumbency price. Incumbents want to exploit the switching costs of their locked-in customers, while poaching the rival’s customers at the same time. Active poaching and equilibrium customer switching from high to low quality take place, whenever the heterogeneity in switching costs is sufficiently large,
Proposition 3.2: When \(\bar{s} \geq \frac{q_H - q_L}{q_L} y \) poaching and equilibrium switching take place.

Customers belonging to firm H’s market segment switch if \(s < \hat{s}_H = \frac{1}{3} \left[\bar{s} - \frac{(q_H - q_L) y}{q_L} \right] \), while customers belonging to firm L’s market segment switch if \(s < \hat{s}_L = \frac{1}{3} \left[\bar{s} + \frac{(q_H - q_L) y}{q_L} \right] \). In particular, we can conclude that \(\hat{s}_L > \hat{s}_H \).

Proof: Straightforward and omitted.

Proposition 3.2 captures the idea that the lock-in effects of business relationships are quality-contingent within the framework of models with vertical differentiation. In particular, Proposition 3.2 means that the switching cost threshold required to prevent a customer of a low-quality firm from switching is higher than the threshold required to keep a customer of a high-quality firm loyal. Thus, high-quality producers tend to have more loyal customers. In this respect, the production of a high-quality product is associated with a strategic premium as it is structurally more resistant to switching compared with a low-quality product.\(^6\)

We next calculate the profits associated with the equilibrium prices. These profits are reported in

Proposition 3.3 (Period-2 Profits) Expected profits from incumbency are

\[
\Pi_2(H) = \frac{1}{9q_Lq_H} \left((q_H - q_L) y + 2q_L \bar{s} \right)^3 \quad \text{for the high-quality firm,} \quad (9a)
\]

\(^6\) This seems to be consistent with observations from, for example, the car industry, where high-quality brands typically have a higher degree of customer loyalty.
\[
\Pi_2(L) = \frac{1}{9q_Lq_H} (- (q_H - q_L) y + 2q_H \bar{s})^2 \text{ for the low-quality firm.} \quad (9b)
\]

The expected poaching profits are
\[
\tilde{\Pi}_2(L) = \frac{1}{9q_H^2} ((q_H - q_L) y + q_H \bar{s})^2 \text{ for the high-quality poacher,} \quad (9c)
\]
\[
\tilde{\Pi}_2(H) = \frac{1}{9q_L^2} (- (q_H - q_L) y + q_L \bar{s})^2 \text{ for the low-quality poacher.} \quad (9d)
\]

In line with the standard literature on vertical differentiation (see, Shaked and Sutton (1982), (1983)), the high-quality producer enjoys a competitive advantage and correspondingly higher incumbency and poaching profits. Incumbency profits, however, do not necessarily universally outweigh poaching profits. Poaching profits of the high-quality producer may exceed incumbency revenues of a low quality producer.

It is worth observing already at this stage that the quality differential \(\Delta = q_H - q_L \) favors the high-quality producer at the detriment of the low-quality producer, both for incumbency and for poaching revenues. Ultimately, as we will find out later on, this effect induces the low-quality producer to minimize the quality-gap to the high-quality producer.

In general, an increase in the expected value or in the dispersion of the switching costs, as measured by \(\bar{s} \), tends to reduce the intensity of competition and therefore benefits both firms. A similar effect is characterized in the horizontal differentiation model designed by Gehrig and Stenbacka (2004). In the limiting case of identical quality provision only switching costs matter. In this case the incumbency revenues are double relative to the poaching revenues.

\(b) \quad \text{Duopolistic Price Competition in Period 1} \)

We next proceed to analyze price competition in period 1. At this stage the competing firms rationally anticipate the period-2 equilibrium and internalize these effects into the decision making in period 1.

In period 1, consumers do not yet know the realization of their switching costs. For that reason consumers with identical incomes will exhibit identical purchasing behavior in period 1. The consumers simply select the product that yields the highest discounted expected utility to them. They are indifferent between the products if
Through re-arrangement of the indifference condition (10) we find that

\[q_L(y - p^L_1) + \delta \left[q_L(y - p^L_2) \frac{s - \hat{s}_L}{\bar{s}} + \int_0^{\hat{s}_y} q_H(y - r^L - s) \frac{d s}{\bar{s}} \right] = \]

\[q_H(y - p^H_1) + \delta \left[q_H(y - p^H_2) \frac{s - \hat{s}_H}{\bar{s}} + \int_0^{\hat{s}_y} q_L(y - r^H - s) \frac{d s}{\bar{s}} \right]. \tag{10} \]

From formulation (11) we can conclude that the customer is prepared to pay a premium for the high-quality product in period 1. This premium is higher the larger is the quality differential. This effect, which coincides with the insight from traditional models of vertical product differentiation, is captured by the second term in the right hand side of (11). The third term in the right hand side of (11) denotes the difference between the continuation utility within a customer relationship with the high-quality firm and that associated with the low-quality firm. This difference is positive and it adds to the premium for the high-quality product. The fourth term in the right hand side of (11) is negative. This captures that a period-1 customer of the high-quality firm will face less attractive poaching offers in period 2, and this effect reduces the quality premium in period 1. Finally, the last term in the right hand side of (11) adds to the quality premium, because it denotes the difference of the expected switching costs and from Proposition 3.2 we know that this difference is positive.

It should be emphasized that the quality premium described by (11) approaches the premium familiar from traditional models of vertical differentiation as the discount factor approaches zero, i.e. as the consumers become completely myopic. Consistent with this observation, the quality premium differs more significantly from the traditional one, the higher is the discount factor.
Firms maximize expected intertemporal profits. Let μ_H denote the period-1 market share of the high-quality firm and μ_L the market share of the low-quality firm. Then intertemporal profits consist of the period-1 profits and the discounted incumbency and poaching achieved in period 2. This is expressed formally as follows

$\Pi^H = \mu_H p_1^H + \delta (\mu_H \Pi_2(H) + (1 - \mu_H) \tilde{\Pi}_2(L))$ \hspace{1cm} (12a)

$\Pi^L = \mu_L p_1^L + \delta (\mu_L \Pi_2(L) + (1 - \mu_L) \tilde{\Pi}_2(H)),$ \hspace{1cm} (12b)

where in addition it holds that $\mu_L = 1 - \mu_H$.

From (12a) and (12b) we can conclude that the intertemporal profits are linear as functions of the market shares acquired in period-1. Therefore, in period 1, the low-quality firm can offer introductory discounts up to a limit determined by the return on a captive period-1 client. At this discount the low-quality firm breaks even. The high-quality firm just needs to match this price using the indifference relation (10) (or equivalently, (11)) and at that price the high-quality firm can still make a positive intertemporal profit on captive clients. Thus, in equilibrium, the high-quality firm will attract all consumers in period 1. The low-quality firm can only hope to poach consumers with low switching costs in period 2.

Proposition 3.4 (Period-1 Prices) Equilibrium prices in period 1 are given by

$p_1^L = -\delta (\Pi_2(L) - \tilde{\Pi}_2(H))$

and

$p_1^H = \frac{q_L}{q_H} p_1^L + \frac{\Delta y}{q_H} + \frac{\delta}{q_H} \left[q_H (y - p_2^H) \frac{s - \hat{s}_H}{\hat{s}} - q_L (y - p_2^L) \frac{s - \hat{s}_L}{\hat{s}} \right]$

\[+ \frac{\delta}{\hat{s} q_H} \left[q_L (y - r^H) \hat{s}_H - q_H (y - r^L) \hat{s}_L \right] + \frac{\delta}{\hat{s} q_H} \left[q_H \int_0^{\hat{s}_H} s ds - q_L \int_0^{\hat{s}_L} s ds \right].\]

At this price equilibrium the high-quality firm captures the whole market in period 1.

Taken together Propositions 3.1 and 3.4 show that the equilibrium prices exhibit a systematic intertemporal structure: a phase of introductory offers with price discounts is succeeded by a phase where the firms exploit locked-in customers, with whom the customer relationship was formed in the first phase. Such an intertemporal pricing structure is typical for
models with switching costs (see, for example, the survey models of Klemperer (1995), Varian (2003), Farrell and Klemperer (2004)) or the general analysis of Fudenberg and Tirole (2000) and Taylor (2003)). In our model, the introductory discount of the high-quality firm is just sufficient to deny the low-quality firm any positive market share in period 1. In period 2 the high-quality firm can exploit its incumbency advantage, even though the low-quality firm may successfully poach some of its clients. Based on this line of arguments we can conclude that the intertemporal discounted profit of the low-quality firm is determined by the discounted value of the poaching profits in period 2. We formulate these insights in a more formal way in the next Proposition.

Proposition 3.5 (Intertemporal profits)

(a) If \(\bar{s} \geq \left(\frac{q_H}{q_L} - 1 \right)y \) and \(q_H > q_L \), the intertemporal discounted profit of the low-quality firm is
\[
\Pi^t = \delta \tilde{\Pi}_2(H) = \frac{\delta}{9q_L^2}(- (q_H - q_L)y + q_L \bar{s})^2.
\]

(b) If \(\bar{s} < \left(\frac{q_H}{q_L} - 1 \right)y \) and \(q_H > q_L \), the low-quality firm is not active and its intertemporal discounted profit is \(\Pi^t = 0 \).

(c) The intertemporal discounted profit of the high-quality firm is always positive and it exceeds that of the low-quality firm.

(d) If \(\Delta = 0 \), i.e. if the duopolists offer identical qualities, the intertemporal profit for both firms is
\[
\Pi^t = \delta \tilde{\Pi}_2(j) = \frac{\delta}{9} \bar{s}^2, \text{ for } i, j \in \{H, L\}, i \neq j.
\]

Proposition 3.5 (d) reports a particularly striking finding as it highlights the divergence of our results from the standard literature on product differentiation. In the presence of differentiated switching costs the equilibrium profits are positive even when the competing firms offer identical product characteristics. In our setting with competing duopolists each firm is a monopolist on the poaching revenues associated with those consumers who have a customer relationship with the rival. For that reason it is profitable to poach the competitor in period 2 even when there is so harsh ex-ante competition for market shares that all profits, which are related to market shares acquired in period 1, are effectively eliminated through the introductory discount at the stage when the firms compete for the formation of customer relationships. Hence, the intertemporal
discounted profits are strictly positive despite identical product choices by the firms. This result, however, will not survive the entry of additional equal quality competitors, as Section 6 demonstrates.

On the basis of the present analysis one might also be tempted to enquire about the dynamics of the poaching process in a more general structure with several rounds of competition. What would be the ultimate distribution of prices? On the basis of our analysis we would conjecture that the answer should depend on the type of information about the history of purchases available to the competitors. If firms can only observe current consumer attachment, and if they have no records about past purchasing behavior, the steady state actually coincides with our period-2 prices. If firms keep more detailed records about past purchasing behavior, further possibilities to segment the market will arise and be exploited in equilibrium.

4. Quality Competition

We continue to focus on a duopolistic industry where the competing firms can produce different qualities or an identical quality. The quality decision serves as a long-run commitment relative to the subsequent stage of price competition. We assume the available range of qualities to be given by the interval \([\nu, \omega]\), where \(\omega (\nu)\) denotes the highest (lowest) available quality \((\nu > 0)\). Suppose, for the purpose of analyzing the strategic incentives for quality provision as opposed to quality decisions determined by cost considerations, that the establishment of a production line of quality \(q\) imposes “low” costs, which are independent of the quality.

Suppose that the duopolistic firms operate with different quality levels so that the high-quality firm produces \(q_H\), whereas the low-quality firm produces \(q_L\). As we have shown in the previous section, in period 1 the high-quality firm captures all the market and the intertemporal discounted equilibrium profits of the low-quality firm are given by its discounted poaching profits in period 2, \(\delta \tilde{\Pi}_2(H) = \frac{\delta}{9q_L} \left(-(q_H - q_L) \ y + q_L \bar{s} \right)^2\) (see (9.d)). These poaching profits are strictly decreasing as a function of the quality produced by the high-quality producer, \(q_H\), and strictly increasing as a function of the firm’s own quality, \(q_L\). Thus, the low-quality firm always has an incentive to increase its quality \(q_L\) until it approaches the high quality level \(q_H\). Likewise, the profit of the high-quality firm is increasing in \(q_H\). Consequently, we can characterize the
equilibrium configuration with respect to the quality commitments according to the next proposition.

Proposition 4.1 (Quality Agglomeration)

In the absence of costs of quality provision the subgame perfect quality equilibrium is characterized by quality agglomeration whereby both firms offer the highest available quality $q_L = q_H = \omega$.

This result is in stark contrast to the literature on vertical product differentiation based on income heterogeneity (e.g. Shaked and Sutton (1982), (1983) and Andersen, de Palma and Thisse (1992)). While that literature predicts local monopolies, in our theory more than one firm can profitably operate with identical qualities. In our theory, when markets are sufficiently large, or alternatively when sunk costs of entry are sufficiently small, at least two firms will enter at the top. As we will subsequently see, there will be exactly two providers of top quality.

We have seen that higher switching costs will stimulate poaching profits.\(^7\) Within the framework of our model increased poaching profits will make entry more attractive even at identical qualities. This, in turn, will promote competition in the vertically differentiated industry. In this respect higher switching costs tend to make the industry more competitive from the point of view of a long-term perspective with free entry. This prediction is opposite to the common view according to which higher switching costs would increase the market power of incumbent firms. Clearly, this popular view is restricted to a short-term perspective with already established customer relationships and with a given market structure.

One might be tempted to ask to what extent our findings are driven by the ability of firms to price discriminate rather than by the presence of switching costs. In fact it turns out that even under uniform pricing we get the same result of quality agglomeration at the top. The reasoning is rather straightforward. As the analysis in section 3 reveals, with distinct qualities in equilibrium the high quality firm attracts all the customers in period 1 and hence applies a defensive incumbent strategy in period 2 while the low quality firm only engages in poaching in period 2.

\(^7\) The presence of price discrimination and thereby the existence of positive poaching profits is a crucial feature for the emergence of the subgame perfect equilibrium with agglomeration at the top quality. In the absence of price discrimination, i.e. in a symmetric benchmark model with uniform period-2 prices like in the influential model by Klemperer (1987), competition for the formation of relationships would eliminate any positive profits associated with the identical qualities. Furthermore, uniform period-2 prices might lead to price configurations with mixed strategy equilibria.
According to Proposition 3.3, this implies that the poaching firm tries to shift quality upwards to the level of the high quality firm. If both firms offer identical (top) quality, however, we need to analyze a different pricing game with uniform prices. Relying on the findings of Chen (1997) we can confirm that agglomeration at the top is the unique quality constellation in equilibrium also without price discrimination.

Proposition 4.2 (Quality Agglomeration under Non-Discriminatory Pricing)

In the absence of costs of quality provision the subgame perfect quality equilibrium is characterized by quality agglomeration whereby both firms offer the highest available quality $q_L = q_H = \omega$, even when firms are restricted to non-discriminatory pricing.

Proof: For $q_H > q_L$ the analysis of section 3 applies. According to Proposition 3.4 in equilibrium firm H acquires all customers in period 1 and firm L is restricted to poaching in period 2. Hence, firm H applies p_H^2 and firm L applies r_L^2 as defined in equations (7) in period 2. Equilibrium period 1 prices are defined in Proposition 3.4. Hence, according to Proposition 3.3 firm L prefers higher qualities to lower ones.

For $q_H = q_L$ Chen (1997) establishes in Proposition 8 that equilibrium profits under uniform pricing exceed those under discriminatory pricing. Accordingly, at the stage of quality selection the L-firm always want to match – if not exceed – the H-quality.

Q.E.D.

Even though in the absence of price discrimination poaching cannot occur directly, poaching concerns do affect pricing incentives even under uniform prices. However, with uniform prices the poaching incentives gets convoluted with the incentive to protect captive consumers.

5. Duopoly Competition with Income and Switching Cost Differentiation

In order to render our results comparable to the literature on quality differentiation based on income heterogeneity alone we generalize the basic model and introduce income differentiation in addition to the differentiation in switching costs. Will agglomeration at the top quality also
hold if the seminal analysis of Shaked and Sutton (1982) is extended to incorporate switching
cost differentiation in addition to income differentiation?

Assume that the consumers are represented by their combination of switching cost and
income \((s,y)\). The consumers \((s,y)\) are assumed to be uniformly distributed on \([0,\bar{s}]\times[\underline{y},\bar{y}]\) with
the reasonable feature that \(\bar{s} < \underline{y}\). This captures the idea that the maximal switching cost of a
consumer never exceeds the available income of this consumer. As a starting point we also
assume that the duopolistic firms operate with different quality levels so that the high-quality firm
produces \(q_H\), whereas the low-quality firm produces \(q_L\).

In light of our findings in Section 3 (in particular Proposition 3.4) we can start the analysis
with the case in which the high quality firms succeeds in attracting all customers in period 1.
Thus, the low quality firm can only engage in poaching in period 2. This situation is illustrated
graphically in Figure 1. The critical consumers are just indifferent between staying with the high-
quality firm and paying price \(p^H_2\), and switching to the lower-quality product and paying the
poaching price \(r^H\). Formally, the location of these indifferent consumers is captured by the line
\[
 s = \frac{q_H}{q_L} p^H_2 - r^H - \frac{q_H - q_L}{q_L} y .
\]
(13)

As indicated in Figure 1, consumers located below this line switch, whereas consumers above this
line remain within the established customer relationship. Formally, Figure 1 captures the
configuration with \(\bar{s} > \frac{q_H - q_L}{q_L} \left(\bar{y} - \underline{y}\right)\).\(^9\)

Let us proceed by determining the price equilibrium for this configuration. As can be seen
from Figure 1, the area of switching consumers is given by \(\frac{1}{2} (s_i + s_2) (\bar{y} - \underline{y})\), where \(s_i\) and
\(s_2\) are determined by
\[
 s_i = \frac{q_H}{q_L} p^H_2 - r^H - \frac{q_H - q_L}{q_L} \bar{y}
\]
(14a)

and

\(^8\) The literature reports fairly few attempts to analyze multi-dimensional product differentiation. Important exceptions
are Irmen and Thisse (1998) for an analysis of competition in general multi-characteristics spaces and Ireland (1987)
(Chapter 7) for a combination of horizontal and vertical product differentiation.

\(^9\) This condition guarantees that the line (13) intersects below \(\bar{s}\) at \(y = \underline{y}\) and above 0 at \(y = \bar{y}\).
\[s_2 = \frac{q_H}{q_L} p^H_2 - r^H - \frac{q_H - q_L}{q_L} y. \] (14b)

Thus, the number of switching consumers is given by

\[\left(\frac{q_H}{q_L} p^H_2 - r^H - \frac{q_H - q_L}{q_L} \frac{\bar{y} + y}{2} \right) (\bar{y} - y), \] (15)

whereas the number of loyal consumers is

\[\left[\frac{\bar{s}}{s_L} - \frac{q_H}{q_L} p^H_2 + r^H + \frac{q_H - q_L}{q_L} \frac{\bar{y} + y}{2} \right] (\bar{y} - y). \] (16)

In light of (15) and (16) the period-2 price charged to existing clients and the period-2 poaching price are determined by the firms’ optimization problems

\[\max_{p^H_2} p^H_2 \left[\frac{\bar{s}}{s_L} - \frac{q_H}{q_L} p^H_2 + r^H + \frac{q_H - q_L}{q_L} \frac{\bar{y} + y}{2} \right] (\bar{y} - y) \] (17a)

and

\[\max_{r^H} r^H \left[\frac{q_H}{q_L} p^H_2 - r^H - \frac{q_H - q_L}{q_L} \frac{\bar{y} + y}{2} \right] (\bar{y} - y). \] (17b)

When \(\frac{\bar{s}}{s_L} > \frac{q_H - q_L}{q_L} (\bar{y} - y) \) both optimization problems generate interior solutions with the following incumbency and poaching prices:

\[p^H_2 = \frac{1}{3} \left(2 \frac{s}{q_H} + \frac{q_H - q_L}{2 q_H} (\bar{y} + y) \right) \] (18a)

and

\[r^H = \frac{1}{3} \left(\frac{s}{q_L} - \frac{q_H - q_L}{2 q_L} (\bar{y} + y) \right). \] (18b)
Comparing these equilibrium prices with those characterized by (7a) and (7b) we can observe that individual income is substituted by average income. Furthermore, one verifies readily that

\[\frac{\partial p^H_2}{\partial q_H} = \frac{-\bar{s} + \frac{1}{2} (\bar{y} + y) q_L}{3 (q_H)^2} > 0 \text{ if } q_L > \frac{2 \bar{s}}{\bar{y} + y}, \]

and

\[\frac{\partial r^H}{\partial q_L} = \frac{-\bar{s} + \frac{1}{2} (\bar{y} + y) q_H}{3 (q_L)^2} > 0 \text{ if } q_H > \frac{2 \bar{s}}{\bar{y} + y}. \]

Consequently, the incumbency price of the high-quality firm and the poaching price of the low-quality firm are always increasing functions of the qualities for sufficiently high levels of quality.

Substituting the equilibrium prices (18a) and (18b) back into the profit functions (17a) and (17b) establishes incumbency profits as

\[\Pi_2(H) = p^H_2 \left[\bar{s} - r^H \right] (\bar{y} - y) \quad \text{(19a)} \]

and

\[\tilde{\Pi}_2(H) = \left(r^H \right)^\bar{s} (\bar{y} - y) \quad \text{, (19b)} \]

respectively. In particular, as the poaching price \(r^H \) is strictly increasing as a function of \(q_L \) we can conclude that the poaching profit (19b) is a strictly increasing function of \(q_L \). This implies that each competitor has an incentive to provide the highest quality. Since, due to switching costs and poaching, both competitors can earn positive revenues even when they offer identical products, in equilibrium they will both offer top quality. In addition, the poaching profit (19b) is a strictly increasing function of \(\bar{s} \).
Proposition 5.1 (Minimal Quality Differentiation)

Let \(\bar{s} > \frac{\omega - \nu}{\nu} (\bar{y} - y) \) and \(\nu > \frac{2 \bar{s}}{\bar{y} + y} \). Then in duopoly the subgame perfect equilibrium exhibits agglomeration at the highest quality level.

Proposition 5.1 confirms that our central theme “two at the top” also applies to an economic environment that closely resembles Shaked and Sutton (1982) with the added feature of switching cost differentiation. The equilibrium property, however, is in stark contrast to the traditional literature on vertical product differentiation, which – in the absence of switching costs - predicts configurations, where the oligopolists always engage in quality differentiation as a strategic device to relax competition (see, Shaked and Sutton (1982) or Chapter 8 in Anderson, de Palma and Thisse (1992)). Within the framework of our model the incentive to relax competition is outperformed by the incentive to profit from poaching. In equilibrium, the low-quality producer always tries to minimize the distance to the high-quality producer\(^{10}\), thereby generating an equilibrium configuration with minimum quality differentiation.

Our agglomeration result qualitatively reminds of the principle of minimum differentiation established by de Palma, Ginsburgh, Papageorgiou and Thisse (1985) and Gehrig (1998). These authors consider an environment of a traditional Hotelling model equipped with an added dimension of taste heterogeneity such that firms cannot determine the purchasing behavior of an individual consumer. By applying a probabilistic discrete choice model or a search characteristic they establish product clustering as the subgame perfect product choice as long as the unobservable taste heterogeneity of consumers or the agglomeration economy is sufficiently strong. In our model sufficiently differentiated switching costs generate the agglomeration of qualities. Thus, contrary to these static contributions, here we focus on vertical product differentiation in a dynamic context, not horizontal product differentiation. Accordingly, the underlying economic mechanism is very different. Within the framework of our model the incentive to relax competition is dominated by the incentive to profit from poaching. In contrast, in de Palma, Ginsburgh, Papageorgiou and Thisse (1985) the price reduction induced by product agglomeration is dominated by the advantage of a higher market share associated with a location

\(^{10}\) Obviously the high-quality producer always prefers to maintain differentiation relative to the low-quality producer.
in the center of the Hotelling line when the non-spatial dimension associated with taste heterogeneity is sufficiently strong.

6. Some Implications for Industrial Structure and Welfare

By opening up a potential for poaching revenues, switching costs tend to invite entry at the top of the available quality spectrum. Of course, this begs the question, whether even more than two firms might enter at the top. However such a possibility can be readily discarded. As Taylor (2003) has shown in a general context, poaching revenues will be eliminated under such circumstances. With three identical competitors there will always exist two identical competitors for each poaching segment. Such a configuration generates Bertrand competition with respect to poaching. Hence, for any captive clientele there are two identical poachers driving down poaching rents and ultimately eliminating the poaching revenues.

Accordingly, applied to our context at most two firms, which offer a higher quality than all their competitors, can survive and earn positive revenues. A similar argument also applies to each lower level of quality provided in equilibrium, since again in equilibrium there cannot be two poachers with identical characteristics in the same market segments.

Proposition 6.1 (Two at the Top)

In any equilibrium each quality level is provided by at most two firms. In particular, at most two firms offer the highest quality.

In contrast to the standard literature on vertical product differentiation, in equilibrium each quality level can be provided by more than one firm in the presence of consumer switching costs. However, there cannot be more than two firms active on each quality level, because otherwise any poaching revenues would be eliminated. So what are the implications for the overall industrial structure in markets with consumer switching costs? Will the finiteness property survive the introduction of switching costs? Will the industry with switching costs remain a natural oligopoly?
In order to answer this question we have to introduce a sunk cost of entry. Since we are particularly interested in large mature markets, we might as well assume that the sunk cost is relatively small (but positive).

Proposition 6.1 implies that now in any free entry equilibrium of a large market there will be exactly two firms offering top quality. Moreover, based on the analysis of section 3 we realize that due to the introductory offers in period 1 the top qualities are sold at such attractive discounts that in period 1 only the two top quality providers will attract positive market shares. All other firms that might potentially enter necessarily have to specialize on poaching activities. But even in period 2 the top quality providers enjoy a significant competitive advantage.

Proposition 6.2 (Natural Oligopoly):

In equilibrium, the joint market share of the two top quality incumbents exceeds 50% of the captive clients for any number of active firms. Hence, in equilibrium the two top quality providers always control more than half of the market, for any number of (lower quality) competitors.

Proof: The number of loyal customers is determined by (16) for given period-2 prices. The incumbent’s reaction function reads

\[
\frac{q_H}{q_L}p_2^H = \frac{1}{2}\left(\frac{-s + r^H + q_L - q_H}{q_L} + \frac{\bar{y} + \bar{y}}{2}\right).
\]

Substituting this into (16) we find that for any constellation of prices and poacher qualities the market share of loyal customers is at least 50%, since

\[
\left[\frac{\bar{s}}{s} - \frac{1}{2}\left(\frac{\bar{s} + r^H + q_L - q_H}{q_L} + \frac{\bar{y} + \bar{y}}{2}\right) + \frac{r^H + q_H - q_L}{q_L} \frac{\bar{y} + \bar{y}}{2}\right] \left(\bar{y} - y\right) > \frac{\bar{s}}{2} \left(\bar{y} - y\right)
\]

Thus even the most competitive poaching sector cannot acquire more than 50% market share.

Q.E.D.

Our model presents a very specific version of the finiteness property. In any equilibrium industrial structure the two top firms dominate the market and secure at least half of the sales. While in general, we cannot rule out the entry of an increasing number of poachers as sunk costs
of entry diminish, the degree of competitiveness as well as industry profits are largely determined by the two top quality providers. Consequently, our industry exhibits all the essential properties of a natural oligopoly in the sense of Shaked and Sutton (1983). Hence, switching costs change the qualitative nature of markets with quality differentiation, since they invite a race to the top. On the other hand, the central prediction that endogenous sunk costs tend to generate natural oligopolies remains valid even in the presence of switching costs.

The equilibrium configuration characterized above seems to be consistent with the empirically observed industrial structure of the public accounting firms in the US. As the United States General Accounting Office’s report to a Senate committee (2003) makes clear, the accounting and audit services industry has a structure with two dominant accounting firms when the client firms are classified according to their industrial sector. In fact, for the different industrial sectors scrutinized by the report the two dominant accounting firms have a joint market share in the range between 70% and 95%.

From Proposition 3.2 we can directly conclude that the welfare loss induced by switching costs is independent of the quality level in all symmetric equilibria where firms supply identical qualities, because under such circumstances one third of the customers switch. Furthermore, this welfare loss is proportional to the dispersion of switching costs. In this respect our model predicts a negative relationship between switching costs and welfare. Furthermore, from Proposition 3.1 we can conclude that the poaching prices are increasing as functions of the dispersion of the switching costs in equilibria with identical qualities.11

Our model implies that industries with switching costs will provide higher average quality than firms without. These industries are remarkably competitive when price discrimination, and, hence, poaching is allowed. However, if (positive) sunk investment are required for quality production, obviously several welfare concerns arise. First, equilibrium switching always entails a welfare cost to consumers. Second, agglomeration implies excessive investments at the same quality level.
7. Conclusion

In this study we have established that quality choice is importantly affected by switching costs. In particular, in vertically differentiated markets where switching cost heterogeneity is sufficiently significant, we have demonstrated that low-quality producers have a particularly strong incentive to close the quality gap to high quality producers despite the bite of price competition. Under such circumstances the equilibrium configuration will be characterized by an agglomeration of two firms at the top of the quality spectrum. In this sense our result differs strongly from standard vertical differentiation models, where the degree of differentiation is always strictly positive. In our model the incentives created by poaching profits dominate relative to the competition-relaxing effects of quality differentiation. This holds true as long as the poaching profits survive in equilibrium, i.e. as long as no more than two firms produce the top quality. Our results do not invalidate the finiteness property found in models of vertical product differentiation, since entry is limited by the profitability of poaching revenues. In particular, our theory predicts that there will never be more than two firms at the top of the quality spectrum. Furthermore, we found that the two top quality providers always control more than half of the market, for any number of (lower quality) competitors.

Our results differ from the standard literature in three major aspects. First, and most importantly, our model shows that quality choice in models of vertical product differentiation typically also depends on aspects of the market environment other than income, such as switching costs. Abstracting from such features is not innocuous for the analysis of the degree of differentiation. However, the central result of the finiteness property is robust with respect to the introduction of switching costs. Our theory clearly predicts very concentrated market structures in large markets with two dominant firms and potentially a competitive fringe, which survives based on poaching profits.

Secondly, our theory contributes to the literature on switching costs. In our model minimum quality differentiation occurs if switching cost heterogeneity is sufficiently significant. Strictly speaking this is a consequence of our assumption that the quality choices do not affect the magnitude of the switching costs. If switching costs are affected by product distance, Gehrig and

11 Of course, in our model where each consumer purchases precisely one unit of the product the price effect represents nothing but a transfer between the consumers and the producers with no impact on total welfare.
Stenbacka (2004) show that an additional effect on location has to be taken into account. Firms prefer distance because it is a means of increasing switching costs, and hence poaching profits.

Thirdly, we have demonstrated that our model can be generalized to an environment where the consumers are differentiated in two dimensions: switching costs and incomes. Consequently, the quality agglomeration and the associated predictions regarding industry structure seem to be relevant for industries where the dimension of switching cost heterogeneity is sufficiently important. Many of the industries described in the introduction, perhaps, in particular, the accounting and audit industry, seem to fit this picture to a reasonable extent.

References

Figure 1: Poaching of consumers belonging to the market segment of the high-quality firm in period 1 with income and switching cost differentiation: the case with

$$s = \frac{q_H}{q_L} p_2^H - t^H - \frac{q_H - q_L}{q_L} y$$

$$s > \frac{q_H - q_L}{q_L} (\bar{y} - \bar{y}).$$