
Kalev Tiits

On Quantitative Aspects
of Musical Meaning

A model of emergent signification
in time-ordered data sequence

Academic dissertation to be publicly discussed,
by due permission of the Faculty of Arts at the University of Helsinki

In lecture hall P3, Porthania, on the 17th of August, 2002 at 10 o’clock

The music example from Acht Stücke by Paul Hindemith appears
by permission of Schott Musik International, Mainz, Germany.

Copyright Kalev Tiits 2002
All rights reserved

Printed by Yliopistopaino Oy, Helsinki, 2002

ISBN 952-91-4913-1 (Print)
ISBN 952-10-0621-8 (PDF)

Preface

This study introduces some approaches to computer-based and other highly
formalized methods for analysing form in time-dependent, music-based data.
The data in question are defined as a stream of events (elements, signs,
samples) that constitute a time series, and contain such structural cues in time
which can be experienced as musically relevant. Various classical computer
music methods and data representations are discussed and a new method
sketched, which draws ideas from recent scientific developments. Different
technologies are evaluated in light of their relation to musical meaning,
particularly in its symbolic function. A key aspect of this study is that a data-
driven processing method is preferred over the more widely used rule-based
ones. This study also surveys isomorphisms and connections of sub-symbolic
data processing to the general emergence of musical signification, as seen from
a semiotic perspective on the reception of music. The study incorporates
computer software written by the author, which was used in testing and
experimentation. A series of empirical experiments was conducted on three
works selected from the solo flute repertoire of the 20th-century. In sum, the
present study brings together several threads of thought, including schools as
theoretically distant from each other as philosophical-semiotic explication, on
the one side, and computer-based, sub-symbolic signal processing on the other.

Acknowledgements

A work like the one at hand is invariably a product of many ingredients.
Consequently, I have been greatly indebted to many people. Particularly I
would like to mention professors Teuvo Kohonen of Finnish Academy of
Sciences and Eero Tarasti of University of Helsinki, who have been prominent
mentors during this study, often indirectly, teaching the principles of scholarly
inquiry by personal example. Besides their part, this work has been
significantly influenced by the collegial, friendly and extremely knowledgeable
comments of Jose Luis Martinez, which helped me in focusing the research
problem and methodology in the beginning.

In the workgroups I have had a chance to be part of, there have been many
who have contributed to this work by providing good atmosphere and support.
In particular, colleagues Pauli Laine and Kai Lassfolk from University of
Helsinki electronic music studio, as well as Andrew Bentley and Philip Donner
at Sibelius Academy Centre for Music & Technology encouraged me in
different stages of this work. Mauri Kaipainen helped particularly in finding
financial aid for the project. The writing process inevitably mingled with my
other work. Thus, I would like to thank also fellow musicologists at University
of Helsinki and both staff and students at Sibelius Academy CM&T for both
fun and the hard times together experienced.

Richard Littlefield went through the text, correcting many unorthodox
expressions to proper English and thanks are certainly due to him. Big ta!

My work has received support from Wihuri foundation, Emil Aaltonen
foundation, University of Helsinki, Niilo Helander foundation, Oulu
Conservatoire and Sibelius Academy, either financially or by providing
computing platforms and other resources necessary for carrying out this study.
I am grateful to all these parties.

Writing this study has not been an easy process, and I wish to give credit
to the person who has in a very real way experienced some of the hardships of
the work – my wife Helena. I have yet to conclude, whether this would be the
right time for thanks or an apology. All the same, the project is ready now, yet
perhaps on some journeys, more important than the destination may be the
route that took one there. I would like to think this has been one such journey.

Kalev Tiits
Helsinki, 27th June 2002

Index

1 Can a theory for computer-driven, connectionist music analysis
contribute to discussions on signification and meaning in music? 7

2 A quantitative way of thinking about music 10
2.1 Dynamic musical objects 10
2.1.1 The computer-based segmentation of musical time-sequences 10
2.1.2 On meaning in the context of musical objects 13
2.1.3 Meaning – a vague concept? 15
2.1.4 Abraham Moles’ theory on information and meaning 17
2.1.5 Summary of meaning 19
2.2 Cognitive models and computer-assisted musicology 22
2.2.1 On theoretical paradigms of computer music 22
2.2.2 Cognition as a research topic in musicology 25
2.2.3 Performance models and cognitive models 27
2.3 Critique against computer-assisted musicology 28
2.3.1 On the probabilistic approach and information theory 28
2.3.2 Cognitive justification of linguistics-oriented models 30
2.3.3 Complexity, specificity and meaning 33
2.3.4 History, culture, and human reception 36
2.4 Describing musical objects 39
2.4.1 Event and flow as data-representation levels of a musical object 39
2.4.2 Score and music 41
2.4.3 Score representations 43
2.4.4 Symbolic musical abstractions 44
2.4.5 Connectionist representations 45
2.4.6 Sub-symbolic and symbolic data 47
2.4.7 Examples of connectionist applications in music research 49
2.4.8 Connectionism, reduction, and the science of chaos 51
2.5 Modeling music and cognition – summary 53
3 Introduction to semiotic systems and categories 54
3.1 Communication, signs and signals 54
3.2 Message and form: particular and general 56
3.3 On the Peircean concept of signification 62
3.4 Firstness, secondness, thirdness 63
3.5 A fundamental Peircean triad: icon, index and symbol 69
3.6 Peirce’s first triad: qualisign, sinsign and legisign 72
3.7 A third Peircean triad: rheme, dicent and argument 73
4 Adaptation, machine learning, and self-organization. 75
4.1 Energy-exchanging and information-exchanging systems. 75
4.2 Two cases of adaptive systems: direct adaptation and

complex adaptation 78
4.3 On definitions of machine learning 80

4.4 Supervised and unsupervised learning 84
4.5 Another look at sub-symbolism 87
4.6 Self-organization: various definitions in historical perspective 89
4.7 Self-organization: the neural model and the evolutionary model.

John von Neumann and the origins of cellular automata. 92
4.8 Architecture of a modern self-organizing system:

The two-dimensional self-organizing map 96
5 Musical information as fabric of sinsigns and legisigns 101
5.1 Symbol, icon and sub-symbol revisited 101
5.2 Legisigns and the temporal dimension 105
5.3 On the emergence of new concepts 109
5.4 Musical signification as a set of procedures 110
5.5 Mechanisms of instantiation and the idea of semiotic ground 115
5.6 Reverse instantiation and association tracing 119
6 Summary of the principles used as the basis for the experiment 125
7 A test report on an association-tracing system propelled by

self-organizing feature maps 128
7.1 Features of software implementation 128
7.2 On structuralist ideas, holism and transience 135
7.3 Experiment reports: SOMAT at work 138
7.3.1 Principles and parameters 138
7.3.2 Paul Hindemith’s Acht Stücke 139
7.3.3 Claude Debussy’s Syrinx 145
7.3.4 Kaija Saariaho’s Canvas 147
7.4 Discussion of test runs 149
8 Technical implementation of the experiment: the SOMAT program 154
8.1 General 154
8.2 Input and output data 155
8.3 Structuring and the program flow 158
8.3.1 The contents of the source-code files and the function-call structure

of the program 158
8.3.2 Function descriptions 160
8.4 Program usability and relation to current programming techniques 169
9 Final remarks 171

References 174
Appendix 1: SOMAT source code listing 181

7

1. Can a theory of computer-driven,
connectionist music analysis
contribute to discussions on
signification and meaning in music?

 One motivation for this study is to integrate scientific ideas drawn from
disciplines that are not usually studied together. There has long been a need
for integration among music-oriented disciplines, and this need has grown over
the years. This need became apparent during my discussions with music-
scholar colleagues and during seminars and conferences. It has been a constant
cause of dissatisfaction to watch even experts in the field have difficulty
understanding each other, let alone take interest in each other’s work. During
my long and ongoing love affair with computer-assisted study and modeling of
music, the disintegration of scientific inquiry has become particularly obvious
to me. Not only is it sometimes difficult to communicate with representatives
of traditional schools of music analysis, but one finds a lack of clarity in
concepts even among the relatively few scholars specializing in computer-
assisted musicology. This situation often leads to unhealthy skepticism and
wariness toward research paradigms other than one’s own.

 The modest objective of this study is to make it easier for us to come out
of our paradigmatic fortresses and communicate as academic “brothers and
sisters in arms”. One should of course not be too ambitious here. It is quite
unreasonable to think that a single treatise would put an end to fragmentation
even in a small subset of the scientific community; it is not so easy to replace

8

disintegration with unity. But even if the present study is just a small step in
that direction, it is yet one worth taking.

 In pursuit of integration of thought, I am seeking to bring together
concepts from various sides of various fences, and to find a common ground
among them. First, attention will be directed to the concept of musical
meaning as theorized by Leonard B. Meyer. Secondly, we shall look at ideas
concerning signs and how they function in communication, focusing on the
work of Charles Sanders Peirce, father-figure of the “American school” of
semiotics. A third major ingredient of this study is connectionism, parallel
distributed computation, artificial neural networks, or unsupervised learning –
whichever label the reader finds most appropriate for this special branch of
computer science, which stems from the work of many different people, all of
whom cannot be mentioned here. The ideas of Teuvo Kohonen, author of the
widely known self-organizing feature map, were chosen as the core of the
computing architecture used in the experimental part of this study. The reason
for this choice lies in the simplicity and elegance of Kohonen’s thought, as well
as in a more personal motivation: in working with Kohonen, I have come to
appreciate his creative spirit. Peirce’s and Kohonen’s ideas will be the starting
points for the present inquiry.

 These starting points are rather hefty ones, to say the least. The massive
amount of Peirce’s writings is particularly intimidating. It would be rash to
attempt to apply to music all his views about the world, science, and
signification. Instead, emphasis will go to his categorization of signs,
especially as it is applicable to my subject matter.

 The emerging applications of Kohonen’s self-organizing feature maps,
and the literature describing them, seem to grow day by day. For this study, a
custom-made piece of software was developed, dedicated to our purposes only,
with which it is possible to observe all mechanisms of the model at close range
and to study its workings from the inside. Implementation of the self-
organizing feature map also enabled the empirical part of our study. Access to
a computer program at the source-code level was essential for our purposes.
Maximum control and understanding of the results of the test-runs could thus
be maintained. Moreover, having complete control of software simulation
provides instant access to any new concepts that might emerge from the tests,
and enables the observer to distinguish side-effects and by-products from real
phenomena.

9

 As concerns musical signification, a key concept in this study is Leonard
Meyer’s notion of embodied meaning. This kind of meaning, typical of
nonverbal communication, takes place in our reception of music, mostly
without our being aware of it. According to Meyer, embodied meaning is
crucial to musical signification – an essential part of the cognitive process of
musical thinking.
 These three sources of ideas are examined against the background of
computer-assisted musicology. The latter began in the 1960s as an interesting
trend in the mainstream study of music but soon developed into a discipline of
its own, marked by an enthusiasm for the use of numerical methods. Typically,
computer-assisted musicology borrowed practices and theories from the
growing body of work on computer methods in the humanities, such as
linguistics and semiotics, as well as from general computer science,
cybernetics, and statistical mathematics, just to mention a few sources. Yet it
now seems possible that appreciation of computer-assisted musicology as an
independent discipline might vanish in the near future. Today, around the 50th

anniversary of the first digital computers, one feels a bit uneasy trying to define
a discipline, other than computer science, mainly by its use of computers.
After all, not many of us would have lengthy discussions about computer-
assisted cooking, though we might turn to the Internet to look up an occasional
recipe for a guest’s favorite dish. Perhaps (and one hopes) “computer-assisted
musicology” will be replaced by another term. Some scholars have already
started to talk about “new systematic musicology”, which includes numerical
methods, particularly in their relation to new developments in cognitive
science. Only time will tell whether this will become a generally used concept.
We may see the end of computer-assisted musicology as its own branch of
study, see mainstream musical studies embrace it again, or perhaps see it
transformed and adapted to some other definition, methodology, or name.

 Now it is time to introduce the main theme of the present study.
Throughout this work, the reader is invited to ask the following questions. Is it
just coincidence that Meyer’s definitions of meaning and Peirce’s views on
iconic semiosis seem to hinge on concepts much like those found in sub-
symbolic computing theory, and particularly in connectionist-oriented work on
technical pattern recognition? Or might there be some deeper relationship
between these faculties of thought? If so, might such a relationship serve as
foundation for interdisciplinary integration?

10

2. A quantitative way of thinking
about music

2.1 Dynamic musical objects

2.1.1 Computer-based segmentation of musical time-
sequences

Automated segmentation of the musical time-continuum has not been of major
interest in computer-aided musicology, to judge by the number of research
papers on that topic. Nevertheless, it is a challenging and interesting sub-
division of the field, and the ramifications of such research can be far-reaching
and connect in several ways to other sciences, such as semiotics, psychology,
cognition research, and applied mathematics. With the music industry’s
development of MIDI and sound-processing systems, good solutions to
segmentation problems are also beginning to spark commercial interest.

The difference between applied technology and basic research manifests
itself clearly in segmentation problems. Whereas commercial applications can
successfully rely on a heuristic system set up for only one particular purpose,
finding a theoretical basis for a general segmentation methodology of time
sequences still remains a challenge.

11

Various segmentation strategies for musical data in share common
problems, at least in terms of the “active” nature of the research object: musical
data streams consist of dynamic objects, which are characterized by a “refusal
to stand still and be pinned down” (Agawu 1991: 78). The analyst of such data
deals with manifold pattern variations. The construction of such variations
may not follow a simple, limited set of rules; rather, it probably engages with
the freedom of every possible appearance and form in which a single musical
idea may manifest itself in a work of art.

This study occasionally refers to the notion of musical object. The
purpose of this is to break free, at least partially, from traditional concepts used
in analysis of musical form, such as motif, theme, phrase, period, and so on. A
practical distinction is made here between a musical object and its instances.
The object itself is the idea of a theme or a motif at an abstract level. The
object thus belongs to a kind of “Platonic world of ideal forms”. The object
connects to real events, as represented in a musical score, through an
interpretive process that brings into existence its instances – or appearances –
in written form or as an acoustic sound-flow in time. The object lives a
dynamic life cycle, reappearing in various forms across the continuum of a
work or a performance. Its varying appearances manifest the subtle organic
processes of the object. (This description of the musical object may seem
slightly arbitrary, but I shall attempt to justify it by showing what can be built
upon such a description.) In any case, the notion of a motif or other musical
“idea” manifesting itself in a variety of guises in a work is a commonplace,
both in music studies and elsewhere. The more or less subtle variation of
repetitive patterns is a universal feature in the psychology of communications
(Monelle 1992: 69-70).

Computer analysis of form, which takes into account the dynamism of
musical objects, can be thought of as a two-fold undertaking. The first stage
consists in finding the pattern boundaries; this is the syntagmatic part of the
analysis. The system needs to find out what the patterns are in terms of a
linear, beginning-to-end analysis. This is a difficult task, because patterns in
real musical situations often escape definition – the vocabulary and syntax of a
piece are in many cases unique. At the second stage, the detected patterns need
to be compared and classified in a paradigmatic way. This comparison is
meant to reveal the compositional structuring of the work. Both tasks are
carried out at many levels of musical representations, and both are non-trivial.

Syntagmatic recognition and isolation of patterns, in its technical

12

implementation, requires fuzzy or adaptive data processing – something going
far beyond familiar Boolean schema of computer processing, wherein a
statement is always valued as either logically true or false. Concerning music,
it is likely senseless to talk about “statements” at all, and assigning truth values
to musical passages can hardly be justified. The need for adaptive and flexible
processing methods is universal in communications, particularly in musical
communication: the dynamic or fuzzy nature of musical objects will express
itself both in flow- and event-based musical data. Thus, segmentational
analysis of time sequences in general is a profitable place to test and further
develop recent technologies in adaptive computing.

In traditional analysis, segmentation often plays a minor role. If we
consider methods such as functional analysis or Schenkerian, reductionist
analysis, and compare them to what can be done with a computer, one notes
how easily the human brain performs the task, in contrast to the difficulties
which developers of automatic pattern-recognition systems are experiencing.
Though different analytical schools coexist, there is in most cases a clearly
understandable basis for them, even without a full consensus among scholars.
In most cases the discussion turns around preferences over several more or less
valid alternatives, and the scholar must be able to consider different, viable
alternatives, while abandoning the obviously nonsensical ones. The numerous
and interwoven signifying relationships in music always leave room for
contrasting views, which, even if they do not agree, must at least allow room
for each other to be able to serve as a basis for discussion.

The case is rather different with computer analysis. In the latter, a task
that is trivial for a musically educated person becomes a research problem of
its own. One reason for this is the explicitness of computer systems, such that
the grounds of analysis need to be specified quantitatively and step by step, in
order to achieve to the level of precision required for algorithmic
implementation. One might consider as one way to make a discipline such as
musicology more “scientific”. Potentially, however, this could lead to gross
misunderstandings about the role of computing in the humanities: that
quantitative results might be taken as inherently right. The latter conclusion is
incorrect, of course, since quantitative does not equal “true”, and numerical
methods still require discussion about grounds and presuppositions of the
theories that they are designed to prove or falsify. Not taking the grounds of
analysis may have been one cause of the bias against computer methodologies
in the humanities. In computer-based empiricism it is all too easy to take an ad

13

hoc principle and expand it, without asking necessary questions about the
soundness of the initial suppositions. The foundations of algorithmic processes
are rarely visible from the surface of computer programs. Even when an
integral report of the principal algorithm exists, there may be numerous details
of implementation, which may or may not have a pronounced effect on the
results of an empirical experiment. Even worse, the operational logic of an
algorithm may be embedded inside of a computer program in such a tangled
way that it is not easy to see or to validate. In such a case, not only it is hard to
test or discuss the value of the approach, but it is also hard to test the system at
the practical level, even for elementary programming errors.

Another reason for the non-triviality of segmentation research is that
computer-aided analysis has been attempted with a number of different
methods, which share only a few common principles of operation. It is not
uncommon to pick a method from the tool kit of some other discipline adapt it
to forming theories about music. In such cases, special attention must be paid
to specific characteristics of musical communication in order to arrive at
theories and methods of serious scholarly value.

Segmentation would involve the search for and classification of
manifestations of objects, as discussed above, at various levels of musical
form. The identification of such manifestations allows one to glimpse the ideas
behind the audible instances, or “real” musical objects. The processes by
which these instances take shape allow one not only to categorize better the
nature of the objects, but also to understand the dynamics of the work. Such
understanding enables one to move from questions concerning “what” to those
concerning “how”. In this way, the researcher works toward the dynamic
processes that make a piece of music particular and identifiable. This analytic
procedure would explain both the essential details of musical handicraft and,
more generally, the meaning of the musical work.

2.1.2 On meaning in the context of musical objects

There is abundant literature on meaning in music and culture. It includes a
great variety of ideas and disputed issues, including the propriety of using
the concept of “meaning”. To highlight briefly some major points on the

14

subject, let us start from an intuitive, “pre-scientific” notion of meaning as
the message conveyed by a musical work. On this definition, meaning has
two major aspects: transmission and significance. Successful transmission
requires some commonality in “alphabet” between the two sides of the
communication chain. Significance arises from the dialogue between
message and available alphabet, though the message can also be used to
expand the alphabet.

Various kinds of messages are transmitted in a listening situation.
Some of them can be verbalized and studied with scholarly methods. Others
may be “purely musical” ones; i.e., they may be explained in the framework
of music theory, but are otherwise hard to approach verbally. Some
meanings may be of a narrative nature. Narrative elements are most evident
in programmatic music. More abstractly, narrative elements can be found in
a large body of western music, as well as among other music cultures of the
world. Still other types of meaning serve mythical levels, drawing from the
largely unspoken mythical content of a particular culture. Such meanings
can be properly understood only in their own semiotic context, and do not
fall within the scope of the physical, structuralist, and computation-oriented
nature of the present study.

Rather, we shall concern ourselves with immanent messages, that is,
the ones limited to the inside of a musical work or passage. Hence, many
common types of signification will not be considered here. Among these are
all references and allusions to extra-musical objects, ideas, and even to other
musical works.

 A message may be thought of technically as the information content
transmitted by the work. Information in musical context has been defined as
the “non-confirmation of expectation” (Bent 1987: 58). There must be
expectations before information can be transmitted. At minimum, there must
exist a human or technological receiver that expects something, no matter
how vague the expectation might be. The more specialized and distinct the
expectations are, the better they will serve the transmission of information.

Limitation to immanent communication is a strict limitation indeed.
The importance of immanent messages may even be questioned – after all, in
the history of western music we are studying a tradition more than a
thousand years old, rich in intertextual references – rich almost to the point
of saturation at times. When a student learns about music, she learns about
tradition. Music theory has grown from practice confirmed by tradition. Is

15

it possible to limit oneself to immanent communication and still extract
interesting information from a musical work? I would argue, Yes, because
even without intertextual, mythical or other cultural references, expectations
can still be established within a work of art. To raise expectations, the
course of action would then be to use simple formal concepts of
communication theory: redundancy, entropy, repetition, similarity,
periodicity, pseudo-periodicity, and perhaps other, similar general
structuring principles.
 There is another value in researching immanent messages. Even
though such research may seem crude when viewed in the light of
sophisticated cultural communication, it has a great advantage that makes its
study worthwhile. This is its generality. Music-theoretical concepts and
knowledge about historical developments are style-specific, whereas general
information structuring principles are not. Amidst the post-modern Babel of
artistic subcultures, tribes, and styles, and the even more numerous mixtures
of them, to have tools free of stylistic associations can be of significant
scholarly value. Moreover, it brings one to the interesting question about the
reliance of a particular work on style and tradition in musical communication
– to what extent it is generated within a particular work. Immanent
messages are, because of their abstract quality, almost paradoxically limited
communicatively, but general in the cross-stylistic and cross-cultural sense.

2.1.3 Meaning – a vague concept?

Charles Morris (1971: 121-122) correctly pointed out that the word “meaning”
is problematic in its vagueness:

... for the major purposes which the everyday languages serve it has
not been necessary to denote with precision the various factors in
semiosis – the process is merely referred to in a vague way by the
term “meaning”.

Apparently Morris would prefer to dispose of the word altogether in
scholarly contexts. Some of the more precise replacements, such as

16

“language”, “syntax”, “truth” and “knowledge” are, however, not available in
the case of immanent signification of musical messages.1 On the other hand,
there exists a considerable body of work on meaning in music, from authors
such as Leonard B. Meyer (1956, 1967), which allows one to approach the
term with a little more precision than would be the case, say, with verbal
communication. It makes one wonder whether or not there is a significant
difference between language and musical communication.

Meaning in immanent communication has an emergent quality. This is
to say, the significance of a message grows from initial obscurity into existence
via the message – the artistic communication. The emergence of meaning is a
process of interpreting the message. This takes place in the cognition of the
receiver. Interpretation is made possible by an internal web of relationships in
the work. It forms a kind of scaffolding or structural frame indicating the
processes of musical objects during their life span.

One might suppose that such a cognitive process is highly personal and
hence not available to systematic study. My argument is, however, that even
though this process is personal, it still follows general rules. Those rules may
be studied, and they may be systematic, even to the point where a
computational model can be applied. Were it not so, discussion about music in
general would be pointless. Yet we carry out such discussions both in
everyday and scholarly levels. Consequently, there must be cognitive laws
shared by most of us that have to do with the perception of music. In the
following chapters, the objective is to find some general behaviors and
functions related to information-processing, which are framed according to the
nature of the cognitive system. In order to discuss the various aspects of
meaning, it is necessary now to set aside the more personal aspects of its
emergence, and consider meaning as the primary significant message
interpreted within a chosen musical work, independent of extrinsic information.

It seems obvious that language and musical communication have slightly
different mechanisms for the emergence of meaning. It is generally doubtful
that the internal dynamics of a message should be regarded as the primary
source of meaning in the case of linguistic communication. Is it not the culture
that forms the environment for the message and provides a framework for any
signification? Culture certainly is the basis of most linguistic significance. If
music were regarded as a language, this would be the case with music, too.

1 Though musicians often talk about musical syntax and vocabulary, these terms are not
usually meant in as rigorous a sense as they are used in general linguistics.

17

However, occurrences of the symbolic function in music are few and far
between in most musical cultures of the world, and in the music of western
society this is particularly true. Thus, attempts to concentrate on symbolic
communication do not usually produce a very interesting musical experience –
to do so cannot capture our attention for extended periods of listening, even
though this mode of listening is sometimes offered to children in the form of
“musical fairy tales”. When the special character of musical communication is
considered, for an adult listener the immanent signification probably dominates
(Meyer 1956: 35-38). Meyer refers to signification arising from a situation in
which music is pointing at music as embodied meaning; symbolic, assigned
meaning he calls designative meaning. The term “signification” is much used
in the context of designative meaning, and less so in that of embodied meaning.
In this way, “meaning” can be a suitable term by which to denote a wider range
of types of semiosis than does the term “significance”, which is often more
closely associated with designative meanings.

As used here, the word “meaning” allows for a certain amount of
detachment between the semiotic meta-language of language and the meta-
language of music. The underlying notion, which is also a defense against
Morris’s criticism, is that linguistic terms and concepts are not always
translatable as such to musical communication. Thus, the liberty is taken here
to use the term “meaning” in a slightly wider sense than “signification”. A
distinction between “meaning” and “signification” will be further elucidated by
an examination of the sources of meaning or signification, which are present in
a situation of musical communication. More discussion of the matter will
follow, in the context of application of semiotic theories.

2.1.4 Abraham Moles’ theory of information and
meaning

French scholar Abraham Moles takes a different point of departure for his
theory of meaning. He builds his concept of the latter on information theory,
and his work Information Theory and Esthetic Perception (1966) is considered
one of the basic texts on art and information theory. Along with examples of
musical signification, he also illustrates signification in language and

18

cryptography. Despite his different background and point of departure, Moles
(1966: 62-65) ends up with a concept of meaning not unlike that of Meyer. He
draws a strong association between meaning and structure, using the concept of
information: “... [the] absence of natural meaning is connected with an overly
large flow of information: in the current psycho-esthetic sense, with the
absence of structure, that is, of internal organization.”

In the Foreword to the English edition of his book, Moles notes that the
basic hypotheses of his theory are those of structuralism. Internal organization
in a message means a degree of predictability, which is in turn equal to the
regularity of the message. Following Wiener, Moles calls this regularity the
autocorrelation function, which is a widely used way to represent signal
properties in signal-processing theory. For Moles, autocorrelation expresses
the tendency of any statistical phenomena, including communication, to
become structures. Thus a link is established from meaning to correlation and
further on to periodicity, which can be detected from autocorrelation.

In communication, Moles acknowledges the problem of dynamic
structures typical of musical information, among other kinds. Thus, he seeks a
more flexible definition of periodicity than that of patterns repeating as exact
duplicates, at a constant length known as a period. In his terms, periodicity
occurs when we know the coming evolution of a function on the basis of its
past evolution. “Knowing” is the key word here, and “periodicity” is taken in a
more flexible and relaxed sense than that of being strictly equal. In fact, Moles
goes on to say that following periodicity in the classical – i.e., using precise
repetitions as the structuring principle of musical communication – deprives
the message of deep esthetic interest and results in banality (1966: 69, 150-
151). There is a seeming conflict with Moles’ concept of information, which is
connected to meaning, and the original Shannon and Weaver definition of
information, as it concerns engineering; the latter is often cited as a concept
having “nothing to do with meaning” (Fiske 1990: 9). Thus, the kind of
periodicity Moles is referring to includes both classical periodicity and so-
called pseudo-periodicity, which is based more on perceptual likeness than on
quantitative similarity.

After establishing the relationship between the internal organization of a
message and its signification, Moles curiously turns later to attribute meaning
outside the message itself: “Meaning rests on a set of conventions which are a
priori common to the receptor and transmitter. Thus it is not transmitted;
potentially it preexists the message” (Moles 1966: 197).

19

There is a possible source of confusion here. It is appears to be a
product of the very problem that Morris criticized, namely, the vagueness of
the meaning of “meaning”. It seems that “meaning”, for Moles, does not refer
to aspects of the signification process but specifically to the base of
signification – the conventions, which form the ground of a meaningful
message. This seeming paradox is further amplified by the fact that Moles
does not make a clear distinction between what Meyer calls embodied and
designative meanings.

2.1.5 Summary of meaning

Kofi Agawu addresses the distinction between embodied and designative
meanings by reference to Roman Jakobson’s distinction between introversive
and extroversive semiosis, which roughly corresponds to Meyer’s division
between embodied and designative meanings (Agawu 1991: 23). Agawu
argues that, in musical signification, introversive semiosis dominates. Thus, he
yields to the structuralist tradition, which seems to be particularly fruitful in the
pursuit of the roots of musical meaning. The same structuralist attitude
underlies the philosophy of the present work, and justifies the study of musical
signification by means of computation. If we agree that introversive semiosis
dominates in musical signification, then musically justifiable structural
groupings will lead us to the foundations of musical meaning.

From the point of view cognitive studies, it is somewhat paradoxical that
the structuralist tradition has largely evolved in the context of linguistics, and
has strong ties with referential significance and extroversive semiosis (Monelle
1992: 56-58). It goes without saying that introversive semiosis offers a more
fruitful ground for structuralist analysis, and by extension, for connectionist
models of music, such as the present study proffers.

Several answers can be offered to the question, How can the structural
grouping of musical objects be established? Before discussing these answers,
let us first establish a threefold point of departure:

1. Many computer models of music rely on essentially non-musical
representations. In other words, computer programs process musical material

20

mostly by non-musical, formal syntax. Music is described in a symbolic way.
This means that the description has an arbitrary relationship to music as a
physical phenomenon, information, data or system.

2. The formal syntax (in the Chomskyan sense) and its accompanying
symbolic description do not necessarily have much in common with the
“understanding” process carried out by a human analyst (see Bharucha 1987:
24-25).

3. The mechanisms of musical cognition are presently known only in part.
Generally, cognitive processes may display greater complexity than do any of
the present theoretical or practical models (Kohonen 1988: 13).

An analytic method having a wide scope and applicable to many kinds
of musical styles and situations would bring with it a change in the paradigm of
computer-aided study of music. Interest would center on processing strategies
for musically meaningful units of information, rather than on the processing of
arbitrary symbols that are constrained to be interpreted only as musical ones.
To date, the problem of segmentation has been solved in ways that are valid for
a single musical situation or small musical corpuses. A more general solution,
though harder to find, would merit more scientific interest. Whether or not a
common denominator can be found for segmentation of music stored in
different formats (e.g., sound files or event-type representations such as MIDI
files), remains both an interesting and challenging question. The specifics of
different storage formats vary a great deal. With musical cognition as a
theoretical starting point, it might be reasonable to suppose that some common
processing schemata exist that deal with segmentation in general.

The role of cognitive science, in its search for analytical laws, is to
provide a framework of concepts. Analytical procedures may be evaluated by
cognitive validity. In a way, this may provide a counterbalance to other
courses of action, such as the use of mathematical or linguistic principles in the
processing of musical data. Because music is not a mathematical system, it
cannot be accessed by mathematics alone. Nor is music entirely a linguistic
system, for it cannot adequately meet the formal criteria of the latter, such that
the words “music” and “language” would appear synonymous. The
cognitivist’s task is to provide grounds on which to evaluate the kinds of
procedures applicable to music and in what context, be they mathematical,

21

linguistic, or of whatever kind. Thus, cognitive science is charged with
exploring previously un-scouted territory. Since there are different schools
within cognitive science, the role of cognitive validation should also be
questioned. The answer probably depends to some extent on the context: one
should be able to choose a research method to deal with the chosen problem, a
sort of scholarly “home base”.

Into what scientific “slot” does the present study fit, given its
multidisciplinary nature? The answer is not a trivial one. The objective of this
study is to develop a model of signification that can clarify the relationship
between ideas from signal theory, pattern recognition and structuralist
semiotics. This goal is pursued by means of computer simulations using
musical data. The starting point is communication and the properties of
musical signals. The purpose here is not to implement an imitation of the
human mind, even within a limited scope. In that sense, the orientation of this
study is not strictly cognitivist. One reason why connectionist models, such as
the one used here, are interesting is their cognitive justification in comparison
to the more traditional symbolic AI (artificial intelligence) models. It must be
emphasized, however, that cognitive models are used here as means, not as
ends. This work focuses on the neutral level of communication between sender
and receiver. Semiotic concepts are applied to the bare signal; the latter is
understood here in the broad sense of any stochastic time-sequence, not as
limited to physical quantities such as electrical voltages going to a loudspeaker
or other such quantities. The study goes beyond implementation and
observation of a pre-described computer model – such activities are closer to
mere demonstrations than to fundamental research. Targeting the neutral level
justifies computer simulation as a type of empirical study, which aims to
increase our understanding of processes that take place at the neutral level, but
also helps to explain the receiver’s as well as at the sender’s end of the
communication chain. The information processes along the chain are assumed
to be more unified than has been shown previously. Thus, methods often used
in the to modeling of musical cognition, are applicable here, even though
building an artificial music listener/cognizer is not the principal occupation of
this study. The focus is on signal processing, on the regularities that govern
introversive musical semiosis, and on possible unification of models.

22

2.2 Cognitive models and computer-assisted
musicology

2.2.1 On theoretical paradigms of computer music

The roots of computation in the study of music can be traced back quite far
(see e.g. Kohonen et al. 1991: 229-230). For practical reasons, this study limits
the historical perspective of quantitative methods mainly to the period
following the late 1940s. In order to see how meaning and significance have
been addressed by various scholars since that time, a brief historical survey is
needed.

During the 1960s, computational musicology branched off from the
general field of musicology (Smoliar 1973: 123-124; Xenakis 1971: 131-134).
The new discipline was a child of its time: the adopted theoretical framework
was strongly influenced by statistical information theory, as outlined in the late
1940s by Shannon and Weaver (1949). Indeed, statistical methods constituted
the leading paradigm of computational musicology during that early period.
Attempts to utilize statistical tools for analysis and generation of music evolved
quickly soon after the publication of Shannon and Weaver’s theory. Yet a
significant amount of work in the field took place before the computer became
available as a tool for music analysis. Pinkerton (1956: 86), for instance, only
mentions the possibility for machine implementation while introducing his
experiments on an information-theoretical approach to the generation of
melodies.

In the early years of the discipline, musical computation was done just as
much with pen and paper as it was with electronic computers. The Greek
composer Iannis Xenakis was one of the most dedicated pioneers in the field.
Some of his music relies on statistically based calculations carried out by hand
(e.g., Xenakis 1971: 83-84) or on decisions made by musicians (ibid: 122-127).
Due to the nature of Xenakis’s methods, however, he was immediately
prepared to use computers when they became available. Among the “hand-
crafted” pieces of research on information-theory based modeling of music,
David Kraehenbuehl’s and Edgar Coons’ early publication leaned toward

23

analysis. The authors brought out seminal ideas, and tried to explain the
principles of information-theoretical analysis to the uninitiated and to less
mathematically inclined music scholars (Kraehenbuehl and Coons 1959: 510-
511). At Harvard University, Joel E. Cohen produced an even more complete
view of ways to implement information theory oriented procedures in
musicology. Cohen (1962: 137-138) also anticipated the influence of general
linguistics in musicology, by referring to the syntactic study of music – an idea
that gained more ground a decade later. The distinction between information-
theoretical/statistical and linguistic/grammar-based modeling of music
remained unclear, however. During the 1950s and 60s, information theory also
had a strong influence on linguistics. Even Shannon and Weaver referred to
linguistic concepts, despite the fact that their primary interest and bases of their
thought were in applied mathematics, information physics, and in a very
practical interest in engineering problems.

To summarize: it is quite evident that the early steps taken in computer
music composition and research were no less driven by theoretical
development than by the advent of computer hardware. The first applications
of computers to music were born out of demand – the methods adopted by
composers and scholars required them.

Noam Chomsky’s theory of generative grammars was perhaps the most
significant step in the general linguistics of 1950s. As Chomsky’s work began
to produce offspring in other disciplines, computational musicology gave the
new paradigm a warm welcome. Generative grammars were technically
feasible, since the theory of formal grammars embraces that of abstract
automata. Automata theory became very significant during the computer era,
by offering ways of practical testing with modest effort. Even more
importantly, formal grammars became an integral part in the development of
computer science, since the whole business of giving tasks to computers is
largely the science of expressing things in formal languages. In musicology,
the language metaphor had long been under discussion, arising partly from the
ties already mentioned, between probabilistic models of communication and
Chomskyan linguistics.

At the same time, another path led scholars towards linguistic models.
The development of semiotics, or semiology as it was generally called in
Europe, stemmed from linguistic ideas. Semioticians often consider semiotics
as a special branch of semiotics. According to Jean-Jacques Nattiez’s (1973:
51-57) review of the early development of semiotics, many ideas in the field

24

were born in general linguistics. As he put it, “The idea of using linguistic
models for the study of non-linguistic fields... ” goes back to Ferdinand de
Saussure’s Cours de linguistique générale, first published in 1916. Nattiez
further mentions that one reason for importing linguistic-semiotic ideas into
other disciplines such as musicology was “to bring rigour to where there had
been mere laxity” – i.e., to make the discipline more scientific. These very
words also express the spirit that reigned among the early scholars of
computational musicology. Little wonder then, that the ties between
musicology, linguistics and semiotics strongly manifest themselves in the work
of such scholars as the Italian musicologist, Mario Baroni (1983: 175-185).

Much effort has gone into the development of powerful grammatical
descriptions of music (see Roads 1985: 419-428). Consequently, the linguistic
metaphor constituted the major framework for computational musicology
during late 1970s and early 1980s.

Grammar-based computational models prepared the way for artificial
intelligence (AI) methods and musical expert systems. Knowledge therein is
represented in the form of a rule database that gives an exact description of all
knowledge present (Thomas 1985: 268-269; Ebcioglu 1988: 47; Holtzman
1980: 32-34). Thus, expert systems are closely related to musical grammars,
scarcely producing new ideas other than the database technology used to
manage the knowledge. Roads (1980: 15-16), in discussing historical
developments in artificial intelligence, states that systemic grammar, as used by
Terry Winograd in the 1960s and 70s, paved the way for AI in music. Another
early source cited by Roads is Otto Laske’s vision of an intelligent musical
robot working “on the basis of musical-grammatical constraints” (Laske 1975:
71).

The late 1980s and early 1990s saw growing interest in massive parallel
computation, connectionist machines, and neural networks in musicology – an
interest, which followed a general trend in the humanities, and might prove to
have been a paradigm shift even greater than that of the turn from statistical to
grammar-based systems. The basis of thought in neural and connectionist
systems radically differs from the theory of rule sets. Still, there remains a
common factor between the two. All the aforementioned architectures have at
some time been regarded as model of cognition. Consequently, the
development of cognitive science displays a rather intimate relationship with
the general theory of information processing.

During the first 30 years of computational musicology, the line of

25

thinking moved from statistical mathematics to general linguistics and further
on, to sub-symbolic cognitive modeling. Is the role of computational
musicology always going to be to import ideas from other sciences into music
research? Can it be regarded as an independent discipline at all? The answer
to these questions depends on the following: How well do the methods of
computational musicology fit the special needs of music research? To what
extent do the imported ideas remain foreign to the study of musical models and
musical information processing? What is the objective of computation in
musicology? How original are the ideas and algorithms that make a successful
musical computer application? To find adequate answers to these questions,
one must go deeper into the foundations of musical computing. Let us now try
to clarify further the motivation for using computational methods in
musicology, as well as level some criticism against it.

2.2.2 Cognition as a research topic in musicology

The justification and need for computational musicology have been subjected
to a considerable amount of debate. Harry John Maxwell (1984: 2) presents a
typical example of this discussion. Maxwell’s work deals with a method for
harmonic analysis using an artificial intelligence type of computing
environment. Maxwell compares his own point of view to that of Allen Forte
(1967: 33-34). According to Forte, the main motivations for computer-aided
analysis are completeness and precision of analytical method. This is
reminiscent of Nattiez’s request for methodological rigor, as mentioned above.
Forte also refers to the reliability of computational methods. A number of
authors after Forte have adopted the same point of view (e.g., Baker 1989: 312;
Baroni et al. 1982: 210-211; Broeckx and Landrieu 1972: 32; Frydén and
Sundberg 1984: 221; Holtzman 1980: 2-3; Schottstaedt 1989: 199).

Completeness and precision are important qualitative aspects of
scientific work, but not analytic goals as such. In deriving a new method, one
of the challenges is to make sure that the definition of scientific goals is clear.
The challenges of the method crystallize only with careful analysis and
application to practice.

Curtis Roads sets the goals for grammatical descriptions of music as

26

follows (1982: 7):

A main goal of developing more effective representations for music
is to improve musician-machine communication, replacing the
current rigid protocols and shallow user-interfaces with deeper and
richer dialogues. Another goal is more scientific – to develop better
models of human musical cognition.

Roads considers the cognitive part of representation as a focal point. To
paraphrase, his crucial question is, How faithfully do various representations
match our inherent mechanisms of data reception – i.e., human cognition?

Similarly, Lischka (1991: 434-435) considers the cognitive aspect of
formalisms of data processing as an important issue, and he identifies non-
symbolic ways of data processing as the source of new tools for musicology.
Non-symbolic representations have properties that are very interesting in
relation to cognitive models. These will be discussed later.

The cognitive aspect has also arisen in connection with statistical
models. David Lewin (1968: 51) presents a well-known statistical method, a
stochastic process called a Markov chain model as an approximation of one
who listens to serial music:

Imagine a listener who “listens two intervals back” at any given
moment, and suppose that, over the course of a piece, he develops a
sensitivity to anticipating the probability that any given interval will
follow the succession of two intervals just heard. To a quite
significant extent, he will then be able to perceive the presence of
row-structure in the piece, over the long run. If he can “listen three
intervals back” and estimate probabilities of the following interval,
his perception of row-structure will be extremely “good”.

Counter-arguments can be presented to Lewin’s idea. It would not be
too difficult to invent combinations of twelve-tone rows that easily lead astray
an analyst using, say, a third-order stochastic process as a research tool. This
may be particularly true in the case of polyphonic music. The fundamental
importance of Lewin’s statement is that he presents stochastic processes as
cognitive models. Lewin is in good company with this opinion. Leonard B.
Meyer (1967: 15) writes: “The fact that music, like information, is an instance

27

of a Markoff process has important practical and theoretical ramifications”.
More than 30 years after Meyer made that statement, the limitations of

stochastic processes as models have become even more obvious, through the
development of more powerful representations. The same is true of any
scientific paradigm.

2.2.3 Performance models and cognitive models

In research oriented toward algorithm development, it has become common to
refer to inadequate machine performance. Typically, in reports one finds
something along the lines of “with the next generation of computers our system
may, when further developed, serve as a powerful analysis tool”. Such
statements usually refer to the shortcomings of the machinery at the moment
when the work was carried out, but sometimes they may also be indicative of
shortcomings in the work. Hence, any such statements soon become outdated
and meaningless. Nevertheless, machine performance can not be ignored in
research, and it may be one of the factors used to evaluate the elegance and
applicability of the study and its results.

In the computation-oriented study of musical meaning one can presently
envision at least two main types of software architecture. First, the artificial
intelligence branch of computer science strives to perform tasks demanding
intelligent behavior, without making assumptions regarding the correlation of
biological information processing to performance strategies of the task at hand.
One might call this a kind of “black box” attitude, which emphasizes the input
and output of the system, and show less concern about the internal structure of
the process. It should be underlined that the definition of “tasks demanding
intelligent behavior” has gone through significant changes during the last three
decades. Some tasks once considered challenging have become trivial.
Another line of thought, called simulation by Baker (1989: 311-312), has set
out to model the functions of real, intelligent organisms. The latter model
prefers cognitive validity of research to evaluation of output only. The dualism
between these two approaches I shall refer as the difference between
performance models and cognitive models. Bharucha (1991: 84) makes a
similar distinction with the terms “artificial networks/human networks”. In my

28

view, the word “human” seems a bit lofty in discussions of machines; hence,
Bharucha’s terminology is not adopted here.

Cognitive modeling does not necessarily reject aspects of performance.
The crux of the theory of connectionist computing systems is that problem-
solving methods are closely related to data representations, and that there are
certain methods that specifically require simulation-oriented data
representations. For many pattern-oriented computing tasks, particularly, the
simulation of an intelligent organism may in fact not be an extra burden, but
through more powerful representations offer more efficient problem-solving
strategies.

2.3 Critique against computer-assisted
musicology

2.3.1 On the probabilistic approach and information
theory

The main objection to the use of statistical methods in musicology may be
found in the work of Cohen (1962: 137-138), who draws a rather direct parallel
between statistical information theory and general linguistic concepts. As
Cohen puts it, “In information theory, the output of any information source
such as communicator A is considered as a stochastic process, i.e., a random
source emitting signs according to probabilities” (ibid.: 140-141). The
feasibility of using statistical model depends on the phenomenon to be
modeled: a musical score, events written in the score, the composer’s mind and
intentions, a performance of a musical work measured in psychological or
physical terms, and so on. Cohen seems to consider musical scores as the
primary targets of investigation, but is also interested in the study of
performance situations. The latter may be prompted by many applications of
information theory based on verbal/aural communication situations. At the

29

general level, Cohen keeps an open mind to both physically and
psychologically oriented measures of information transmission, though
obviously preferring psychological terms to merely physical ones.

The problem with Cohen’s approach is that it ignores anything that
happens inside of the information source. The source is seen as a “black box”
producing output. The musical object is seen as a system with a limited
number of definite states. It may not be quite accurate to say that the laws
governing this output device are completely disregarded by Cohen. Rather, the
difference is one between causal and chance operations. The causal laws that
govern the internal mechanism of the black box are modeled by a non-
deterministic model of transition probabilities between the states of the system.
In light of current scientific ideas regarding cognition, this “black box attitude”
appears too much taken for granted.

As cognitive models with a wide range of coverage, probability systems
are obviously insufficient: there are many musical cognitive processes that
exceed the power of statistical description. A causal listening mode is an
important one, at least in western cultures today: A, therefore B. Research in
transitional probability functions does not seem capable of explaining the
tensions and expectations set up by western harmonic and melodic
progressions and their respective solutions. Moreover, it is easier to couple
them with deterministic rule sets or other vehicles, which constitute a more
tightly bound memory and rule base.

The value of probabilistic models was frequently criticised during the
emergence of Chomskyan linguistic methodology in music research in the late
1960s and 1970s. Lindblom and Sundberg (1970: 76) present one such
critique: “the ‘grammaticality’ of a well-formed melody cannot be adequately
captured in probabilistic terms. It seems clear that a theory of musical structure
should not be dependent on chance and our good luck....” The authors quote
Wayne Slawson (1968), who states, that in order to generate complex music,
“we must resort to rules that can refer to themselves – rules that permit ‘self-
embedding’ ... It has been shown that a Markovian process, no matter how
complex, cannot produce such structures”. At the time, it was generally
considered necessary to promote linguistic ideas and terminology via a critique
of the earlier paradigm. The linguistic paradigm was seen as an improvement
over statistical modeling.

The use of probabilistic tools in computer music is nevertheless far from
obsolete, even today. Some of the thought that went into stochastic music-

30

generation systems during the 1950s and 60s still remains valid and lives in a
number of algorithmic composition systems. Some parts of our perception can
be accurately approximated by probabilistic means – especially with complex
objects (Xenakis 1971: 8-9). Still, statistical information theory has many
limitations. One reason these limitations have become known is that stochastic
composition and analysis methods have existed long enough to be evaluated in
perspective and to face critique.

2.3.2 Cognitive justification of linguistics-oriented
models

Musical grammars and expert systems represent a further step in modeling
musical communication. Instead of considering an information source as a
black box engaged in stochastic behavior, these grammars and systems attempt
to explain the causal relationships and structures in the information, even to the
point of reflecting the internal workings of the source. The representations
used in grammars are basically symbolic, and often strongly relate to verbal
communication.

Linguistic theories of music are currently in the process of finding their
own historical perspective as well as their proper theoretical domain, as well as
receiving their share of criticism. As with the information-theoretical approach
to music two decades earlier, the late 1980s saw a frequent need to bring up the
shortcomings of the previous theoretical framework. Music-linguistic theories
are based on the concept of expressing musical entities in terms of grammatical
or logical rule systems – an idea introduced before computer technology was
available (see, e.g.. Schillinger 1978: 34-40). This basis has given rise to a
considerable amount of questioning. Part of this discussion – the part, which is
perhaps the least informed – has tried to clarify whether or not music should be
regarded as “language” in the everyday sense. Discussing whether or not
music is a formal system or language does little good unless it is understood
that any statements about the matter are not definitions; they are aids,
scaffoldings and models for thought, and are not to be confused with what is
real. A thorough account of such debates lies outside our present interest. For
a brief overview of the issue, the reader can turn to Gareth Loy’s account

31

(1991: 26-27). Here, we summarize the principal problems of what he calls
“linguo-musicology”:

1) The representation of ambiguous data.
2) The justification of strictly linear, left-to-right processing of music.
3) The number of alternative, differing sets of rules defining the same

passage of music.
4) Oft-appearing irreversibility in the analysis of a musical passage, or

“composing out” the passage again from the analysis results.

Let us address each of these problems. If random numbers are used as a
solution to ambiguous situations, the critique leveled against probabilistic
models can be directed to rule-based representations; namely, that such
systems generate structures “dependent on chance and our good luck”
(Lindblom and Sundberg 1970: 76).

In the light of contemporary cognitive science, the causal, sequential
representation of musical communication and musical sign system looks overly
simplistic, in much the same way as do probabilistic representations (Clarke
1989: 11). Grammatical systems have been built, which can handle several
points of view on the same situation, as well as on ambiguous situations
(Winograd 1968: 9-10; Roads 1985: 415-419). Nevertheless, the inherent
nature of a grammatical representation is mainly that of a symbol. Though
symbolic representations were once regarded as cognitive justification per se,
since the late 1980s an opinion has prevailed among many scholars (e.g.,
Lischka 1991: 433-436), that symbol-manipulation based rule systems do not
possess sufficient cognitive justification in music. Marc Leman (1992: 43-44)
is a bit loose in referring to “real dimensions” of music, apparently suggesting
that musical communication can not be distilled to a few scalar parameters, as
happens in printed scores of western music: “The main criticism is concerned
with the fact that the musical objects with which the linguo-musicology is
working are considered too abstract, too much restricted to only a few
parameters of score-based music, without taking into account the ‘real’
dimensions of music.”

According to Leman, the use of symbolic rule-description in music in
general derives from the linguistic metaphor of music. The linguistic metaphor
may seem attractive from the computational point of view, but in Leman’s
opinion it is hard to justify epistemologically. There seems to be no evidence

32

that the “musical black box”, or source of information, possesses such internal
dynamics as might be represented with a formal rule system. A number of
scholars consider this an important point. Otto Laske (1988: 43) has also
expressed his concern about the one-sided emphasis on “logico-mathematical
and linguistic intelligence” in computer-assisted music research. Laske
extends his criticism to artificial intelligence techniques and expert systems:
“... the Cartesian notion of intelligence (viz., the separation of knowledge from
action and being in the world) that underlies most artificial intelligence
research is largely inapplicable to music research” (Laske 1988: 44).

If Laske’s critique seems directed mainly against linguistic and
grammar-inspired representations of music, it certainly applies to many other
descriptions as well, some of which belong to more recent connectionist kind,
which has claimed more validity and credibility from the point of view of
cognition. If inseparability of knowledge from action is used as a governing
principle for music representation, we may come to see that not only generative
grammars but also some newer knowledge systems tend to disobey this
principle, too.

In connectionist systems that process symbolic data, the foundations of
knowledge do not depend on actions of the system, but rather on pre-
programmed knowledge. Such knowledge is independent of the action. It
might be described as a “pie-in-the-sky” type of given knowledge, which the
model itself does not explain at all. This “symbolic connectionism” has been
severely criticized by Kohonen (1989: 265):

The distributed models of neural networks can further be divided in
two categories, which are based on completely different
philosophies. In one of them, also called the “connectionist”
models, a very definite and distinct meaning is assigned to each
node or neuron in the network. The neural network is thereby
conceived as a direct analogy of the abstract semantic networks
where the nodes correspond to concepts or other linguistic
variables, eventually verbs. In order that this be possible at all, it
would be necessary to postulate that the role of the biological
neurons as operators in semantic interpretation were determined
genetically. On the other hand, contrary to a common belief, there
exists rather little physiological evidence to such semantic nodes in
brain networks. This kind of modeling is also a “brute force”

33

approach, because it bypasses and ignores the most intriguing
question about the automatic formation of such semantic nodes, and
does neither pay any attention to the encoding of the inputs, or
mechanism for the interpretation of the output activities from such a
network.

On the other hand, it is unreasonable to think that the neurally/
biologically based computing metaphor, with its integration of knowledge and
action, is a single, neatly unified package of thought. Study of biological
mechanisms of data processing has brought about a fair number of proposals
for computing architectures that share some common ideas, but differ
significantly at the feature level, and even imply contradictory operative
principles. Recent novel ideas have come, for instance, from the study of firing
rates of neurons, and of the ramifications of the firing oscillation itself actually
being a significant information carrier, even extending to a sort of pulse-coded
information embedded in the firing signals (see, e.g., Laine 2000: 65-71).

In sum, weaknesses of rule-based musicological models stem from
incompatibilities between the cognitive reality and the model, as well as from
the incomplete and competing theories about the actual nature of the cognitive
reality. Other criticism could be brought forward, of a more immanent nature,
concerning the conflicting demands made on the rule system by the objectives
of analysis.

2.3.3 Complexity, specificity, and meaning

Rule-based music representation systems usually need a way to cope with the
dialectic of generality and specificity. Let us consider an imaginary rule-set
that represents a musical work or style. The rules of the set are to be formal, so
as to enable computer processing. This generally means that the rules should
be written with a particular case in mind. On the other hand, the rules should
also represent invariances present in the data, such that they should generalize.
They should preclude redundant information. Without an ability to generalize,
a covering rule-set is bound to be larger than is practical, and probably very
complex. On the other hand, a smaller set, which cannot be applied except in

34

some peculiar situation, is not a very interesting subject of study. On these
conditions, we arrive at two results that, applied to any system, work in quite a
contradictory way:

1) A highly specific set of rules is irrelevant in the analytic sense, because
no reduction is made. Thus, such a set contains little coverage of general
musical problems.

2) A rule-set of high coverage is able to make powerful reductions and is
applicable to general problems. On the other hand, it tends to resist
formalization, and thus is of little use in computer-assisted study.

The simultaneous demands of specificity and coverage are hard to satisfy
in a single rule system. A possible solution to this problem is to use a special
context-sensitive grammar, which automatically adjusts the length of context of
the rules, according to the logical content of the data (Kohonen et al. 1991:
230-242). Even context-sensitive grammars, though successful in certain
pattern-recognition applications, do not seem to produce rules at a level of
abstraction high enough to access the cognitive mechanisms of musical
signification; at least, one might say this upon reviewing examples given in
Kohonen et al. (ibid.: 241-242). Limited capability of abstraction seems to be a
general property of non-hierarchical formal systems applied to musical data.
Such systems can represent little more than the surface level of musical
structure. A further conclusion can be drawn: a good representation of music
would support knowledge abstraction and reduction, and allow for the storage
of information in a hierarchical manner. Moreover, the reduction system
would be more elegant, and perhaps even more powerful, if it were cognitively
justified.

Even a hierarchical model, like that of Lerdahl and Jackendoff (1983), is
not very flexible in the cognitive sense, but seems targeted toward clear and
definitive formal solutions (of course, the authors do not claim otherwise).
Still, structural uncertainty is common even in the classical repertoire of
western music, in the sense that a musical object may belong to several levels
of hierarchy. A passage or an individual sound or note object may also belong
to one or more linear units of form, in Schenkerian and Lerdahl-Jackendoff
styles of parsing (see Lerdahl and Jackendoff 1983: 258-259). Mechanisms for
dealing with such ambiguous data may be incorporated into a formal rule

35

system, but it makes the representation a bit less charming in terms of
“computing aesthetics”.

One of the most severe problems of grammar-based and AI music
representations is their relationship with musical meaning. Successful rule-
based systems suggest a much simpler concept of meaning than can reasonably
be thought to describe musical communication. This is probably what Leman
(1992: 43-44) probably referring to in stating that “the ‘real’ dimensions of
music” are not taken in account. James R. Meehan (1980: 63-64) points out
that:

AI models for natural-language-processing may work well on
ordinary prose such as newspaper stories.... They cannot yet
recognize literature because there’s no representation of those
domains that define literature as something beyond simple prose ...
just as there are programs that compose nursery rhymes, there are
programs that produce poetry, too, but they’re on equally weak
foundations.

Meehan’s criticism is particularly serious when artistic communication
comes into play, for meaning in artistic creation at its best goes far beyond
literal meaning in simple texts in complexity, depth, and density.

For practical purposes, however, grammar-based analysis still attracts
interest in music studies. An appealing trait of linguistically oriented
descriptions of music is that they lend themselves rather naturally to data
processing and to descriptions made in programming language. This is so
because the behavior of a computing environment is frequently and easily
represented as a formal grammar. Moreover, as Roads (1985: 405) states, it is
wrong to consider all linguistic-oriented research as a unified whole, for a
massive body of various models have arisen since the late 1950s, such that
limitations discovered in one model might not be present in all of them. As
with probabilistic data representations, linguistic modeling, too, is closely
related to computing methodology, which was developed along with data
representation. In a broad sense, however, linguistic orientation is more an
att i tude, or manner of viewing things, than a certain algorithmic
implementation or computing strategy, or even a group of strategies. One
might assume that such an attitude would adjust to many kinds of systems, just
as the notion of grammar is used in a broader or narrower senses in various

36

contexts. It is an attitude that leans toward cognition and that is exhibited in
the use of linguistic models – an attitude in favor of a symbolic theory of
musical cognition. As far as computing strategies are concerned, then, it is
incorrect to say that the days of the linguistic attitude are over in music studies.
Such an attitude may serve well in the construction of data processing models
of music, as long as its role and limitations are understood.

2.3.4 History, culture, and human reception

Connectionist, or neural network-inspired, representations may well overcome
some of the problems encountered in linguistic and probabilistic data models.
They approach and approximate current knowledge of data representations in
biological organisms in a flexible and adaptive manner. Still, connectionist
representations are not without problems, and have drawn criticism – a kind of
criticism that in fact can be extended to all attempts to develop cognitive data
representations and models of information processes.

The cognitive approach to music studies is sometimes accused of being
completely ignorant as regards the history of musical idioms. Computer-
assisted musicology often faces the same criticism. It is true that such studies
focus on musical works or bodies of works, mostly of the same period, and
leave historical developments untouched. Such studies search for either
musical or cognitive universals, which leaves little room for engaging
processes of diachronic development. Yet cognitive research should be able to
provide explanations for music of various historical periods. The results of
cognition-oriented study are also to be questioned and evaluated in the light of
history. The questions to ask might include the following: Do factors exist
presently that might at one time were considered universals but are no longer
thought of as such? What historical developments have taken place in the
relation between music and these universals? Such questions seem to have
received little attention in musicology. Xenakis, who argues that mathematics
should also be seen as a “cognitive model” of a certain kind (!), has presented a
diagram of the parallelisms in the historical development of musical and
mathematical thinking (1985: 188-191).

Any cognitive model of musical communication is challenged by the

37

great variety of musical cultures and idioms. According to Dowling and
Harwood (1986: 4), the diversity of these cultures implies that musical
cognition strongly depends on information processes that are both flexible and
context-sensitive. Many of these processes obviously operate on the
subconscious level. This implies that the actual musical universals are either
relatively small in number, or that they operate on such a fundamental level in
the hierarchy of cognitive processes that they allow for highly diverse music-
cultural manifestations. Thus, study of musical cognition involves explication
of a manifold of musical worlds, whether they are outlined by diachronic
(historical) or by synchronic (cultural) separation.

A characteristic feature of the human reception of music is one that
might be called kaleidoscopic reception. The listener’s attention is often
divided between a number of things: simultaneous progression of musical form
on several hierarchical levels, harmonic ambiguities, more than one melodic
line (counterpoint), to name only few. Discussions about the dimensions and
data representations of musical communication sometimes confuse
representations of music with representations of individual notes in a score or
MIDI flow, which can indeed be closed representations, characterized by
necessary and sufficient conditions. Music is a multi-faceted, multi-
dimensional phenomenon, however, where concepts with necessary and
sufficient definitions are often not very useable. Reception of musical
communication must be just as multi-faceted and multi-dimensional – open to
the point that the number of dimensions and facets may be constantly variable.

Diversion of attention and multiplicity of focus in musical styles,
cultures, thought and cognition have remained as hindrances to any unified
methodology in computer-assisted music studies, as well as to cognitive
theories of music in general. After all, the working mode of a computer is
governed by a sequence of serial instructions. For rule-based processing the
multi-faceted, kaleidoscopic stream of musical information raises important
questions: To what extent is it feasible to implement multi-dimensional or
variable-dimensional information in a networked form, with a methodological
framework that inherently operates on a linear metaphor? Does it make sense,
or is it even possible, to simulate multi-dimensional processes on a data
processing platform that operates in a linear manner?

Probabilistic methods of analysis seem slightly better equipped to deal
with complex information processes involving multiple foci, because of their
ability to extract general information from particulars. A large number of

38

instances, when processed collectively, allow for diversion without sacrificing
the global perspective. The price paid for such an allowance is that a particular
object essentially occurs in probabilistic analysis only within its context – its
existence as a separate entity is meaningless.

Connectionist research of the 1990s seems to have found a way around
the trade-off of particular and general, which results from choosing between
probabilistic and grammar-based music representations. A connective
machine, as an analysis tool, may accomplish this, not by making compromises
with the older data representations, but by introducing completely new ones.
Being more flexible by nature, connectionist representations may incorporate a
number of kaleidoscopic viewpoints into one. This comes only with the caveat
that real-life connectionist data processing systems are gross simplifications of
true neural processes. Nor do they run as actual, analog parallel processes, but
as digital, serial simulations of such processes. Even though connectionist
systems have been built to imitate parallel processing, chances are that
fundamental differences between those representations and real analog parallel
processing – even analog electronic ones, to say nothing of biological
information processes. As yet we have no answer to the question of how much
better, if any, connectionist models are, at approaching deeper and more
complex types of meaning than mere literal meanings at the most elementary
level. After more than a decade of connectionist modeling, the time of
describing connectionist research as “a promising new approach” has ended.
Hence, it is time to evaluate how far the framework has been able to support
music studies. As a rule, such evaluations are prompted by the next new
approach or paradigm shift in the field, which provides refinement of earlier
ideas. At this time, however, a major shift toward the next paradigm is not yet
taking place.

39

2.4 Describing musical objects

2.4.1 Event and flow as data-representation levels of a
musical object

There are at least two different ways to represent musical objects, which could
be referred to as event-oriented and flow-oriented; that is to say, as discrete and
continuous, symbolic and physical, or, in the semiotic sense, as predominantly
symbolic and predominantly iconic. Our interest is in the needs of data
processing, but problems of representation can also be addressed without
specific reference to automation. Let us first concern ourselves with the
division between symbolic (convention-based) and physical (non-conventional)
representation. Physical representation has close ties with the concept of
iconicity as defined in semiotics, further expounded in the next chapter. In the
spirit of cybernetics, one might say that the distinction between symbolic and
physical representations resembles that between a physical sequence and the
control information implementing it. It is also reminiscent of the division
between control data and audio data, which can frequently be found in both
digital and analog systems of sound synthesis. Control information represents
an upper level of process hierarchy, and facilitates handling of a complex
system by reducing the amount of data necessary for control, and by offering a
uniform interface. Symbolic representation is a data reduction, allowing the
physical representation to be retrieved through a process of interpretation.
Thus the original “raw” data may be retrieved at another time or in another
place, if its symbolic representation has been preserved. This also resembles
the “expanding” of compressed data in many data-packing systems widely used
e.g. in the Internet.

Many examples are readily available of symbolic music representations.
The most obvious one is probably western musical notation. It is not
completely symbolic – a certain amount of similarity is involved – but most
people would probably recognize symbolic function as the dominant one in
music notation. A good reason for this claim is the fact that music notation
engenders event-based thinking about music. Among data-processing
representations of music, the most usual cases of symbolic ones are high-level

40

definitions of scores. Score definitions reduce a musical event to a set of
attributes, usually scales. Notation programs such as Encore, Finale, and
Sibelius use such definitions, and MIDI sequencers use data structures that are
quite similar in principle. Also sound-yielding programs – acoustical
compilers – such as csound, Supercollider or MUSIC V, use data files in their
source codes (score and instrument definitions), which belong to this category.
The objects to be processed are of the same nature as common-practice musical
notation, in the sense that many operations and transformations characteristic
of musical notation – and notation-based musical thought – fall within the
scope of these representations. These operations include transformations such
as transposition, inversion, retroversion, and intervallic augmentation and
diminution. It is remarkable that these operations, often known as contrapuntal
transformation techniques, are often associated with process of composition,
which in turn can easily be associated with free, continuous flow of music in a
creative and artistic mind. Somewhat paradoxically, these contrapuntal
transformations depend on the idea of music comprised of clear-cut discrete
events as building blocks, not as a continuous stream.

Physical representations of sounds involve various forms of digitized
sound data. Perhaps the simplest of these is linear PCM coding of signals in
the temporal domain. This type of coding is symbolic in the sense that
numerical coding is used, but not symbolic in terms of discrete, event-based
musical thought. Events are present, in the sense that sound samples digitized
at equal time-intervals are directly and linearly mapped to a given range of
values. But an event of this type is not a musical event at all. Any one such
event is just a scalar value, having no interpretation at all with respect to
musical meaning – this is an extreme case of a single event receiving its
meaning only in the context, and having no meaning at all without it. It would
be naïve to call this kind of signifying process “symbolic”, since the discrete
symbolic nature serves only as a basis for the flow of continuous information at
a higher level, which is the actual object of representation.

Representations of sound according to frequency domain play role
similar temporal-domain representations with respect to musical meaning.
They incorporate information retrieved from time-domain signals via a
mathematical transform (e.g., the Fourier transform). They are essentially
spectral representations serving many signal-processing computer applications,
such as sonogram/spectrogram analysis and re-synthesis tools. An example of
this type of device is AudioSculpt, a spectral filtering tool used in IRCAM

41

signal-processing software designed for Apple’s Macintosh computers.
Spectral representations deal with sound signals instead of notes or other
musical objects. Like time-domain signal representations, they are symbolic
only in a superficial sense. Most commonly used symbolic operations of a
musical nature are not directly available for time-domain signals, or require
computation-intensive operations in order to be implemented. They differ
from time-domain signals in that every time-window is represented by a vector
or group of vectors, allowing for multi-dimensional data and thus giving some
room – if just a little – for meaning on its own. Still, the position taken here is
that it is erroneous to consider such data elements as symbols. They may be
symbols in the sense of low-level technical representation, but certainly not in
the cognitive sense.

2.4.2 Score and music

It has become customary to speak about representing music in computers when
the subject of the representation is actually musical notation, printed music – a
score. A score is not music, but its symbolic representation by a written
medium. Similarly, a note is not a unit of music, but a typographic unit, a
grapheme. Between a note and its acoustic representamen there exists a
complex process of interpretation. Similarly, a complex process of cognition
takes place at the receiving end of the musical chain of communication,
between the acoustical phenomenon and the sign it produces in the
consciousness of the receiver. This difference is so self-evident that it has
sometimes been neglected in music analysis. Computer-aided music analysis
in particular is often regarded as score analysis only, dominated by graphically
represented dimensions of music description. A number of important qualities,
many of them connected with timbre, make only indirect appearance in this
type of analysis. Yet timbre is a profound element of any musical phrase. The
neglect of important elements is a shortcoming that can not be overlooked, no
matter what the analytical framework is. The importance of indirectly marked
elements of music is strong in contemporary music, even though tradition has
not laid down irrevocable rules concerning performance practices. But it is
particularly true of genres, where tradition remains strong. Among others,

42

musicologist and semiotician Eero Tarasti, even in the context of careful score-
study, has underlined the importance of properties – such as timbre – that are
not directly visible in the score. Giving an example of the English horn in
Sibelius’s Swan of Tuonela, he maintains that in “Western music almost every
instrument and its timbre has its own characteristic ‘nature’ which a composer
must appropriately incorporate into the musical-psychological whole of the
composition” (Tarasti 1978: 78-79).

In regard to the differences between music and the score representing it,
one must note that various scores have various levels of abstraction, iconicity,
and symbolism. For instance, tablatures quite obviously belong to a lesser
level of abstraction than do scores of traditional notation, because they have a
more iconic relationship with the physical gestures of a musician. With MIDI
files, the level of abstraction and relationship to musical meaning are somewhat
ambiguous. A MIDI file may represent either a gestural score or traditional
notation. For instance, a file recorded from the key movements of a MIDI
piano may be taken as a gestural score, whereas a file produced by step-editing
a written score is in terms of abstraction no different from the original, written
score. Thus MIDI information may communicate on an auxiliary level as
compared to the score – a series of tactile actions. In quantitative analysis, a
gesture-score may be treated with similar procedures as a score of printed
music. In addition to score analysis, computer-assisted musicology could also
help in the development of analytical tools geared to accessing the tactile
aspects of recorded music.

Sound-signal representations introduce problems unlike those
encountered in score-representation. Their low level of abstraction and high
density of data place practical demands on the data-processing architecture
used. One could say that digital sound signals are a minimally symbolic way
of representing musical information by computer. Because of their directly
physical nature, they tend to preserve an image of musical communication
faithfully and completely. Paradoxically, because of the minimal reduction
used, they also tend to be quite remote from musical concepts. So precision of
reproduction does not necessarily imply analytic potential. Reduction of
information is also required.

Digital representation always involves reduction of some kind. Some
information will always be reduced out, due to the nature of digital coding; the
coding itself being a discrete numerical approximation of a continuous, un-
quantized physical world. In coding, the omitted information is considered

43

unnecessary, but the judgement of what is necessary and what is not can
always be disputed. Naturally, a fundamental part of the preliminary work for
any analysis is to provide a definition of the kind of information that has been
left out of the analytical procedure, as well as to determine whether or not the
reduction has a pronounced effect on the results of the analysis.

For instance, timbre-related properties of sound seem to escape simple
definitions. In acoustical literature, the concept of timbre is usually coupled
with information concerning the spectrum of sound, its formants, and envelope
curves (Backus 1969: 94). Nevertheless, one of the pioneers of the musique
concrète, Pierre Schaeffer (1966: 55-56), presented the concept of timbre as a
part of the sound-color of an acoustic instrument. For Schaeffer, timbre
primarily meant the native, invariant properties of an instrumental sound-color.
Among these properties is the “violin-likeness” of the sound of a violin; but
different tactile and technical features of the sound of a violin, such as legato,
pizzicato, spiccato and register, lie at the outskirts of Schaeffer’s concept of
timbre. Undoubtedly, the latter properties have a remarkable influence on the
entities used for physical definition of a sound, such as spectra and envelopes.
Hence, the series of partials (harmonics), spectral structures, and any other
physically measurable entities are something other than timbre as it conceived
by Schaeffer.

2.4.3 Score representations

A number of representations have been developed for musical scores. For the
most part, these are incompatible with each other. The prevailing Babel of
practices illustrates the general difficulty of building new standards. The basic
setting of the problem is simple. There is an object – usually a note or a MIDI
event – that has a number of attributes. The number of attributes to be defined
for the object, and the properties they should cover, is a source of constant
disagreement. Moreover, the ways of grouping these objects into lines, tracks,
phrases, riffs, or rhythmic patterns are arbitrary. The same musical passage
can appear quite differently in different encoding systems. For instance,
attribute “stem upward” would be meaningful in traditional printed music
notation, but it is meaningless in a MIDI play-list or in audible music. A

44

standard way of addressing these problems has not yet gained general
acceptance, and it seems likely that the ongoing dispute will not end anytime
soon.

MIDI, as a global, data-communication specification for musical
devices, has promoted the simplistic representation of music. Though suitable
for limited purposes only, because of its lack of detail, it has greatly facilitated
the storing and processing of musical data. MIDI has made it easier than ever
before to collect musical information to serve as test material. The standard
way of data storage has also promoted conversion routines for other, more
sophisticated representations. This has brought a partial solution to an earlier
problem in the development of computer processing of music: too little source
material in computer-readable format. On the other hand, reliance on large
bodies of data using greatly reduced representation may lead to a misplaced
trust in the results, which might be misleading due to a disregard for the
consequences of data reduction.

2.4.4 Symbolic musical abstractions

In addition to physical and score representations, another class of
representations can be defined, which operate at a higher level of abstraction
than do the former ones. A large part of the methodology in computer-assisted
musicology, such as grammatical models and statistical models, has been that
of representation, closely intertwined with the methodology of reduction. The
results of such analytical or reductionist procedures can be considered as
forming a class of their own. A proper name for such descriptions might be
symbolic musical abstractions, and they involve discussion of the nature of
musical meaning. Roads (1982: 7) refers to this discussion as follows: “...
Music representations refer to the formal symbolic specification used within
computers for capturing musical structure and meaning.”

Computer-assisted musicology displays the traits of a science in a pre-
paradigmatic state, since professionals in the field can not seem to agree on
such basic questions as representational methodology. Is this something to be
concerned about? The choice of a particular descriptive method of a higher
level of abstraction often means commitment to a certain cognitive model.

45

Cleaving to one model also means favoring a particular cognitive theory.
Laske (1988: 43-44) points out that the disagreements about basic methodology
is due to the interdisciplinary nature of musicology in general. He goes on to
present his own suggestion:

...What this science [lacks] is a core set of methods shared by all
inquiries, as well as adequate tools for testing hypotheses. I submit
that cognitive musicology provides such a core set, based on the
notion of knowledge representation. Although controversial and far
from monolithic, this notion is capable of establishing a common
base for widely divergent hypotheses regarding musical knowledge.
(Ibid.: 44)

A key question concerning symbolic musical abstractions is whether or
not they can be arrived at automatically; i.e., if known methods of computation
can be used in forming or bringing out the higher-level information embedded
in them. This question is compelling from the point of view of methodological
development. If it is possible to achieve a musical abstraction by
computational means, then the abstraction process will require that the musical
object represented be independent of interpretation by human individuals, at
least to a quite significant degree. A basic assumption of the present study is
that the musical unit or object exists independently of the subjective
experiences of the listener, at least to some extent, and within the scope of
quantitative description. The musical object also exists independently of
scores, of instruments, and of recordings of any kind. The object itself lives in
a dialectical relationship with all these entities, but primarily depends on
information structures embedded in musical communication.

2.4.5 Connectionist representations

Connectionist representations are often contrasted with rule-based,
grammatical descriptions of music. Connectionist representations have
commonly resulted from a search for more flexible and powerful descriptions
than rule-based systems allow (Lischka 1987: 190-191). Connectionism is a

46

paradigm that emerged in the 1980s in computer science, psychology, pattern
recognition, and artificial intelligence, and it relies on computation carried out
in a parallel, collective fashion by a cluster of “cells”. The basic idea of
massive, parallel-data processing has existed for several decades,
approximately as long as the mainstream of artificial intelligence (Bharucha
and Olney 1989: 341). The difference between connectionist representation
and mainstream AI methodology is that the former contains a built-in
mechanism which promotes a holistic view of the object. In music, this might
mean that an entire piece interacts with its parts just as the parts interact with
each other. Connectionist time-series analysis can be thought of as a search for
a representation of such interactive forces.

Connectionism is often associated with artificial neural networks,
massive parallel processing, or sub-symbolic information processing, and is
based on a number of simple, parallel operational elements grouped in the form
of a network with interacting connections. Characteristically, these network
systems have some similarity to information processing performed by the
human brain and by other architectures that process biological data. Each of
the various terms used for connectionist systems has its own points of
emphasis, and biological counterparts are imitated with various degrees of
fidelity. The systems that mainly seek to mimic biological neural functions are
usually called “artificial neural networks”. Networks that interpret the idea of
parallel-distributed computation more loosely are known as “connectionist
networks”. The term “sub-symbolic” emphasizes the emergence of
abstractions in a connectionist network, and is often connected with the
concept of self-organization, which will be elaborated in Chapter 4. In order to
avoid confusion, we shall use the term “connectionism” as a general super-
class comprised of these different “brands” of brain-inspired computing
machinery, though it must be noted that not every expert in the field would
support this categorization.

The elements of a connectionist network act simultaneously as both
processors and memory units. Each node of the network performs simple
computational functions. The network’s ability to record information is based
on variable strengths of connections between its nodes, and on variable states
of those nodes. The network’s transfer function is brought about by its
collective behavior.

Biological information-processing models have inspired connectionism
from the beginning. As may be evident from what has been said thus far, the

47

division between performance models and cognitive models also exists in the
field of massive parallel computation. This division is sometimes expressed by
calling the former a connectionist network, and the latter an artificial neural
network. Still, connectionism in general claims to be closer to physiological
models than is (mainstream) symbolic artificial intelligence. Thus, it is often
argued that connectionism works better than other systems do, on the grounds
that it has better cognitive justification (Bharucha 1991: 84).

The network paradigm has a special relationship to grammar-based
logic. Bharucha and Olney (1989: 343) formulate the nature of this
relationship as follows:

Although the behavior of a neural net can be formally described by
the rules of a grammar, these rules are not explicitly represented in
the network. Rule-based theories that are offered as formal
descriptions are vital contributions to an understanding of cognition
because they specify constraints that any theory of the underlying
processes must meet. However, rule-based theories that go beyond
formal description to claim that rules are explicitly represented, as
in a computer program, and that cognitive processes are symbolic
operations performed on these representations, are fundamentally
different from neural nets in their concept of cognition.

A number of different artificial neural network and connectionist
architectures have been created for different applications. A common
denominator among them is the distributed representation of data over nodes of
the network, and connections between the nodes. The distribution of data
provides the most interesting properties of these nets – flexibility, adaptability,
and the ability to generalize knowledge (see Alexander and Morton 1990: 19).

2.4.6 Sub-symbolic and symbolic data

The notion of sub-symbolism is crucial to the conceptual apparatus for the
description of connectionist systems. Sub-symbolic data processing, like

48

connectionism, is based on the brain metaphor of cognitive processes. Leman
(1991a: 7) describes the sub-symbolic level of musical cognition as a
representation located between acoustic and symbolic levels of musical data.2

His main idea is that the roots of knowledge extend into this low, sub-symbolic
level. Symbolic metaphor, which is commonly thought to dominate the highest
levels of cognitive processes, is built on the foundation of sub-symbols. In
Leman’s thought, sub-symbolic knowledge represents the more or less
physically measurable “raw data”, and is directly retrieved from input data that
is fed into a connectionist system. The existence of sub-symbolic data gives
rise to the organization of knowledge, which may either be a result of a
purposive organizational process driven by explicit directions, or emerge as a
result of a data-driven process, in which algorithmic direction does not play a
major role in knowledge retrieval.

From the definition of sub-symbolic knowledge it is clear that suitable
data-processing methods for such an approach are quite different from those
engineered for retrieving symbolic information. The knowledge input may be
qualitatively different, because the data being processed need not be formalized
at the symbolic level. This enables one to better deal with fuzzy and ill-defined
information. A set of examples may be used as the source of knowledge even
better than prefabricated formalisms can be. Of course, also symbolic systems
can use examples as a source of knowledge in, too, but in that case the
knowledge would be more strictly limited to a particular case. Sub-symbolic
representations, in turn, allow for generalization of a particular case. This is to
give support to a previous, implicitly given argument; namely, that the
methods, the mechanisms, and the power of expression in computing rely
heavily on the data-representation used.

Sub-symbolic information about a musical object as such will provide
few analytic results. Because of its low level of abstraction, it does not readily
serve explanatory models. Rather, it provides structuring mechanisms for
knowledge, which may be of benefit in analysis. Given information, sub-
symbolic processing produces structures that make it possible to retrieve
knowledge that reflects a higher level of abstraction than do the original sub-
symbols. This structuring may take place either through processes previously
learned under supervision, or by processes of self-organization. A self-

2 This is Leman’s implementation-specific notion only. One can conceive of musical
applications of sub-symbolic representations that have little to do with acoustical
information.

49

organizing process may possess knowledge previously learned in an
unsupervised mode, or may build its knowledge “on the spot” – in real time,
from the given data. Such processes generate symbolic descriptions, which can
be presented as the analytical result. They bring out the hierarchical structure
in data, if such a structure exists.

Because the self-organizing processes can be made to build hierarchies,
it is naturally possible to build process chains that are equivalent to the
emergence of multi-layered hierarchies. The symbols emerging in one
organization process can be used as sub-symbols on the next level of hierarchy.
Jamshed J. Bharucha (1991: 93-97) of Dartmouth College introduces a model
built on this principle. His model uses consecutive layers of spectral
representation, pitch height, pitch class, pitch class clusters (i.e., concepts of
chords and harmonic intervals), and tonal centers leading to representation,
which Bharucha calls “pitch invariant representation”. The two lowest layers
of the model are “presupposed”, in his terms, apparently meaning that the
actual data-input stage of the model is the third layer – pitch class – upon
which the upper layers are built. Thus Bharucha’s model, called MUSACT,
serves as a scheme of cognition, including mechanisms for organization both in
pitch and in harmony (pitch invariant representation) and in producing
representations of musical time (sequential memory).

2.4.7 Examples of connectionist applications in music
research

A number of compositional programs have been built according to the
connectionist paradigm. One of these was introduced by Peter Todd, who
advanced an “algorithmic composition” scheme based on connectionist
architecture. Todd’s connectionist composition machine consists of a well-
known supervised learning system called back-propagation network, which is
employed to learn musical patterns, and to generate new patterns with the
knowledge thereby obtained. He considers his method a great improvement
over rule-based composition engines: “These methods contrast greatly with the
majority of older schemes that simply follow a previously assembled set of
compositional rules, resulting in brittle systems typically unable to

50

appropriately handle unexpected musical situations” (Todd 1989: 27).
As concerns analysis, connectionist ideas have so far been applied

mostly to non-temporal, “outside-of-time” musical structures, such as vertical
harmony, key relationships, and formation of pitch (Laden and Keefe 1991;
Leman 1991b; Sano and Jenkins 1991). One analytical work of this kind is
Marc Leman’s theory of tone contexts. He applies the so-called self-organizing
feature map (Kohonen 1989: 119-157) to constructing a cognitive theory of
key relations in tonal harmony. Leman (1991b) gives an example of symbolic
knowledge resulting from sub-symbolic processing. He examines the
emergence of harmony and tonality vertically, with no reference to temporal
structures of music. On his view, certain cognitive structures, such as the circle
of fifths, derive more or less directly from combining certain laws of acoustics
and mathematics with others from information science. Briefly described,
Leman’s experiment was as follows: He fed information about the occurrences
of various pitch-classes in the piece to the self-organizing map. In his system,
both the pitch-classes of fundamental frequencies and a small number of
harmonic overtone components were taken into account. As a result of the
self-organizing process, a structure equivalent to the circle of fifths evolved on
the self-organizing map. Of course, it has long been known that tonal laws and
the circle of fifths have a close relationship with the physics of sound.
Leman’s work, however, contributes to the formalization of this relationship in
a fundamental way, by showing what type of information processes can
generate this phenomenon, and what side of the phenomenon is purely
physical, thus clarifying the role and function of low-level cognitive processes
in our reception of musical sound.
 Another system, introduced by Robert Gjerdingen (1991), outputs a
categorization of given musical passages. Gjerdingen uses the so-called ART
system, which is based on Grossberg’s adaptive resonance theory (Grossberg
1976; Carpenter and Grossberg 1987). On this principle, Gjerdingen builds an
analysis schema called L’ART pour l’art. ART is an architecture somewhat
more complex than Leman’s self-organizing map. Gjerdingen promotes ART
as a system that can “successfully categorize an arbitrary large and complex
domain of analog patterns” (Gjerdingen 1991: 146). By analog patterns, he
seems to mean the kind of data which, in this study and in general semiotics,
might better be called iconic data. To judge from his results, L’ART pour l’art
seems very successful in categorization (Gjerdingen 1991: 146-149). Thus, we
have reason to believe that either the principle of operation or the

51

implementation (or both) is at present one of the most successful musical
connectionist analytical systems.

One interesting feature of ART is that it considers methods related to
signal-processing theory in a very physically oriented manner, and employs
them in processing abstractions. This kind of abstraction in question is a
signal, if taken as such, but not an exogenous one. Rather, it is a signal
immanent in the cognitive system, not something that would directly and
iconically represent the physical world outside of the artificial “cognizer”.
Hence ART possesses internal representations easily viewed as signals, a
feature that is shared by the model developed in this study.

2.4.8 Connectionism, reduction, and the science of chaos

In designing analysis systems it is beneficial to know as much as possible
about the behavior of data sources, and this is closely connected to their
internal mechanics and structure. If we instead take a “black box attitude”
concerning the signal source, the motivation for that choice would be the
presupposition that knowing the source’s internal structure is not necessary for
analysis. However, there are ways to approach the dynamics of a signal source
on a general level without knowing its structure in detail. One such way would
connect to the concept of chaos.

What we know about chaos might contribute in a way to what we know
about connectionism. Research on chaotic phenomena has taught us that order
and chaos coexist in many dynamical systems, and that certain features of
chaotic behaviour actually reflect regular properties of an information source,
or at least give us information concerning the source. This is particularly
valuable in situations when the source is complex in structure, which would
present obstacles to studying it in detail. Inspired by findings of chaos theory,
special techniques have been developed for data compression, and thus are
related to analysis and abstraction. One such technique is called IFS (Iterated
Function Systems) compression. An IFS compression, though computationally
effective and elegant, has so far offered little explication of, for instance,
musical concepts. This is not due to practical reasons, such as computational
power, for it probably is quite rich in such respects. The low explanatory

52

power is more due to the fact that IFS has not been bridged to musical
cognition in a generally applicable way. Nevertheless, connectionist networks
are dynamical systems, some of which are quite complex ones. If musical
cognition can be studied with the aid of connectionist networks, it is possible
that networks, in turn, can be studied with the aid of tools related to chaos
theory. In this way, what we know about the special apparatus designed to
control and understand chaotic phenomena could be linked to what we know
about cognition.

Another link between chaos studies and cognition might be more direct
research into the micro-level of sound. Thus far, we have been most interested
in the orderly aspects of musical signals. Chaos science may serve to explain
disorderly behavior at the lowest levels of musical events: sound signal
waveforms and spectra. With many natural (mechanical) oscillation processes,
the wealth of various time-variant fluctuations and disturbances may be
understood as the behavior of a chaotic attractor system.

Such disturbances form one argument for chaos-based explication of
musical signals. For instance, they make the sound of acoustical instruments
rich and lively in comparison with synthetic sound. Richness of behaviour is
often linked to feedback lines embedded in the oscillating information-source.
Whenever energy is brought to a feedback system, a possibility of chaotic
behavior exists.

Because our purpose is not to use connectionist methodology as an
objective per se, it seems appropriate to make a distinction. On the basis of
what we know about signals, it is likely that the micro-organization of musical
signals is more open to explication in terms of nonlinear feedback systems,
whereas higher levels call for explanations with connectionist theories. In any
case, the chaotic nature of certain connectionist phenomena may be significant
to cognitive research, too.

53

2.5 Modeling music and cognition: Summary

By focusing attention on quantitative aspects of musical meaning, and doing so
in as general a way as possible, by relying on concepts of information
transmission and message, we have arrived at a structuralist kind of analysis of
abstract form. This means turning away from intertextual and designative
meanings, and toward immanent, or embodied, meaning. As a result, we turn
to introversive instead of extroversive semiosis. Moreover, pursuit of
introversive, abstract form has led us to search for cognitive validation when
evaluating certain models of data representation and data processing. The
reason for this comes from the fact that introversive semiosis is likely to be
situated at lower levels of human consciousness than is extroversive semiosis,
in which case, questions about cognitive validity cannot be overlooked. We
now take a moment to consider the nature of cognitive validity.

It has become evident that no single method of representation in musical
computing can be called the one and only cognitive model. We have adduced
cognitive aspects of probabilistic models, generative grammars, abstract
automata, and various sub-symbolic data representations. Even mathematical
models, such as those of Xenakis, and representations connected with chaos
theory have been viewed as cognitive models of music. As our knowledge of
human reception of music increases, current sub-symbolic representations will
undoubtedly be replaced or augmented by other schemas, which may claim
their share of cognitive validity, or a better approximation of it. Now we arrive
at the principal result of this chapter – cognitive justification – which can be
formulated as follows:

Definition 2.1: Cognitive justification in musical computing is not an
irrevocable attribute of a certain model or representation, but an attitude by
which we approach any given model or representation.

This attitude is a way of using our model such that cognitive aspects
make up a significant part of its raison d’être, and must be taken into account,
at least to some extent. The model must not be misinterpreted as reality, but
considered as a tool with which to approach reality. No quantitative model of
music can fully share the complexity of the musical mind that it is reflecting.

54

3. Introduction to semiotic
systems and categories

3.1 Communication, signs and signals

Musical communication, as any other form of communication, is based on a
sign system. The sign systems for music, which are only some among the
countless sign systems in our everyday environment, serve as alphabets for
each of the languages upon which the communicative function of music is
based. Signs surround us every day of our lives, no matter where we go or
what we do. Interest in signs is the key element in many different kinds of
human activities, both business and pleasure, both professional and amateur –
more or less in all aspects of life. Our everyday encounters with different sign
systems extend from social norms of behavior to highway codes and far
beyond.

Scholarly interest in formalisms of signs and communication dates
extremely far back in human history. In his book Digital Mantras, Steven
Holtzman offers interesting insights into the beginnings of language systems.
According to him, the first systematic and comprehensive studies of linguistic
communication known to date is likely the one from the Aryan culture in
Mohenjo Daro of North India around 2000 B.C. Aryan priests wielded
tremendous power over the people. According to their teaching, it was

55

absolutely vital that the original forms of Vedic hymns be preserved intact
from generation to generation. Preservation of the language over long periods
of time was essential for this purpose. Consequently, the priests took upon
themselves the task of constructing a grammar of the Sanskrit language of the
Vedas, to such a degree of formalization that it could assist in preservation of
highly sacred religious texts. This was the motivation for constructing the
earliest known generative grammars (Holtzman 1995: 7-14).

Interest in musical sign systems is not a newcomer to communication
studies, either. It seems to date approximately as far back in history as do
studies motivated by language and religion. Ancient indeed is the idea that
music has remarkable power to convey extra-musical messages; the roots of
this notion can probably be found as far back as one can trace historical
sources. The earliest recorded examples of reasoning about music’s ability to
carry meaning date from antiquity. In a treatise from the early 6th century
A.D., Boethius attributes to Plato a concern about the moral effects of
unworthy music – a concern has since surfaced frequently in numerous forms
up to the present time:

…there is no greater ruin in morals in a republic than the gradual
perversion of chaste and temperate music, for the minds of those
listening at first acquiesce. Then they gradually submit, preserving
no trace of honesty or justice – whether lascivious modes bring
something immodest into the disposition of the people or rougher
ones implant something warlike and savage. (Boethius:
Fundamentals of Music, chapter 1)

Scientific and philosophic interest in sign systems as the base of
communication have resulted in more extensive work on the matter in
categorizations of signs, and have triggered studies concerning relationships
between structure and meaning in messages. Such studies gave birth to
semiotics as a formal study of sign systems and the emergence of meaning.
The process by which meaning rises in sign systems has been called semiosis.
Thus semiotics, or the formal study of sign systems, has developed mainly as a
philosophy having communication and general linguistics as fundamental
ingredients.

After the appearance of groundbreaking works in semiotics in the late
19th and early 20th century, new disciplines have arisen that also deal with sign

56

systems and communication. Called for by the rise of modern electronic
applications of communication technology and initiated by Claude Shannon’s
and Warren Weaver’s classical work, information theory, from the late 1940’s
on, was a predecessor of widespread interest in communication as seen from
the point of view of engineering. In my own view, information theory has
much more to say about signals than about signs. Signal here would be
defined as a fluctuating physical quantity, and variations in quantity would
represent coded information. Such fluctuations, of course, are bound to time.
In typical examples of semiotic concepts, archetypal signs are not often time-
related, though there seems to be no particular reason or need for this. Signs
and signification processes can be time-dependent as well as time-independent.
It might, however, be conceptually easier to operate on time-independent signs,
which is perhaps why we repeatedly do so.

As a result, when using engineering terms to address matters of
communication, it is customary to talk about signals instead of signs. If in
semiotic discourse we replace the word sign with the word signal, it would
enable us to open a discussion about a number of technical tools and
apparatuses, perhaps enabling us to gain new insights into communication and
semiosis. In the engineering sense of the word, a signal is time-dependent by
definition. Considering musical signs – our main subject – it is quite evident
that many of the are inherently time-dependent, which naturally leads to a
discussion of signals, too. Before that, however, we should first consider some
basic ideas about sign categories.

3.2 Message and form: Particular and
general

It has become commonplace to say that form and meaning in music are
intimately connected, as compared to other forms of communication, and
especially as compared to other forms of art. But what exactly do we mean
when we say that musical communication is form-dependent in a “special”
way? Surely the principal meaning of a musical work is not the archetypal,

57

abstract models of large-scale constructs such as fugue and sonata form, or of
smaller ones, like the 12-bar blues formula. Instead, it seems much more likely
that the essence of a musical message lies in the unique artistic solutions to
problems of form, as applied in particular musical situations.

Thus, to claim that an intimate relationship exists between musical form
and musical meaning, we first have to distinguish between general and
particular, between an archetype and a particular case. One-of-a-kind
situations dominate in the formation of meaning and transmission of messages
in Western music, despite the latter’s heavy reliance on tradition and culture.
In the European way of thinking, the creation of music could be seen as
threefold. One task would be to expand one’s knowledge and mastery of the
cultural tradition, another to concentrate on a specific problem in a musical
situation, and yet another would be to develop unique solutions for the problem
at hand, based on the knowledge of tradition. In essence, this view of the
creative process can be seen as a musical case study. “Case study” is to be
taken here in more of a synthetic sense than an analytic one; that is to say,
more as producing cases of output that retain their link with tradition, while at
the same time adding to that same tradition so as to keep it alive and evolving.

This is not to say that archetypes would play no role at all in the
transmission of musical message. For instance, in Hindustani music the
theoretical archetypes are both numerous and very strong, to the extent of
being able to communicate extra-musical messages. This seems mostly due to
the complexity of the Hindustani musical system, which in some respects by
far exceeds its European counterpart in expressive power. But even in a
theoretical structure so rich in the representation of emotions as Hindustani
music is, musical expression is much more than a concatenation of numerous
elements picked from a ready-made list:

Just as the taste of a delicacy is not merely the sum-total of the taste
of the ingredients, but is something quite new wherein the
ingredients cannot be perceived separately, similarly the content of
enjoyment of art is not the sum-total of the various components of
artistic representation, but is quite different. (Sharma 1970: 58;
quoted in Martinez 1997: 199)

Thus, even in systems in which the role of arbitrarily assigned extra-
musical meaning is very strong, the importance of synthetic perception remains

58

highly pronounced. Reception of music is evidently a situation in which one
plus one equals a good deal more than two.

On the other hand, in some cultures a musical archetype – the structural
scaffolding that comes from tradition – is so strong that it has almost complete
control of the large-scale form. For instance, the role of verse/chorus in much
jazz is strong enough to enable rich communication in message, expression,
and taste without contradicting listeners’ expectations concerning the
scaffolding in any major way. As an even more extreme a case, the repetitive
loops in Steve Reich’s minimalist works might seem to generalize the formal
aspect nearly ad absurdum. Yet amid all the repetition there still is room for a
small, unique feature here and there to be woven among the threads of the
slowly and steadily evolving musical fabric.

A question worth asking, in regard to music studies, is if the mechanisms
of musical meaning are peculiar only to musical communication, or if more
general rules governing meaning can be found. In studying various modes of
communication, it does not take long to discover that, some features are mostly
present only in musical situations. In western musical culture, a distinction
prevails between the act of composing, and the act of performing music. This
distinction has been predominant for several hundred years. These two
different positions – composing and performing – are on opposite sides with
respect to time. Composing is, at least to some degree, a time-independent
activity. In contrast, performing music happens in time; it is impossible to
think of a performance as having no relationship to time whatsoever.3

These two facets of musical competence also take rather contrasting
attitudes toward the skills of their craft. Though thinkers about music who
follow Arnold Schönberg’s line of aesthetics cherish the idea of practicing the
skills of their craft, the skills in question are nevertheless fundamentally
different from those of a blacksmith or a shoemaker. Musical composition
involves planning of structures and elaboration of material. These activities are
essentially non-physical – which adds a dash of metaphor to the notion of
“craft”. Among various art forms, the architect’s work probably comes closest
to that of a composer, in the sense that the architect is someone who imagines
and draws up plans by relying heavily on the mind’s eye. By contrast, a
performer working on an instrument, or on his or her own voice, comes much

3 Let us think of an extreme case: even a performance of John Cage’s 4’ 30’’ does in fact
happen in perceptual time.

59

closer to the traditional concept of mastering a demanding skill in a handicraft
kind of way.

In our musical culture of Western art music, a present-day composer
may get into a somewhat comparable situation in the case of electro-acoustic
music. In such a case, the composer often must develop highly specialized
skills in electro-acoustic technologies. But for the most part, the act of
composition retains an abstract, non-material quality. In the terms of
communication philosopher Marshall McLuhan, performance is a “hot”
activity – it fills our consciousness – as compared with composing, which
remains more on the “cool” side, inasmuch as it leaves more to our
imagination.

It is now time to consider the various roles and mechanisms of musical
signs. This calls for an overview of general categories of signs and their role
with respect to signification and meaning, and with respect to their objects.
We take our point of departure from the semiotic categories of Charles S.
Peirce, who defined semiotics as the “formal doctrine of signs” (2.227). One
reason to suppose that musical semiotics is not far from the general philosophy
of communication is that music constitutes a handy “mini-life” that can aid us
in developing more general ideas. Musical messages possess some of the
multiplicity and “organicism” present in many aspects of life, but still are
nicely limited in scope, and maintain certain properties of formal systems.

To write a computer program that models basic principles of musical
semiosis is not a very straightforward thing to do, though it may be tempting to
use a computer – the ultimate tool for processing abstract forms – to carry out
such a task. There are good reasons for considering semiotics, or semiology,4

not as a single theory of signs and meaning, but as a conglomeration of various
concepts originating in different geographical and scientific worlds, as well as
in different disciplines. Various semiotic theories do not always support each
other, but at times contradict each other. For this reason, it is impossible to
formalize the entire body of musical semiotics for the purpose of computer
implementation. One part of the semiotic tradition comes from general
linguistics. This may be the easiest part to deal with numerically, whereas
philosophical areas of semiotics are by nature resistant to quantification.

Even general linguistics is not easily applicable to musical contexts.

4 Semiology is a term for the French tradition in the study of signs and signification,
pioneered by Ferdinand de Saussure. Semiology focuses largely on the same subject matter
as semiotics does, but diverges partly in tradition and approach.

60

Music is not a language, unless one defines language in such broad terms that it
is doubtful whether such a definition is of any practical use. In spoken or
written language, the notion of meaning differs radically from meaning in
music, and in more than one way. For instance, denotative meaning, which
relies heavily on the symbolic function, is predominant in the case of linguistic
communication. In music, however, the notion of meaning in music is not a
simple symbolism. In his book Linguistics and Semiotics of Music, Raymond
Monelle points out the independence of musical messages from denotation:

The musical sign is empty, not because of its impotence in referring
to real objects, but because meaning is itself fundamentally empty;
the sign points beyond itself only to reveal a void” (1992: 20).

Monelle also reflects on the way meaning emerges in music. His view
of musical meaning is quite sparse: “Music, in fact, is a tissue of relations
only.” He seems to believe that musical references to music itself, by means of
repetition, are neither valid examples of semiosis, nor of the communication of
meaning in general: according to him, it is “logically faulty to describe
something as a sign of its own qualities” (ibid.: 209).

The present study, however, takes a different position. Let us consider,
for instance, the case of repetition in minimalist music. Each of the repeating
patterns in, say, Steve Reich’s music may be a replica of many others, but
during the repetition process a concept emerges in a listener’s mind. That
concept is not the repeating pattern itself. More likely, it is an idealized
archetype of the pattern. The archetype and its particular instance are not at all
the same thing. There is no reason to suppose that a signifier – signified
relationship between the two would be out of the question. The rhythm loops –
the standard way of building repetitive patterns, for instance, in techno music –
could be taken as another example of self-referentiality and of the emergence
of a concept through repetition. In those electronic pop music styles relying
heavily on samplers, the matter becomes quite evident. Listening to a sample
only once produces a quite different cognitive and emotional situation than
does listening to the same sample several times in a row. Multiple playings of
a sample trigger a different mode of hearing, and the sample, too, is
experienced differently. The repetition causes fusion to happen, and a more
abstract concept emerges. If 200 patterns are spliced into a continuous
succession, they most likely will not be perceived as separate patterns, but as

61

an ongoing process that extends beyond the level of detail. Single elements
fuse together, creating a texture that is woven in an ongoing manner.

Martinez, cited earlier, also casts a suspicious eye on Monelle’s picture
of iconism. According to him, Monelle’s description of an icon as having
certain properties in common with its object “ is a very restrictive view that
does not do justice to the amplitude, significance and consequence of the
Peircean idea of an icon and iconic sign, and thus leads to mistaken arguments
...” (Martinez 1997: 33). According to Martinez, Monelle greatly
oversimplifies Peirce’s concept of icon. Because of this oversimplification,
Monelle fails to accept the possibility of music representing itself:5

The possibility of sign and object resembling each other to the point
of identity is a real possibility which frequently manifests in music,
when a composition or performance refers to its object as exactly
the same acoustic phenomenon. This is the very basis of the idea of
an absolute music. (Martinez 1997: 34)

There are more reasons, explained in the following chapters, to consider
repetition as a form of iconism. Paradoxically, the same tissue of relations,
which Monelle considers fundamentally empty in the semiotic sense, here
becomes the argument for semiosis based on self-reference. In what follows,
this “tissue of relations” is referred to as a “network”, thus providing a link to
the realm of data structures and parallel computing. Before we consider further
the properties of this “tissue”, or network, it is necessary to introduce some
conceptual foundations. Turning to some basic semiotic ideas for assistance,
we begin with the nature of signs, especially musical signs, followed by a
discussion of musical objects and their possible manifestations.

5 Martinez’s critique of Monelle’s view on iconism is considerably more extensive than
presented here. Readers interested in learning more about these contrasting approaches is
advised to turn to the original sources.

62

3.3 On the Peircean concept of signification

Again we turn to the semiotic theories of the American philosopher and
mathematician, Charles Sanders Peirce. His work can not be discussed at any
great length within the scope of this study. Peirce’s work, a massive collection
of reasoning on the nature of signs and signification, is directed to constructing
a number of sign-categorizations, both parallel and hierarchical, as well as their
analytical functions. Only a small portion of Peirce’s semiotic concepts will be
exploited here, in aid of framing our own model.

According to Peirce, representation is a process wherein something
“stands to somebody for something in some respect or capacity” (Peirce 1955:
99). He introduces four main agents present in the signifying process. The
sign, or representamen, and its object are the most obvious ones. In addition,
Peirce distinguishes the interpretant as another sign, which is generated by the
representamen in the mind of the person receiving it. Representamen, object,
and interpretant constitute a genuine triadic relationship that cannot be divided
into dyadic ones. Other relationships are joined to this very basic one. One is
the relationship between the interpretant and its “ground”. About the ground,
Peirce says that a representamen stands for an object “not in all respects, but in
reference to a sort of idea, which I have sometimes called the ground of the
representamen” (Peirce 2.228). Obviously, communication can not take place
unless there is a context to relate messages to. Hence, ground is the fourth
main agent in the Peircean concept of signification. These agents are joined
together with relationships, elaborated below, in order to clarify the process of
how one agent is generated on the basis of another. Here, we shall call the
formalisation of these relationships “procedurizing”, since our objective is to
formulate general procedures for the analysis and generation of signs.

Peirce’s concept of signification strongly emphasizes the immanent
mental process in communication. According to him, “thought is the chief if
not the only mode of representation” (Peirce 1955: 100). Peirce’s reasoning, as
concerns context and various factors contributing to information transmission,
foreshadow the flurry of communication studies of the mid-20th century. He
gives attention to the framework necessary for transmission: as a prerequisite
for effective transmission, both sender and receiver, at opposite ends of a
communication chain, must share the necessary information-framework for

63

encoding and decoding messages. A common code is necessary, a fact which
Peirce emphasizes:

... if there be anything that conveys information and yet has
absolutely no relation nor reference to anything with which the
person to whom it conveys the information has, when he
comprehends that information, the slightest acquaintance, direct or
indirect – and a very strange sort of information that would be – the
vehicle of that sort of information is not, in this volume, called a
Sign. (Peirce 1955: 100)

3.4 Firstness, secondness, thirdness

Peirce’s work on signs and signification relies on a three-fold idea of the mode
of a sign: the modes of firstness, secondness, and thirdness. This trichotomy,
which forms the underlying basis of many divisions and characterizations of
signs, is defined by Peirce (8.328) as follows:

Firstness is the mode of being of that which is such as it is,
positively and without reference to anything else.

Secondness is the mode of being of that which is such as it is, with
respect to a second but regardless of any third.

Thirdness is the mode of being of that which is such as it is, in
bringing a second and third into relation to each other.

Peirce’s thought is rather abstract on this matter, but perhaps can be clarified in
the following examples (Monelle 1992: 194):

64

Firstness is the area of pure possibility. Before we can perceive a
man, it is necessary that such things as men may exist, and that it is
possible to perceive them.

Secondness, the most obviously “real” plane, is the area of
“happening-to-be”; not only is it possible that a man may exist, but
there happens to be a man before me now and I perceive him. “The
real is that which insists upon forcing its way to recognition as
something other than the mind’s creation”. This is the level of
“experience”.

Thirdness is the area of purpose, intention, relation, will,
understanding, cognition. When I see that the man is the porter,
that he intends to give me a message, that his arrival may interrupt
my work or raise my spirits, I enter the domain of Thirdness.

In the context of our study, the categories of firstness, secondness, and
thirdness may be situated, interpreted, or implemented in a number of ways.
Figure 3.1 diagrams the chain of musical communication, consisting of musical
ideas, and its translations and transmissions. The figure resembles many well
known, information-theory inspired diagrams of musical communication; but it
is divided in a particular way, with the message and its semiotic process in
mind.

In Figure 3.1, musical communication is displayed as a seven-stage
process. Notions of firstness, secondness, and thirdness are interpreted
separately on the two ends of communication, i.e., those of sender and receiver.
Of course there are more than two participants in this communication. On the
sending side is the role of composer, on one hand, and of performer, on the
other. These roles may intermingle; for instance, in improvisation. Different
roles may also obtain on the receiver’s side, depending on his or her mode of
listening.

65

Musical message and three Peircean modes of signs

Figure 3.1: Exchange of musical information viewed as a semiotic process.

Figure 3.1 differs from many of those commonly used to depict
communication. Such depictions usually show information transmission in the
following chain: composer score interpreter performance listener,
which sometimes includes a feedback line or two (for instance, from listener

 Musical object
As an abstract idea

Object as a part of a
structure. Compositional
organization

Translation to an audible form
in a musical performance

Passing moment – music in
its physical manifestation

Immediate reception
of musical sound

Decoding the structure –
‘musical competence’

Reconstruction of
abstractions and retrieval of
original idea

Sign generation and transmission

Firstness

Secondness

Thirdness

Firstness

Secondness

Thirdness

Sign reception
and decodingEnrichment

by
intertextual
association
and cultural

decoding

66

back to interpreter). The point here is to follow the development of musical
ideas and musical objects at various stages of the musical signification process.

The mechanism depicted by the figure has expressions both in the minds
of composer and interpreter – as well as listener – and we might choose any
one of these viewpoints as a subject of study. Let us first look at the
composer’s side of the matter.

The transmitting part of the diagram reflects the roles of the composer
and the performers. For a composer, firstness manifests itself as an abstract
idea of a composition, which has not yet been worked out in any way. It
introduces a mere possibility for musical dynamics. If one considers the act of
composing as an inversion of the Schenkerian analytic process, then firstness
would be some kind of “bud” or embryo, the core idea of a musical work in its
primeval form before the act of Auskomponierung, or “composing out”, has
taken place. Secondness, the “real plane” or “happening-to-be” level of
musical communication, would reside in the handicraft of composing. This is
the stage at which the “tissue of a relations”, in Monelle’s words, is worked out
in detail. This level is where compositional ideas are elaborated, bringing a
musical work into existence. Composition of this network of relations gives
birth to a major part of the musical meaning of a work. Obviously, the core
ideas of the musical message are already present in the domain of firstness, but
there are many examples in western art music of a surprisingly complex
elaboration of very simple motivic material. To be convinced of this, one need
only think of a Brahms symphony. For that reason we are inclined, in this
study, to emphasize the generation of musical signs in the domain of
secondness, where dynamic relationships between musical objects are
established, organized, and elaborated. Thirdness, the area of the composer
intentions, may be placed anywhere – from a deep, cognitive understanding of
musical parole developed in the listener’s mind, to any possible extra-musical
message that might be motivating the work. It could even be the action of
musicians performing the piece. In a very immediate and somewhat extreme
sense, it could also simply be the sound itself, the passing now-moment of
physical vibrations belonging to musical performance.

For a listener (receiver), firstness, secondness, and thirdness obviously
appear in different positions in communication. The now-moment of a
physical sound belongs to the mode of firstness. Firstness in music reception
also could be extended to include immediate, non-analytic listening.
Immediacy is the key concept here, which I would be inclined to call plain

67

hearing as contrasted to listening. The immediate nature of this level of
reception is manifested in non-analytical reception of sounds as plain sounds.
If one were to call it listening, it would be listening in a sort of Cageian sense –
hearing with no attempt to “understand” or decipher. Martinez (1997: 31) puts
it this way:

Firstness, in the case of musical listening or appreciation, is when
the consciousness of the listener completely blends with the
qualities of the music. It is a pure quality of feeling that requires
the listener to focus on that which is merely present to the ears....
Hence, to listen to music as firstness requires a naive mental
disposition that is commonly found among children, artists and
mystics, but that is hardly possible for a mind laden with
significations during most of its conscious time.

Listening, in the ordinary sense of the word, already covers the notion of
decoding a message, and hence belongs to secondness. Listening, due to the
nature of the biological function of hearing, will always be analytical at some
level. It involves pattern processing and deals with short-term and long-term
memories, since musical patterns are time-dependent and often hierarchical.
Any such analysis arises from knowledge of tradition. The objective of
developing one’s musical listening abilities is to tune or “temper” them, so that
they are in resonance with the cultural and aesthetical conventions. Musical
education also enables us to decode the technological aspects of a work, in
terms of music theory-oriented concepts such as motif, theme, development,
counterpoint, and so forth. Such matters also belong to the domain of
secondness, which forms abstractions for deciphering the original idea of
music. In addition to cultural conventions, mechanisms of cognitive
association play an important role in the deciphering process. Later we engage
the question of whether or not cultural knowledge can be partly replaced by
artificially constructed mechanisms of association, and still arrive at a
satisfactory decoding. Computer simulation might help in discovering how
much of musical reception – the hearing side – is cultural, and how much
depends on cognitive mechanisms. Regardless of how that issue is settled,
secondness will beget thirdness, as abstract concepts emerge and reproduce the
intention of the work. Thirdness is that level of communication, which a
listener may enter by using her cognition as well as her comprehension of

68

technique, aesthetics, and convention. Discussion of musical meaning belongs
to this domain. In successful communication, the listener grasps the
composer’s intentions on this deeper level of musical understanding.

Abstract idea, compositional organization, and performance of the work
form the first three links in Figure 3.1. They constitute the transmitter’s part of
the communication chain. The fourth link, the message in its physical form, is
the central one in the figure. It really belongs neither to the transmission or the
reception side of the figure. It implements a neutral level, a bridge between the
two sides, and is a point where communication lends itself easily to objective,
quantitative measurement. Somewhat paradoxically, that is also the point in
the chain of communication, which is furthest away from the essence of the
musical object – the abstract idea. The first three links in the figure constitute a
vector that points at lesser degree of abstraction. Moving away from
abstraction, the idea is transformed into physical form; it thus enters into the
“real” plane, in the sense that transmission can now take place. The links
following the “real” plane on the receiver’s side make up a vector leading back
to a greater level of abstraction.

A musician giving a performance – a singer, an instrumentalist, or a
conductor – would have yet another approach to the modes of musical
communication. For a performer, firstness, the area of pure possibility, would
most obviously be represented by a score of printed music. In the case of
improvised music, firstness could be any plan or sketch made before
improvisation, or even a mental state of the musician, such that it would be the
major contributor to the performance. Secondness would be represented by
learning and rehearsing the piece. Locating the performance of a piece in the
trichotomy is somewhat ambiguous. It could be located in secondness, if it is
seen as a means of communication; or in thirdness, if it is seen as an end in
itself. From the performer’s point of view the remaining three steps –
immediate reception, decoding of form, and reconstruction of abstractions –
would no doubt belong to the mode of thirdness, for they constitute matters of
purpose and intention in the performance of music.

69

3.5 A fundamental Peircean triad: Icon, index,
 and symbol

We next turn to what are perhaps Peirce’s most profound and, certainly, his
best-known sign classifications: icon, index and symbol. In his reasoning on
icons and hypoicons Peirce says that the “most fundamental [division of signs]
is into icons, indices and symbols” (2.275). On the other hand, we must
acknowledge that Peirce himself neither regarded this triad as logically the
primary one, nor even as the simplest one (2.243 – 2.252). He introduces three
categorizations, each dividing signs into three classes. His first categorization
deals with the relationship of signs as themselves or with each other:
qualisigns, sinsigns, and legisigns, which we shall return to later. The
categories of icon, index, and symbol manifest the relationship of signs to their
objects. They form Peirce’s second triad. The third triad introduces signs in
relation to the interpretation process involved in using them. These classes he
calls rheme, dicent, and argument.

Throughout Peirce’s works, icon, index, and symbol receive different
nuances of description and definition. Scholars developing applications of
Peirce have increased this instability of definition even further. Still, the basic
idea remains the same (summarized from 2.247 – 2.249):

An icon denotes its object by common characteristics causing a
direct resemblance.

An index refers to the object by some characteristic, which it has in
common with the object. Yet it is not a resemblance of the object.
In essence, the index is a pointer that leads to its object. A common
example of an index is smoke as an indicator of fire.

A symbol refers to its object by convention. Any such convention
is a cultural phenomenon; therefore, a symbol possesses hardly any
independence of context.

70

The classification into icons, indices, and symbols is quite clear as such. But
how are these basic categories manifested in music? And in what kind of
framework could they be subjected to quantitative treatment and computation?
Or perhaps it would make more sense to turn the question around: On what
conditions could music-oriented computation be subjected to these categories?

In digital computers, data representations are based on convention, at
least in lower-level layers of the virtual machine model. There is a symbolic
relationship between the subject matter of computation and its inner
representation, i.e., the sign that denotes the subject matter. It naturally follows
that the tools and structures, which form the methodological core, either
depend on or presuppose the symbolic function. Among such basic edifices of
computer science we find, among others, automata theory, formal grammars,
stochastic methods of computing and database systems, perhaps even artificial
intelligence. Outside this symbolic paradigm of computing not very much
would remain besides plain mathematical/arithmetical, “number-crunching”
computing.

Iconicity in music representations may take many forms. Considering
various music representations, Roads (1985: 406) remarks that they exemplify
iconicity to varying. An iconic representation of music may be, for instance, a
recording. Music recorded by analog techniques, like reel-to-reel tape
recorder, presents an extreme example – the magnetic flow stored to analog
tape has its direct correlate in acoustic reality. If the physical and electronic
specifications of the storage medium, like tape width, speed, equalization and
the like, are fixed, there remains little room for convention between the object,
the sound, and the recording that represents it. Physical representations in
digital systems are a parallel – the role of convention has been minimized.

Electronic representations of musical and acoustic events came together
with technologies that became available after Peirce’s time, so no single
“Peircean” position regarding them can be the original, correct one. There is,
however, a species of visual sign somewhat like them: the photograph. Peirce
brings refers to the photograph as a sign several times, sometimes as an index
(2.265), sometimes as an icon (2.281). In fact, the case is not one of simple
division. For Peirce, an icon is mostly related to firstness; index relates to
secondness; and symbol to thirdness. But signs of the first kind often bear
some relationship to the second kind as well. Such cases could be called
degenerate secondness. Concerning photographs, Peirce says this:

71

Photographs, especially instantaneous photographs, are very
instructive, because we note that they are in certain respects exactly
like the objects they represent. But to these a resemblance is due to
the photographs having been produced under such said that they
were physically forced to correspond point by point to nature. In
that aspect, then, they belong to the second class of signs, those by
physical connection. (2.281)

Thus, indexical properties are also present in the case of a photograph.
Similarly, a music recording, though being a resemblance and therefore iconic,
also possesses an indexical quality, which Peirce would have probably called a
degenerate one: it points to the performance where it was recorded.

There is at least one major difference between photography and
electronic representations of sound: reversibility. One cannot possibly imagine
how the physical reality serving as the object of a photograph could be
retrieved, replicated, or instantiated from the photographic sign. In contrast,
with a modern electronic or electronic/optical representation of sound, properly
joined with a suitable playback system, acoustical phenomena may be
replicated over and over again. Such replication may even reach the level of
precision necessary for passing the Turing test – giving a listener the
impression that the original sound source is actually present.

Because of the extensive work in categorization, which Peirce
conducted, one may feel the temptation to delve deeply into all possible
signification situations in all kinds of semiotic categories. It may be wise to
abstain from doing so here, though. Otherwise one might take the task of
categorization to such a detailed level that it becomes an end unto itself, as a
fruitless academic excercise, instead of assisting in the search for fundamental
dynamics involved in understanding signs and signification. Rosario
Mirigliano (1995: 55) warns against a pretentious interest in taxonomy and
detail, which leaves substance totally aside: “almost as though the task of a
semiotics of music might exhaust itself in the exercise of seeking the right
collocation for musical signs in the network of Peircean trichotomies or some
other classification scheme”.

Too much love for classification can be counterproductive for
understanding semiosis, by making a wider perspective on sign systems and
processes unclear. The task of the discipline is not only to bring about ever
finely-drawn classificatory schemata, but more importantly, to seek to

72

understand the dynamic nature of signs and their interaction within the
framework of such schemata. With this word of warning in our ears, we
continue our tour of semiotic categories.

3.6 Peirce’s first triad: Qualisign, sinsign and
legisign

According to Peirce, a qualisign is a quality that is a sign. In music, it could be
a particular characteristic of a certain sound or an instrument (the explanation
here loosely follows the outline in Martinez 1997: 69). The characteristics of
an instrument could refer to any distinct feature, such as amplitude envelope,
dynamic spectrum, pitch range, or any other feature of a particular sound. In
this case, the quality of the sound also denotes, in an obvious way, the qualities
of the sound-producing mechanism. For example, the amplitude envelope may
immediately communicate the sound-production mechanism in that particular
instrument; the spectrum may also indicate the structure and material of the
sound source; the pitch range, which is connected with the physical size,
characteristics, and limitations of the instrument.

The role of qualisign can also be relevant in music outside the
instrumental paradigm. It could be applied to electro-acoustic music, for
instance. A qualisign could be a common factor, a characteristic feature
common to a certain family of sounds in musique concrète. The
spectromorphological categories of Denis Smalley6 could be considered as
qualisigns that extend the concept of instrument-with-a-characteristic-timbre,
which would be the case with music made by acoustic instruments (Smalley

6 Spectromorphology is an approach proposed by Denis Smalley for an analytical tool
capable of processing any music that is not based on individual notes as building blocks.
Smalley’s design was aimed at giving analysts a way to deal with spectrum-based electro-
acoustic music. The core idea is of the study of sound objects in terms of their spectral
characteristics, shapes, figures, and gestures. The approach also includes a taxonomy of
different possible shapes. Spectromorphology can be applied to any kind of music,
including classical instrumental music. Besides serving musical analysis, spectro-
morphology could aid in compositional activities as well.

73

1986: 61-93). The notable difference between a timbre and a
spectromorphological category, in the semiotical sense, is that the former does
not have a relationship to time, whereas the subject matter of the latter
essentially concerns motion with respect to time.

A Sinsign is an actual instance. In music, it is a performance of the
work, a part of it, a period, a theme, a motif, or a gesture. A sinsign may
exhibit only one quality; but more commonly, it displays several qualities that
come from qualisigns. The behavior or dynamics of sinsigns are governed by
legisigns, which constitute the framework of a musical culture, subculture, or
even a single work. Thus, a typical case of music analysis (even though not the
only possible one), expressed in semiotic terms, may be a study of sinsigns,
based on the knowledge of qualisigns, with the objective of finding the hidden
legisigns in the work.

Given how musical objects are defined in the present study, the
fundamental triad of qualisign, sinsign, and legisign seems very useful, though
this triad may not be as obviously applicable as that of icons, indices, and
symbols. It appears to be related to the mechanics of how the idealized form of
a musical object becomes analysed into its different factual instances within a
complete, existing work.

3.7 A third Peircean triad: Rheme, dicent and
 argument

The third Peircean triad – rheme, dicent, and argument – reflects the
relationship between the sign and its interpretant. The interpretation process is
an inevitable part of understanding music. It is therefore reasonable to think
that rheme, dicent, and argument are mainly concerned with listening. This
accords with Eero Tarasti’s (1994) view that rheme, dicent, and argument is the
triad most capable of depicting the reception of music. As such, this Peircean
triad is the one least relevant to the present study.

In his discussion of rheme, dicent, and argument, (2.250 – 2.252), Peirce
describes rheme as a sign of qualitative possibility. Along the lines of

74

Martinez (1997: 70), the musical interpretation of rheme could be a feeling of
possible recognition on the preliminary stage, with plenty of room left for a
doubt (“Which piece is this? What is the time signature, and what key is this
piece in?”). Dicent, a sign of actual existence, could in turn be interpreted as
factual recognition of a musical work (“This is ‘Ornithology’, a piece by
Charlie Parker”). An argument, “a sign which is understood to represent its
object in its character as sign” (ibid.), will be created in a knowledgeable,
educated-listening situation (“This particular tone is used in order to produce
the unusual harmonic situation towards the end of this chorus”).

It seems clear that rheme, dicent, and argument involve modes of
signification that operate on a very high level of abstraction as far as musical
intelligence is concerned. Their extensive exploitation lies beyond the
capabilities of the computer implementation presented in this study. As
concepts, however, they may prove useful later in explaining the results of the
empirical part of our study or future developments of it.

75

4. Adaptation, machine learning,
and self-organization

4.1 Energy-exchanging and information-
exchanging systems

Empirical research, with all its technical details, requires a working
knowledge of certain fundamental notions, such as machine learning. To get
an idea of how these notions developed, it will be useful first to look at some
early thoughts on the foundations of computer architectures, especially ones
that involve machine learning. Some of these thoughts come from such
famous pioneers of automata theory and cybernetic modeling as John von
Neumann. Though published several decades ago, the continuing relevance of
such thoughts may come as a surprise to some readers. After all, as seen from
the point of view of today’s rapidly changing computer technology scene, they
seem like ancient history.

In order to study machine learning, one must first lay out some
preliminary concepts such as adaptation and complex system. First let us
consider the definition of system in general. Day to day we deal with various
systems – social, biological, knowledge, belief, and many others. A system is
separated from its environment by a conceptual boundary that can also be a

76

physical one. Put more precisely, a system consists of a set of elements in a
relationship with each other. Here, a relationship means interaction. In the
literature, most definitions of system usually run along these lines. For
instance, in discussing principles of learning systems, information scientist
Mihajlo D. Mesarovic describes a general system the following way, giving it
also in the form of formal notation:

‘A general system is a set of statements7 each consisting of terms and
relationships. A system is therefore specified in the following fashion

Ωs1 = R1 [x1, . . . , xn]
. .
. . (1)
. .
Ωsm = Rm [x1, . . . , xn]

where ΩR = {Rj} = R1 , . . Rm are relations; Ωx = {xj} = x1 , . .
xn are system terms.’ (Mesarovic 1962: 10).

Systemic studies focus on the interaction of elements that together form
a whole, as opposed to the contrasting idea of dividing something into its
smallest possible units and studying each one separately. In addition to its
elements, a system has an environment, which serves as a ground that locates
the system in a context. Interaction with the environment basically means a
trade or exchange of something in one form or another. Systems are classified
as open or closed, according to the kind of interaction they have with their
environment. Open systems interact with their environment, whereas closed
systems are independent of the environment. Sometimes it is helpful to define
an intermediate stage between closed and open systems – so-called relatively
closed systems, which have limited interaction with their environments.

Classical physical system theory has been mainly concerned with the
exchange of energy, as the principal form of interaction between a system and

7 The following is a footnote from the original text [with the present author’s supposedly
necessary correction in brackets]: ‘Term statement is used here very broadly to indicate at
the general non-mathematical nature of the relations used in the definition of a system. If
the statements are given interpretations in a logical system [they] are assumed to be true.’

77

its environment. Lately, this notion has been extended, because in engineering
applications software is replacing hardware at a rapidly increasing pace,
making physical matter and energy somewhat interchangeable. Consequently,
it is often equally suitable to consider exchange of information instead of
energy as the form of interaction between a system and its environment. With
information transfer, as concerns our interests, we will again find ourselves
dealing with signals. Energy and signals/information have much in common as
concerns system theory. Some information processing architectures (so-called
Boltzmann machines) have been inspired by thermodynamic concepts, and in
some respects, working with them conceptually resembles working with
mechanical systems.

Important to our definition of system is that it has a state. The number
of possible states of a system may be quite limited, or it may be very large.
Systems with an infinite number of states are also possible. In energy-
exchanging systems, the state is characterized by the level of energy
manifested in the system. An energy level can be measured and presented as a
numerical quantity, such quantities constituting the state variables of the
system. The values of state variables contain an unambiguous definition of the
system’s state. In the case of information-exchanging systems, the state
variables follow from the information content of the system. Yet, not all
information in the system necessarily has a direct effect on state variables.
System control information may exist separately from other flows of
information (depending on the definition of system), which may be processed,
transmitted, received, or stored by it.

Other distinctions among different types of systems may prove useful.
At times one must distinguish between discrete and continuous systems, often
characterized as digital and analog. In some cases, this distinction can be the
same as that between software-based and hardware-based systems, though it is
not necessarily equivalent. Tempelaars (1992: 167-180) provides other system
classifications that might be useful at this point, such as linear/non-linear,
time-variant/time-invariant, and causal/non-causal.

Tempelaars’ classification principles can be summarized as follows. In a
linear system, the output signal is in a direct, first-order relationship to the
input signal. This means that a constant exists, such that input signal
multiplied by constant results in output signal. Generally speaking, a change in
a system’s input will always cause a proportional change in the output. Many
“real-life” engineering applications require keeping the system as linear as

78

possible. For example, linear behavior is often desirable in the construction of
electronic appliances, and also in most signal-transfer systems. In practice,
however, it is impossible to build an absolutely linear system. Thus, a matter
of interest in real-life systems is to define the tolerances that are acceptable and
sufficient to enable a close enough approximation for whatever the purpose of
the system might be.

The causality of a system means that output signal is produced only after
input signal has been supplied to the system. As long as there is no input, a
causal system cannot produce any output. This comes very close to saying that
a system cannot predict the future. Time-invariance means that the relation
between input and output does not depend on a particular point in time. This is
clearly not the case in many electrical devices, such as those, which amplify or
transmit sound signals. Various types of time-dependent variances and side-
effects may be introduced into real systems. Among these factors might be
non-ideal properties of the elements, such as heat build-up in transducers or
other components. Thus, time-invariance can not always be taken for granted
in sound-signal processing.

4.2 Two cases of adaptive systems: Direct
adaptation and complex adaptation

The next step on the way to machine learning is the case of the adaptive
trait, which might be called direct or simple adaptation. Such cases are very
common in mechanical control systems; for example, in thermostats. In
mechanical engineering this kind of behavior is achieved through the use of
negative feedback. One of the first tasks which cybernetic research took upon
itself, in the 1940s and 50s, was to develop a methodology for working out
systems with negative-feedback control schemas in engineering uses. Negative
feedback means that, depending on the kind of system in question, either
energy, information, signals or ideas, which appear at the output of the system,
are fed back to the input, either completely or in part. If built so as to be
adaptive, a negative-feedback machine will follow up its own output, and

79

adjust one or more of it is internal parameters in order to achieve a state of
equilibrium. Usually the search for stability is the motivation for adaptation.
Using feedback for stabilization can be a very simple yet powerful control
scheme, for it enables one to build self-regulating systems and self-regulating
machines in a very economical way – working on a minimum of energy or
information, or on signals of minimum length. There is, however, a drawback
to feedback systems. Feedback structures introduce non-linear behavior, and
are prone to unstable behaviors if the system conditions are not carefully
planned.

The dangers of nonlinear arrangements are most obvious in large-scale
mechanical structures; for example, at construction sites or in shipbuilding.
Disturbances can cause the system to behave unpredictably; they can, for
instance, drive it to self-oscillation, which may prove harmful if the structure is
incapable of bearing the stress of such effects. But the downside of non-
linearity in systems is not limited to mechanical constructs; all kinds of systems
are prone to disturbances of this type. In engineering applications, non-linear
tendencies habitually lead to technical catastrophes, both large and small –
technical applications are usually meant to be predictable, whereas nonlinear
feedback systems might not be. In artistic communication, uncontrollable
feedback is usually regarded as a disturbance, due to the fact that it easily
causes saturation of the communication channel. The result may be total loss
of control over the communication. This, too, is a kind of a catastrophe,
comparable to the collapse of a physical edifice.

In considerations of complex systems as opposed to simple ones, it
seems pointless to ask where the borderline between simple and complex
should be, how complex can simple be; or vice versa – how simple complexity
can be and still be called complexity. It is more fruitful to scrutinize the
properties and behavior of complex systems. The latter often have a non-linear
aspect; but this is probably better taken as an end result caused by the system
structure, and not a reason for certain behavior as such. The possibility for
nonlinear behavior is brought about by feedback as a primary, system-
operating principle, and feedback is tightly connected with complexity of
behavior. Kohonen (1989: 250) suggests that feedback is a typical
distinguishing factor of the ability to do complex computation. In discussing
computing architectures based on parallel, distributed processing, he defends
the inherent power and fundamental importance of complex interaction of
simple processing elements by feedback properties of many such systems:

80

… it has already amply been demonstrated that rather complex
pattern recognition, motor control and optimization functions are
implementable by circuits which completely satisfy the above
definition, especially if certain adaptive effects and transfer delays
are included in the interconnections. It is the amount of feedbacks
being realized in such networks, as already familiar from the theory
of formal automata, which introduces ... complexity [into]
computation. (Kohonen 1989: 250)

Feedback properties are introduced by the basic architecture of the
computing system, and they are a fundamental cause of complexity. The kind
of basic architecture that can make this behavior emerge often includes the
distributed control and collective action of a number of elements.

One can also think of various types of collective phenomena. Some are
brought about by a large number of similar elements working in an
interconnected and collective fashion, in a global control schema. Others may
involve hierarchies among the elements. In large collectives, global control
may be loose, and with it the localized grouping and action of subsets of
elements. For instance, this seems to be the case in one of the most complex
systems we know about: the human brain. In the brain, both localization and
global control are present.

4.3 On definitions of machine learning

The human brain, as an extremely complex system, possesses one
strikingly unique capacity that would be highly desirable for machine
implementation in an information system. This is the capability of learning.
Learning is easily explained in the context of biological organisms, in terms of
gaining experience and being able to apply it creatively in new situations. To
extend the notion of learning beyond living beings is not quite so easy. Do the

81

notions of experience and learning make sense at all in the context of man-
made devices and automated data processing?

It sometimes seems that machine learning has been almost as notoriously
ill-defined a concept as is artificial intelligence. Like AI, the concept of
“machine learning” changes with each new technological advance. Usually,
machine learning is defined as a learning system that is capable of changing its
course of action according to the input. Essentially, such a change means
adaptation on some level, either simple or complex. If simplicity/complexity
issues are important here, then it would seem obligatory to clarify the idea of
simplicity and complexity, which is not so easily done. It may seem intuitively
correct to say that a machine learning system is one capable of changing its
action in a complex way, depending on the input signal. But then it would be
necessary to define exactly what is meant by “complexity”. How simple can
an adaptive change become, and still be called a change of action in the
machine learning sense? This issue leads us back to a question already
adjudged to be a conceptual cul-de-sac: How complex is complexity? In
answering this question, one easily arrives at a circular definition, and the
whole undertaking of clarifying matters misses its target.

To avoid circular definitions, one might look in at least three directions
for further clarification of machine learning. First, one might consider
commonly accepted technical solutions that have gained definitive importance.
Second, one could consider frequently used principles of operation behind the
implementation-level technical specification. This would be a middle-of-the-
road choice, which stays in contact with real-world solutions while looking for
ways to generalize. Third, one could forget about implementation altogether
and attempt to create a more abstract and general formal definition.

With the first alternative, it would be possible to list certain technical
solutions for machine learning, and work out a definition taking those as a
starting point. In that case, however, one would face the same problem as with
the poorly-defined artificial intelligence – with technological advances any
definitions based on methodological or technical procedures very quickly
become outdated, and new ones have to be worked out constantly. To base a
theory on such procedures is almost the same as having no definitions at all.
Necessary and sufficient conditions for machine learning will not come from
this direction, at least not ones that are expected to have a long life-span.

82

It is possible to get around the problem somewhat, by generalizing the
working principles of specific technical solutions. One possibility is to state
that learning systems often have two modes of operation:

(1) the “learn” mode, where the system makes adjustments according to
the input;

(2) the “use” mode, in which the adjustable parameters are “frozen”,
meaning that the system will not acquire more knowledge, and that only run-
time operation using the knowledge already gathered is possible.

Another feature of many learning systems is the ability to retrieve
knowledge based on examples, instead of on rigorously specified rules. This
manner of operation greatly facilitates the building of a knowledge base.

Some definitions of machine learning involve the notion of a machine
improving its results on the basis of its past actions (see, e.g., Kohonen 1989:
250). One must guard against reducing this idea to the simple notion of
iteration. The reason for this is as follows: Perhaps the most intuitive way to
interpret the improvement of actions on the basis of history would be an
iterative kind of problem-solving, such that an approximate solution is
gradually made more and more precise, until acceptable precision is attained.
Such problem-solving strategies have long been used by mathematicians (e.g.,
in Newtonian geometry). Those strategies represent the case of a gradual, step-
by-step method for arriving at the desired behavior schema, a method often
referred to as “iteration” or “iterative algorithm technique”. It seems
insufficient, however, to define machine learning as iterative approximation.
Learning and adaptation require more than trial-and-error; in any case, iteration
does not constitute a necessary and sufficient condition for learning. Iterative
approximation seems more intuitively acceptable if learning is considered as a
characteristic of (admittedly ill-defined) “intelligent machines”. Still, it is
doubtful that a gradual, iterative arrival at a certain body of knowledge would
as such make the process more “intelligent” than would a single run of another
kind of process. If iteration has anything at all to do with learning as a form of
intelligent behavior, the connection must be the supposition that it is possible
to build up superior knowledge of a problem with a gradual improvement
strategy, rather than in a linear, one-pass process. Many systems commonly
called learning machines are often associated with distributed data

83

representations. Prevalent methods of handling distributed data representations
involve iterative, self-correcting techniques of acquiring knowledge. Thus, the
idea of a self-improving machine, which reaches its computational results
gradually in iterative passes, is not out of line as such. But iteration does not
make a learning system, even though a learning system can make use of
iteration. Essentially, the possibility of feedback in the iterative process is
what enables the gradual building of a knowledge base in order to extract more
information from the examples. The motivations for gradual improvement of
the result, as well as the presence of feedback schemata, are also important for
the study of sub-symbolic information processes.

Another way of defining machine learning looks more favorable. It is to
look for a more abstract idea, and take a step towards formalism in answering
the questions, What is the nature of adaptation? And how might the precise
meaning of the term be stated?

To help formalize the adaptive properties of a system, it is useful first to
look at a simple case of cybernetic control based on negative feedback, as
applied to signs and signals. There is a plethora of work applicable to the
processing of signal-based information. The principles for processing such
data are the foundations of signal theory (at present, digital signal processing in
particular), which might also explain the control of both simple and complex
communication systems.

Application of digital signal processing theory to communication has a
built-in systemic viewpoint on communication and signification. A powerful
aspect of the approach is that the signal-processing network, or transmission
system, can be considered as a digital filter. In this way, a highly developed
and well-known theory may be applied to communication.

Taking the idea one step further, it ought to be possible to study any data
processing system – any computer – as a device that receives, transmits, and
transforms signals. A computer program that produces output from the given
input takes a signal and produces another one on the basis of the first.
However, it is an over-generalization to consider any and all data as a signal.
The validity of considering a datum as a signal depends on the semiotic aspects
of signals and the types of signs that are formed, that is to say, on the type of
semiosis that occurs in the interpretation of the signal.

Hence, in extending the subject matter of signal-processing theory, it
becomes obvious that communication makes use of many filters, which appear
in many guises. In observing a system, one need only regard its input and

84

output data-sets as signals, and thus formulate a new application of filter
technology. If we consider the chain of communication as a filter in the
technical sense, we find that the concept of negative-feedback control is not
unlike the familiar case of infinite impulse response (IIR) filters. The latter
kinds of filter make up one of the two principal classes of commonly used,
digital-filter architectures, whose applications are reasonably well known and
studied. Infinite impulse response filters are based on a feedback loop, which
sends part of the signal back to the filter, theoretically ad infinitum.

The concept of filter enables us to evaluate a communication chain in
terms of its transfer function. A filter system may be characterized by its
transfer function, that is to say, the mathematical formulation of the relation
between its input and output signals. With the idea of transfer function as a
basis, we are now ready to give our own definition of machine learning with
more precision than was possible earlier: A learning-signal processing network
is a filter that is capable of adjusting its transfer function depending on the
input signal. This definition can be divided into two parts. First, a learning
system is time-variant. Second, its variance in time is connected to information
given in the form of input signal.

The variance of transfer function may or may not depend on the overall
variance of system structure. The type of variant transfer-function systems that
changes its structure came to be called self-organizing. Later, the notion of a
self-organizing system acquired a slightly different, more general meaning.
These types of systems will be discussed later on.

4.4 Supervised and unsupervised learning

There are different kinds of machine learning, according to strategies and
technical implementation. As already mentioned, some learning machines
have two modes of operation, sometimes referred to as “learn” mode and “use”
mode. However, this is not a necessary condition. It is possible to conceive of
a learning machine in which adjustments are made during the actual run-time
(production use) of the system. Even more fundamentally, two basic kinds of

85

machine learning have been implemented. Probably the most well known kind
is supervised learning. During the learning phase of supervised-learning
machines, both input signal and the corresponding, desired output signal are
known. In other words, the supervisor (teacher) has access both to the problem
and its solution. A supervised learning system can be used to produce new
quantitative information, such as classifications of source material according to
a known scheme. The motivation for using this kind of learning machine lies
in its capacity to retrieve and store large amounts of data, coupled with an easy
way of inputting data. Another motivation is adaptation, even in a limited
sense: with data processing architectures for learning, it is possible to build up
a knowledge base that can also be applied to situations not strictly taught to the
system. On the basis of learned information, a system may develop a limited
ability to react to problems that it has not previously encountered. A third
motivation, and a major advantage which supervised learning has over a rule-
based problem solver/classifier, is that the knowledge in the system may be
given in the form of exemplary situations instead of explicit rules. This makes
supervised learning system also applicable to situations in which it is
impossible to form a priori a suitable rule set. In signal-processing terms,
these would be situations in which the desired transfer function of a processing
network is not known. To avoid a priori knowledge may well improve the
flexibility of a signal-processing system.

The obvious drawback of supervised learning machines is that they are
limited to cases in which it is possible to formulate answers to problems, and in
which general, model answers to the problems are already known. If model
solutions to a particular case are not available, then supervised learning from
examples is not possible.

A second kind of machine learning would consequently be called
unsupervised learning. Unsupervised learning machines go beyond the
problem of an unknown transfer function. They are built for situations and
problems in which model solutions are not available beforehand, at least not in
sufficient precision for quantification. In other words, for a given input, there
is no clear-cut experience of what the output signal of the system should be.
Unsupervised learning systems draw the necessary knowledge from structures
present in the input signal.

Apart from the fact that the right way to respond to the situation may not
be known, it is also possible that no single, correct answer exists. In some
situations, good example solutions for finding the sense in a data stream may

86

only be found in the data stream that is being analyzed. A typical application
of this kind is a pattern-recognition task, wherein the size and shape of the
patterns being recognized can only be found in the signal itself. Such cases
occur, among other places, in the context of artistic communication, such that a
message (i.e., the work of art), at least to some extent, creates its own world –
hence the lack of examples. In cases of highly organized musical signals,
absence of knowledge about a suitable transfer-function is probably just a
product of the fact that any function which might come into question, and
which surpasses the level of banality, must possess a high degree of
complexity. Such complexity is manifested in what Hofstadter calls strange
loops (1979: 10). A strange loop occurs in a hierarchical system, when a move
from one level to another results in a return to the same place. Equivalent to
strange loops is Hofstadter’s idea of heterarchy (1979: 134), in that the latter
system, too, opposes hierarchy. Heterarchies are common in music of multi-
level organization but having no single highest level. Such a system may
include indirect recursion – cross-reference among several functions or objects.
The heterarchical organizing principle seems to conform with the idea of
unsupervised learning. The tangled nature of hierarchy/heterarchy is often
present in musical communication. Small surprise, then, that Hofstadter uses
music to illustrate many of his ideas.

If the correct example situations are not available, then how is
unsupervised learning possible? In other words, how can a machine learn if it
has no teacher? In unsupervised learning, the machine’s ability to “make
sense” of input is dependent on the relationships and structures that the system
can gather from the input signal. The architecture of such a system is built so
as to react consistently to incoming, structured information. Naturally, this
makes the method context-sensitive. Input data may contain larger or smaller
amounts of information. If no relationships and structures are present in the
input signal, the output of a learning machine will not supply structure that is
lacking in the first place: it is a “garbage in, garbage out” situation.
Unsupervised learning does not necessarily apply to the analysis of any
arbitrary data. On the other hand, the advantage here is that theoretically it is
possible to isolate and process even such structures, which are not known to the
user of the system. Perhaps the cognitive validity of such analysis can then be
questioned. But the proof of a machine is in using – chances are that the
unsupervised learning machine is able to extract new interesting information
from the input signal.

87

Table 4.1: The relationship between data-acquisition strategy and the definition of
transfer function of a processing system.

To summarize, the strategy for building a knowledge base capable of
dealing with signals in a meaningful manner depends on the way, how the
transfer function can be defined. There are three basic alternatives for such
definitions, which are described in Table 4.1.

4.8 Another look at sub-symbolism

In the second chapter (2.4.5 – 2.4.8) references were made to sub-
symbolic data representations. The basic statement there was simply that sub-
symbolic representation is a data description of a level lower than that of
symbols. The notion of sub-symbolism now receives closer attention.

Sub-symbols in musical contexts have been explained by in term of
cognition. For instance, Leman and Schneider (1997: 18) argue that a sub-
symbolic approach to musical representation starts from sounds, and from
representations based on auditory images and neural networks. This
explanation is probably right as such, but as a basis for, say, a software
engineering project, one would need a more explicit definition.

Type of system Conditions for use

Explicitly defined The desired transfer function is known
 rule system and can be formulated
Supervised learning The desired transfer function is not known,

 but examples reflecting it are available
Unsupervised learning The transfer function is not known, nor

 can it be retrieved beforehand from
 examples

88

The oft-cited paper by Smolensky seeks to define sub-symbolism in a
more precise way, in order to take the study of data representations further. At
first, the matter is outlined rather vaguely:

The name “sub-symbolic paradigm” is intended to suggest
cognitive descriptions built up over entities that correspond to
constituents of the symbols used in the symbolic paradigm; these
fine grained constituents could be called sub-symbols and they are
the activities of the individual processing units in connectionist
networks. (Smolensky 1988: 3)

From a strictly “hard fact” point of view, the first problem with this
outline of sub-symbolism is that it is made through negation. In the above
quote, Smolensky essentially defines the sub-symbolic paradigm by contrasting
it to the symbolic paradigm. Another problem with the above definition is that
it seems, at least to some extent, to connect the whole notion of sub-symbolism
to a certain branch of technical solutions, if the statement about “individual
processing units in connectionist networks” is taken as an engineering solution.
An apology for Smolensky’s definition might be that the model for these
particular solutions is immanent, or mind-oriented. On the other hand,
connectionism also clearly refers here to the engineering approach to sub-
symbolism. This in turn leads to the idea that sub-symbolic data representation
is here being defined as one that is used in technical appliances, namely,
connectionist computer networks.

We might agree with Smolensky, however, that sub-symbols are the
constituents of concepts that develop into a symbolic level in our minds. As an
aid to studying the nature of sub-symbols, it would be useful to explore the
origins of the symbolic function. This might involve a closer look at Peirce’s
semiotic conception of the symbol. Before doing so, we shall return to
Smolensky, who further explicates his notion of sub-symbolism:

Subsymbols are not operated upon by symbol manipulation: they
participate in numerical – not symbolic – computation. Operations
in the symbolic paradigms that consist of a single discrete operation
(e.g., a memory fetch) are often achieved in the subsymbolic
paradigm as the result of a large number of much finer-grained
(numerical) operations. (Smolensky 1988: 3)

89

Now we have arrived at a more fundamental and more generally
applicable idea. Computation with sub-symbols is essentially computation with
numbers, as contrasted to computation with symbols. This distinction is
valuable for a quantitative approach, and well serves the point of view of this
study. To take sub-symbolic operations as numerical operations combines well
with an idea introduced earlier: to conceive of musical signs, and other data
that originate in music, as signals.

4.6 Self-organization: Various definitions in
historical perspective

Notions of learning and adaptation are closely related to the concept of
self-organization. As has been the case with machine learning and artificial
intelligence, many attempts have been made to outline and define self-
organization. The idea of self-organization emerged in the 1950s and 60s,
during the first wave of neurophysiology-driven research into the foundations
of the recently born computer science. The great vision of self-organization
research was inspired by the build-up of knowledge and skills observed in
living organisms. An essential result of such observations is that, unlike the
memory of a digital computer, the mind is not a passive storage space for data
and experience. Instead, it plays an active role in “making sense” of the world,
even though this activity occurs in the “back” of our minds, and we may not be
aware of it most of the time. “Making sense” here essentially means creating
abstractions and organizing raw data into concepts. In the biological context,
self-organization is that part of the learning process which takes place in our
minds after the actual learning situation. It takes place during the time
necessary to “digest” new information. Arranging data in a particular order is
part of self-organization, and building abstract concepts from the new order is
an inevitable second step.

Technical implementations using self-organizing methods are normally
employed in data-driven classification and recognition functions. In such

90

systems the course of action depends on the data input. The strategies for
classification and recognition of features in the input data-stream build upon
the contents of the data-stream itself. This type of working principle was
considered highly desirable as early as in the first stages of the development of
learning machines. Therefore, as far back as the 1960s a good bit of thought
went toward finding the operating principles and technical solutions for
implementing this property in a computer system.

With the consequent development of machine learning and pattern
recognition, technical means of implementing self-organization have continued
to be an important research problem in efforts to construct learning machines.
Many attempts have been made to define these means on a general level. In
their extensive monograph on cybernetics, Klir and Valach (1967: 413)
proposed a development of new properties in an abstract machine. In essence,
they defined self-organization in terms of the enhancement of performance.
They present a self-organizing system as one that is in a process of continual
improvement – one might say, a dialectical process – of relations with its
environment.8 According to the authors, after a self-organizing system has
been built, it can “later improve itself, and … acquire properties which were
not even thought of it when it was created” (Klir and Valach 1967: 414).

Going back to Mihajlo D. Mesarovic’s definition of a system as a
collection of terms and relationships (Chap. 4.1), we are now ready to study his
idea of self-organization. As a reminder, it may be helpful to restate here the
equation that was given earlier:

“

Ωs1 = R1 [x1, . . . , xn]
. .
. . (1)
. .
Ωsm = Rm [x1, . . . , xn]

8 Whether or not there are political overtones to be found in their view of self-organization is
not important for our concerns here. It might, however, be interesting to search for the roots
of the hypothesis among socialist ideas of science, life, and culture in Eastern Europe during
that particular period of time. With all the connected belief of positive progressive
development of systems, the idea of self-organization could have been thought to apply to
societies as well as to technological systems.

91

where ΩR = {Rj} = R1 , . . Rm are relations;

Ωx = {xj} = x1 , . . xn are system terms.” (Mesarovic 1962:10).

Relying on this equation, Mesarovic defines self-organization as
follows:

Definition 6. Given: (a) A system as defined in (1). (b) A set

(finite or infinite) [of] relations ΩR = {Rj} defined on the set of

the systems terms Ωx = {xj}.
A self-organizing system is a system which starts from their initial
state as a given in equation (1) and changes its structure by using a

relation from the set ΩR. (Mesarovic 1962:11).

Mesarovic lays down two basic characteristics of self-organizing
systems. (1) They are discrete systems. At the time, this was a rather evident
conclusion. It was generally understood that the kind of changes that would
take place in self-organizing systems, would be structural in such a concrete
way, such that it would be impossible to imagine the changes happening in a
continuous space. The second characteristic given by Mesarovic was a little
surprising: (2) Whether or not the system appears as self-organizing depends
on our knowledge of the system variables. In essence, the presence of self-
organization is a relative matter. Both of these characteristics are proven in his
text.

With Mesarovic’s first characteristic, however, the proof did not last
long. Later, systems were developed that did not have to fulfill this
requirement, but still exhibited behavior considered to be self-organizing. This
is not to say that his proof was wrongly thought out. Rather, it reflects the way
the notion of self-organization has changed. Current self-organizing maps
(SOMs), discussed at length later on, order input signals topologically by
strengthening or weakening connections between certain parts of the network.
In this way a major structural change can take place in a continuous manner
instead of completely breaking up an old structure and building a new one.
The older definition of self-organization focused on things that happen to the
processing system. Newer notions tend to focus on what happens to the
arriving signal, and on what happens to individual components of the system.

Mesarovic goes on to distinguish two types of self-organizing system.

92

The first one he calls causal self-organization. His causal system corresponds
approximately to a supervised learning machine. According to him, a more
advanced form of self-organization, the teleological approach, aims at building
machines that constantly enhance themselves. Mesarovic seems to refer to a
kind of artificial growth process, paving the way to artificial life. He was
probably aware of John von Neumann’s interests along the same lines, and
wanted to elaborate or augment the latter’s work. For that reason, von
Neumann’s thinking on self-organization is the next item on our tour of
learning machines.

4.7 Self-organization – the neural model and
the evolutionary model: John von
Neumann and the origins of cellular
automata

In his theory of self-reproducing automata, John von Neumann lays
groundwork for adaptation and self-organization. Taking biological cell
structure as a source of inspiration, as one possibility for building a self-
reproducing automaton he outlines a structure consisting of a lattice of discrete
elements. He describes the discrete structure of the lattice as crystalline (von
Neumann 1966: 103).

In a commentary on von Neumann’s text, his editor Arthur W. Burks9

summarizes the work around the question of how self-organization could take
place in an artificial environment of automata. The machine outlined by von

9 Von Neumann’s editor, Arthur W. Burks, was interested in the two different disciplines
also engaged by the present study: Peircean semiotics and the theory of automata and
information-processing systems. Among other occupations, Burks worked as one of the co-
editors of the Collected Papers of Charles Sanders Peirce. Perhaps his interests were not as
diverse as one might think, however. At this early stage of computer science, matters
concerning system structure were not a subject for “hard” science and engineering only.
They formed a common subject of interest for philosophy as well.

93

Neumann has the topology of a cellular structure: a network. It starts off as an
homogenous and isotropic lattice. Isotropy means here that, at first, the
cellular structure of the machine is similarly structured in all directions of
space. Specialization, or structure, then emerges in the self-organizing process:

Consequently if different cells of the region of the cellular structure
are in different states, one part of the region may act in one way and
send information in one direction, while another part of the region
acts in a different way and sends information in a different
direction. (von Neumann 1966: 106)

Specialization of different parts of the lattice is a functional trait of
biological organisms, and von Neumann considered it to be an important one.
Adapting to particular situations meant striving to acquire capabilities that
organisms generally have, such as flexibility and tolerance for error.
Specialization as an operating strategy might be achieved by introducing
competition between different parts of the system. In research on biological
neural networks, the term inhibition, or lateral inhibition, is used to describe
such competitive circumstances in some architectures. The term refers to what
happens when an active component of the system suppresses other components
that are less active. Competition between several subsystems would cause an
automaton to have a highly nonlinear transfer function, if properties requiring
such were called for. In the context of von Neumann’s crystalline lattice, or
“self-organizing layer” as it has been called on other occasions, this could
mean a build-up of different hierarchical levels. Local and global control
schemas could coexist and interact. Thus, behavior of a high degree of
complexity could be made possible. Von Neumann attributes this behavior to
the autonomy of subsystems:

The ability of a natural organism to survive in spite of a high
incidence of error (which our artificial automata are incapable of)
probably requires a very high flexibility and ability of the
automaton to watch itself and reorganize itself. And this probably
requires a very considerable autonomy of parts. There is a high of
autonomy of parts in the human nervous system. This autonomy of
parts of a system has an effect, which is observable in the human
nervous system but not in artificial automata. When parts are

94

autonomous and able to reorganize themselves, when there are
several organs each capable of taking control in an emergency, an
antagonistic relation can develop between the parts so that they are
no longer friendly and cooperative. It is quite likely that all these
phenomena are connected. (von Neumann 1966: 73)

In the work of von Neumann and Burks where, this is where the concept
of self-organization is used. It does not receive much attention elsewhere, at
least not as much as their primary theme – self-reproduction. Still, the
thoughts presented throughout their work are highly pertinent to machine
learning and self-organization. There are two basic ways to interpret the ideas
of von Neumann and Burks. One could think of an interpretation modeled
after neural or after cellular/evolutionary paradigms of self-organization.
These two interpretations have a great deal in common. No matter which one
is accepted, the model connects closely with biology, and even closer with
collective phenomena, which are the kind primarily in question here. At least
two major interpretations of self-organization are possible: one is neural; the
other, cellular. The former has led to research on artificial neural networks,
and the latter to models of artificial life and cellular automata. Both paradigms
grew out of the same ground.

Von Neumann’s text has many points of interest, all of which are not
possible to deal with here. One of the more absorbing ones is his distinction
between so-called crystalline versus Euclidean types of automata. At the level
of implementation, this distinction corresponds roughly to the digital and
analog worlds of electronic devices; at the level of quantitative description, it
corresponds to the difference between continuous and discrete mathematical
tools. In some respects, von Neumann seems to consider continuous, analog
computing architecture to be the superior one. He compares the two in the
following way:

(X) The general possibilities are about the same in the two cases.

(Y) The continuous case is mathematically much more difficult
than the crystalline case.

(Z) If and when the appropriate analytical methods to deal with
the continuous case are developed, this case will be more

95

satisfactory and more broadly and relevantly applicable than [is] the
crystalline case. (von Neumann 1966: 106)

Just as in this early work on automata theory, some later neural network
engineers have, at least in principle, advanced analog technology as an
alternative to digital devices. Indeed, some of the earliest attempts to construct
artificial neural networks utilized analog devices and elements, such as
potentiometers conceived as adaptive “organs”. In some cases the
potentiometers were driven by small electrical motors, which would make
small incremental adjustments according to the learning schema built into the
device’s architecture (Alexander and Morton 1990: 57-58). Reports on other,
more advanced endeavors using analog hardware have been recorded. In most
cases, however, practical issues such as low cost, availability and reliability
have called for digital technology, which has had the edge over its analog
counterpart in data-processing applications ever since LSI technology became
available.

John von Neumann’s theory of self-reproducing automata is a good
example of early computer scientists’ tendency to model artificial systems after
natural ones. In von Neumann’s time it was generally considered obvious that
biological organisms might well be called “automata”, just as well as man-
made ones were; and, at least on some level, both could be fitted to a common
theory. In this spirit, it was quite feasible to speak about artificial and natural
automata as parallel cases of basically similar phenomena. Both types of
automata could be subjected to comparative study (von Neumann 1966: 21-
22). From this background it is easy to see why von Neumann suggested a
combination of analog and digital information-processing systems as an
architecture for a computer of the future. Indeed, he went on to lay the
groundwork for a self-reproducing machine. Arthur W. Burks continued such
work, which was left unfinished at the time of von Neumann’s death. Burks
examines the case of von Neumann’s cellular structure, and finishes the work
by using logical deduction to show that “self-reproduction is a special case of
construction, and construction and computation are similar activities” ... (von
Neumann 1966: 296). On the way to this result, many basic ideas of modern
neural computing, such as collective parallel computation, competitive
learning, lateral inhibition, interaction of digital and analog domains, as well as
interaction between global and local schemata, came forth, at least in their
preliminary forms.

96

4.8 Architecture of a modern self-organizing
system: The two-dimensional self-
organizing map

Among modern self-organizing algorithms put to musical use is Robert
Gjerdingen’s ART system, mentioned in Chapter 2, based on Grossberg’s
adaptive resonance theory. The self-organizing feature map as conceived by
Kohonen (1989: 119-157) serves as the basis for the experimental part of this
study. Thus it is necessary to explain it in detail here. It also serves the
purpose of this study as an example of a contemporary self-organizing system.
To date it has gathered a following, as a widely known neural network-related
approach with some appealing features. It is strictly a technical solution to an
engineering problem, but can be also regarded as a model of specialized
(localized, self-organized) functions found in the brain – providing one
understands that it is just a model, a simplification that illustrates general
properties. Here, “specialization” does not mean that the nodes of the network
must be physically or formally different from each other, as was supposed in
many early theories on self-organization, such as the one by Mesarovic
(explained in section 4.6). Rather, it means that the nodes are more or less
firmly configured for certain tasks (Kohonen 1989: 119). In a self-organizing
system those nodes, which are configured for the same or similar tasks, form
local clusters of response. In his study of present-day self-organizing machines,
Jacob Marinus Jan Murre recognizes similar operating principles behind a
considerable number of quite different systems:

We may, thus, conclude that the same basic principles reoccur in
quite different models, and that they appear to be central to the
concept of self-organization. Extending a local selection principle,
such as a winner-take-all competition with a sub-local ordering
principle, results in a topological ordering of representations.
(Murre 1992: 59)

97

Superficially this localized response may seem to contradict the idea of a
parallel distributed representation of knowledge. If a representation is
distributed, how can it be localized at the same time? Localization in self-
organizing feature maps (SOMs) is nevertheless rather different from, say, the
perfectly local one-byte-per-one-memory-slot scheme of conventional (so-
called von Neumann-style) digital data-processing. Even though localization
and specialization may be found among the nodes, each local focus of
activation consists of a number of nodes acting in parallel. The operation of a
SOM is built on the interaction of nodes within a defined neighborhood, and on
edge-effects of neighborhood clusters. This is what Murre calls “sub-local
ordering”.

Our treatment of SOMs is restricted to two-dimensional maps, in the
spirit of the original examples of Teuvo Kohonen, author of the architecture
(Kohonen 1989: 122). There is no reason, however, why one should be limited
only to two-dimensional cases. British computer scientist Igor Alexander has
given an example of the method being simplified to one dimension (Alexander
and Morton 1990: 148-152). One could conceive of three or more dimensions,
too. It must be noted that the implementation of SOM explained here is in
some respects simpler than other ones found in the literature. Nevertheless, the
distinguishing features presented here should suffice to qualify it as a SOM
system following Kohonen’s ideas.

The SOM used here is a layer (two-dimensional array) of elements, or
nodes, connected laterally. Their connectedness gives rise to information
feedback. The strength of the feedback is controlled according to a determined
shape or function. The degree of connectedness among the nodes – the number
of nodes in direct interaction with any single center node – of the layer depends
on the implementation. In the present case, each node is logically connected to
eight surrounding nodes, and the texture of the layer is essentially a square
lattice with both rectangular and diagonal connections. The surrounding nodes
form a neighborhood around the center node, which is the key element in the
making of a sub-local ordering. The immediate neighborhood-circle around a
node can in turn be surrounded by a larger circle, and this second one with a
third, larger circle. The distance from the center determines the magnitude and
evidence of lateral feedback gain, as determined by the feedback function. The
shape and magnitude of this function largely determine the behavior of the
system. A number of shapes can come up for consideration. Kohonen (2001:

98

178-179) presents an optimal function-shape for lateral feedback, excitatory
from the middle, with an inhibitory circle around, and carrying a diminishing
inhibitory effect to the surrounding areas according to the growing distance
from the center. Because of its shape, it has sometimes been called the
“Mexican hat” function. In our implementation, the “Mexican hat” function
has been replaced with a somewhat primitive one-, two-, or three-stage
function for the sake of simplicity, and for the computational shortcut it
provides. Figure 4.1 represents these basic shapes.

Figure 4.1: Approximate shapes of a smoothly curving “Mexican-hat” function and
its equivalent step (square) function (see Kohonen 2001: 178-179).

The map, or Kohonen layer as it is sometimes called, can automatically
adjust to develop specific responses to various patterns in given data. This is
achieved in the following way. Data is fed into the map as packages with
length N called feature vectors X = { x1 , x2 , ... xn} . Each of the nodes has an
input data vector A = { a1 , a2 , ... an} , where the data package carried by the
current-feature vector is stored.

The nodes also have a representation of their internal state in the form of
a vector W = { w1 , w2 , ... wn } . Elements of the vector W are often called the
weights of the node. This is in accordance with the concept of weights as the
primary adjusting elements in various other schemata of artificial neural
networks, where tuning the system with weight adjustments makes adaptation
and learning possible. Vectors X, A, and W obviously all have the same length

99

N, which corresponds to the dimension of vector space. As data packets in the
form of feature vectors X introduced to the layer inputs A, node receives an
identical input, which is processed in a parallel way in all nodes of the layer.

At the initial stage each weight w1 , w2 , ... wn in every weight vector W
is set to random values. Subsequently the whole corpus of data is chopped into
feature vectors X, which then are introduced to the layer. At the learning stage,
adjustments are made to the weights as follows: when the nodes receive a
feature vector, they develop a reaction to it in the form of a response value Y.
The strength of the reaction depends on the correlation between the weight
vector and the incoming data vector. The stronger the correlation, the higher
the response value (Y) generated by the node. Let Ymax be the chosen
maximum possible value for correlation. Different formulas could be proposed
for calculating the correlation value, for instance, as in (2):

 N
Y = ∑ Ymax / ((1 + | an – wn |) × N) (2)
 n = 1

Formula (2) is arbitrary in the way that, it does not describe a
mathematical law, but is simply tailored to produce Ymax with identical vectors.
It must be noted that (2) contains a nonlinear term of the form 1/x.

In the implementation of the experiment described in chapter 7, a simple
algorithm is used instead of (2) as to both produce maximum response with
identical vectors, yet maintain system linearity. It works as follows:

 N
Y = ∑ k | an – wn | (3)
 n = 1

where multiplier k is algorithmically chosen so that the highest value found in
the data will produce maximum response Ymax.

At the first stage of adjustments, the weights are set randomly, so when
the feature vectors arrive at the nodes, there will be one “winning” node with
the strongest response, i.e., the best match of weights. An adjustment is then
made to the weights, which strengthens this correlation even more. The
winning node will be taken as a center for the second stage of adjustments:

100

lateral feedback. The weight vectors in the neighborhood of the center node
are either drawn closer or pushed further away from the weight pattern of the
center node, according to the value of the lateral-feedback function at the
respective location on the map.

Thus configured, the SOM will build an order to any given feature-
vectors during the teaching process. Consequently, similar (according to a
specified metric) features have a tendency to focus the strongest response
toward adjacent nodes. Either a static or a dynamic lateral-feedback function
controls the degree of parallelism in the network. Properties and structures
present in the input data cause a respective state-pattern to develop in SOM.
The result is that sub-local ordering is achieved together with a distributed
collective representation of knowledge. As Ritter (1991: 379) remarks,
“networks with random topology may provide a natural structure for creating
topology preserving maps of semantic items”.

The process is called “self-organizing” because no outside supervision is
used in forming representations. The map is also called “topology-preserving”,
because of the tendency of similar features to trigger activation in adjacent
nodes. Thus clusters of activation (lateral feedback being responsible for the
clustering phenomenon) are formed, subject to correspondence between the
topology of the input data and that of the response patterns of the map. The
map accommodates incoming data by making small, stepwise adjustments
iteratively in a loop. Adjustments are made slowly so as to allow time for the
response foci to settle into place and stabilize. The step of adjustment is
decreased during the process, so that the later iterations change the weights less
and less. This causes the process to stabilize slowly into a certain
configuration. A large number of teaching cycles is typically needed to
produce a self-organized order. Without the necessary amount of teaching to
stabilize the map, the results may include a significant random element.
Because of the highly iterative nature of this process, SOM systems have
considerable need of computing power.

An additional remark is due, of a semiotic nature, concerning self-
organization as it is outlined here. A great distinguishing factor between
symbolic and sub-symbolic computation seems to be that, in the sub-symbolic
domain (as opposed to the symbolic one) there is an organic relationship – in
fact a strong dependency – between a representation and its context. One
cannot exist without the other. A context for an individual sign is the signal, of
which the sign is a fragment. The signal serves as a ground for a sign.

101

5. Musical information as a fabric
of sinsigns and legisigns

5.1 Symbol, icon, and sub-symbol revisited

We can now revisit the concepts of symbolism, sub-symbolism, and iconicity.
The relationship between sub-symbolic representation and the iconic sign is a
special one. Both are intimately connected to symbols. According to Charles
Sanders Peirce, symbols result from iconic processes: “In the earliest form of
speech, there probably was a large element of mimicry. But in all languages
known, conventional auditory signs have replaced such representations. These,
however, are such that they can only be explained by icons” (Peirce 2.280).

Consequently we can ask, What properties enable icons to explain
symbols? Icons are rich in meaning that goes far beyond mere recognition of
their origin and object, as Peirce has remarked: “For a great distinguishing
property of the icon is that by the direct observation of it other truths
concerning its object can be discovered than those which suffice to determine
its construction” (Peirce 2.279).

An icon can convey multiple levels of meaning in addition to the main,
denotative one because of its direct resemblance to its object. The icon
preserves the relationships and proportions of its object, which carry meaning
and may allow for various, parallel interpretations.

102

When an icon appears in various time locations in a message, the
multiple roles and facets of its meaning are made clear to the receiver of the
message on the basis of the context in which the icon appears. The meaning of
an individual sign is explicated and precisely focused by its usage in the signal.
In this process, concepts take shape and “find their place” in the semantic space
that is created by the vocabulary manifested in the message. Not only do
existing concepts come into focus and take shape, but new concepts may also
emerge from iconic semiosis. As an example, consider electro-acoustic music
that is produced in a studio. A composer may have a detailed structural plan of
a composition before going into the studio, based on ideas worked out earlier.
Before hands-on work on the sound material begins, the plan remains abstract
to some extent – meaning that it relies largely on symbolic representation. But
when a composer begins working with actual sound material, he or she enters
the non-symbolic domain of semiosis. The work may take new and unforeseen
directions, because the interaction of creative mind and sound material evokes
associations. Resemblance and similitude play a major role in bringing out
these associations. They are the basic ingredients of iconic semiosis, and they
guide artistic creation.

In the iconic semiosis of artistic work, the ground of the concepts or
objects being reflected upon is also very important for the development of
associations. In our example, the ground would be the composition – the
sounding environment, which lends itself to evaluation and to the shaping of
each new motif, pattern, or event. Each new element is contrasted against the
whole of which it is a part.

Other examples of sub-symbolic semiotic processes that carry and give
birth to symbolic notions can be found throughout our culture. One need only
think of the development of written alphabets, from the most primitive forms
of mimicry to the symbolic, yet cogent, marks of the modern alphabet.

One might argue that the primary nature of association is not iconic, but
indexical. This is so because, in an associative process, one concept or notion
triggers another, which points back to the previous one, thus forming a chain of
pointers. If one uses Peirce’s ideas, however, one must accept the fact that, on
his view, iconic associations are not indices. He insists that an index is not a
resemblance of its object. Indices may arise from iconic situations, in which
case they nonetheless depend on a primary layer of iconic signs.

A dependency similar to that between symbols and icons is formed in
sub-symbolic data processing, of which numerous examples exist. For

103

instance, Leman and Carreras (1997: 153-155) give an example of a sub-
symbolic process in which commonly used notions of music theory can emerge
in a completely data-driven way, on the basis of examples taken from cadenzas
of tonal music. In their experiment, sub-symbolic data produce a higher-level
concept; an essentially new idea emerges, namely, a general construct
representing the circle of fifths, one of the very fundamental theoretical
structures in the Western musical system. In general, a new abstraction is born
in sub-symbolic self-organization, because a new ordering of information
emerges as structures take shape in processes comparable to the one
investigated by Leman and Carreras. Such processes can therefore be used for
data classification.

Organization of a connectionist network, be it self-organizing or
supervised, provides data reduction. This is an abstraction process that
transforms an iconic representation such that it increasingly gains a symbolic
quality. Digitized sound is already a symbolic translation of an iconic
representation, in the sense that digits are symbols of numbers, and numbers
are symbols of measurements of sound-pressure levels (a fair amount of
iconism is involved in PCM-coded sound signals, too). One must realize,
though, that numbers belong to a rather peculiar category of symbols. They are
sinsigns that signify immaterial entities, namely quantities, and that have an
intimate relationship with an extremely formal and elaborate system of
legisigns, which includes arithmetics, algebra, function analysis, calculus, and
many other kinds of mathematics. Therefore, formal treatment of numbers is
rather different from that of generic symbols. This difference is manifested, for
instance, in the difference between symbolic computation and algorithmic
computation. Thus, digitizing as such does not raise the level of abstraction in
a message. If the digital information were compressed, it would be more
justifiable to talk about an abstraction process, since data-compression
accomplishes an actual reduction in size. In the abstract sense of the word,
reduction must be understood in terms of the content of the message. It makes
little sense to claim that sound digitized with a lower resolution or sampling
rate is more abstract than sound recorded with better quality. In such a case,
information is lost, while no new and pertinent, higher-level information is
created. Part of the meaning of the message is potentially being destroyed. A
central concept here is reversibility: how easily and faithfully can the original
sound phenomenon be retrieved from its representation?

Not all analysis is reversible, in the sense that the original object of

104

analysis may be recreated from its representation. For instance, in Schenkerian
analysis, which produces reductions of massive compression ratios, the
reversal process – i.e., synthesis of the original music from analytical results –
is neither a simple nor obvious thing to accomplish. But even Schenkerian
music analysis makes use of the concept of “composing out”
(Auskomponierung), which suggests that the process might be reversible, at
least theoretically, provided that information is available about how the
reduction was accomplished at the first place. Similarly, even though Roman-
numeral harmonic analysis is not a completely reversible representation, in the
sense that the melody may be retrieved from it, there are cases in which that
would be possible. Let us consider, as another example, the harmonic structure
in a well-known jazz standard, Morgan Lewis’s “How High the Moon”.
Because in this case the harmonic structure of the piece is clearly recognizable,
any musician with a little education in jazz would be able to apply his or her
knowledge, and play the melody upon just seeing the chords. Both of these
examples suggest that it should be possible to reverse an analytical process, at
least in principle, even though extra information might be required in order to
do so.

Musical scores have iconic properties, but they are also partly symbolic.
Graphic scores and tablatures obviously depend more on iconic semiosis than
does common-practice musical notation, which relies mostly on symbolic
signification. In fact, common-practice musical notation is symbolic enough to
allow its iconic properties to be ignored in fully functional formalisms.
Numerous computer-based notation and sequencing systems prove this last
statement to be correct. Computer sequencers, with their plainly symbolic
representations, fill many needs of present-day commercial music by virtue of
their descriptive power. Use of this machinery comes with cultural
consequences: symbolic processes in music technology have had an especially
pronounced effect on the development of current popular music. The
musicians’ gestures and physical presence are distanced from the act of music-
making, for they no longer need to exist in real time with the performance or
recording – sometimes they do not need to exist at all. Music may be cut,
copied, and pasted as tracks, blocks, and events, and may be step-edited at will,
in a manner quite remote from the way musicians actually perform. Such a
development affects reception, as well as general aesthetic principles. This
distancing effect is most pronounced in popular music, which is culturally
significant, because today it is the most influential type of music for the

105

majority of people. Cases that may be only slightly less apparent can be found
in concert music as well; for example, the characteristic sound of a certain
studio or group of performers. Symbol-manipulating technology thus in turn
manipulates musical communication and semiosis on a large time-scale.

To explore further the common ground between sub-symbolic and iconic
domains it is useful to gain more insight on musical objects – the smallest
signifying particles of music. Their relationship to our perception of time is
exceptionally important. Do we mainly experience signifying units as linked to
time, or are time-independent properties perceptually more important?
Another concern is the hierarchical nature of musical messages and musical
communication. And yet another, very basic issue concerns the ontology of an
object signified in a musical semiotic process: is it a static or a dynamic entity,
and in what way(s) does it change or evolve in the course of a musical work?
At the outset of this study, it was stated that our focus would be on patterns in
time. Nevertheless, vertical structures in music remain worthy of analysis,
though they do not number among our concerns at this time.

5.2 Legisigns and the temporal dimension

It has already been established that the manifestations of a musical object live a
dynamic life cycle during a musical work or musical performance. It turns out
that what we have so far been calling “musical objects” could easily be
described in semiotic terms as musical legisigns, and surface-level instances of
them could aptly be called sinsigns. In this case, a musical legisign could mean
a number of different things. It might refer to traditional music-theoretical
notions concerning melody, meter, rhythm, harmony, counterpoint, and the
rules governing them. Also, legisigns reflect the commonly accepted practises
in a certain musical culture or genre. Such notions could be called general or
cultural legisigns. Yet another type of musical legisign is also conceivable,
which derives from invariances that are valid within the context of a single
musical work. We might call these particular or embedded legisigns.
Invariances that reveal the existence of embedded legisigns may be found in

106

characteristic motifs or thematic material. Nevertheless, it must be emphasized
that themes or motifs in their individual appearances should not be considered
as legisigns, for such appearances undoubtedly are instances, and as such,
sinsigns. An embedded legisign sums up the typical properties or details of a
certain musical idea, motif, or characteristic. In a way it is a (proto)type that
can have many various instances or tokens – or even disguises – at the surface
(sinsign) level. This distinction is quite crucial in the following parts of this
study. Sometimes the legisign is manifested in a continuing process of
expression that leads from a distinct starting point to an ending via a number of
intermediate states. This is the developmental tendency in music. At other
times, the object establishes a steadier form, manifesting its life in deviations
from the latter. This is the tendency to variation. At still other times the object
might at first produce a stable appearance, then generate new patterns that stray
further from it, but finally return to the initial manifestation. This departure-
and-return pattern might be called the cyclic tendency. These time-related
tendencies, together with other conceivable ones, are the basic constituents of
drama in music. They are qualities, and thus from the semiotic point of view
can be treated as qualisigns.

In any of the qualisigns (tendencies) belonging to certain sinsign-
legisign (instance-object) system-dynamics, whatever the qualisigns might be,
it is quite clear that recorded music, regardless of the storage format, has only
indirect access to embedded legisigns, i.e., to deeper levels of musical
signification. A group of notes in a musical score is a sign that allows for a
plethora of different interpretations, and that has one or more abstract legisigns
lurking behind it. In contrast, a group of sounds in a recording reflects only
one possible manifestation, one possible sinsign that implements or obeys its
respective legisign(s). This type of manifestation is iconic, in the sense that it
bears a resemblance to its object. But the object – the legisign or musical motif
– becomes defined sufficiently only in the context of the complete piece. Thus,
the entire piece functions as another sign, which interprets an individual
moment. What its object really is, however, is not so evident. In fact, it
signifies the complete musical message embedded in itself, both as a whole and
all of its possible parts, just as a story refers introversively to all of its
constituents. A sign in general represents its signified. But in musical contexts
we often realize that the subject matter of music is simply music itself. A piece
represents its own content, and for this reason may be called an auto-icon.

Auto-iconic meaning is of course not the only possible type of meaning

107

in music. It is in a key position, though, because it is an essential part of
meaning in almost any type of music. From the point of view of auto-iconicity,
a musical object needs to be examined in the context of the whole musical
work. Approaching legisigns behind sinsigns becomes possible only when one
takes a holistic view, which construes the context of a musical continuum as a
unity.

Earlier (Ch. 3.2) we discussed negative critiques of the idea of auto-
iconicity, such as the one by Raymond Monelle. Perhaps now it is appropriate
to take a look at Peirce’s thoughts on the matter (2.230):

... in order that anything should be a Sign, it must represent, as we
say, something else, called its Object, although the condition that a
Sign must be other than its Object is perhaps arbitrary, since, if we
insist upon it we must at least make an exception in the case of a
Sign that is a part of a Sign. Thus nothing prevents the actor who
acts a character in an historical drama from carrying as a theatrical
property the very relic that that article is supposed merely to
represent, such as the crucifix that Bulwer’s Richelieu holds up
with such effect in his defiance. On a map of an island laid down
upon the soil of that island ... must, under all ordinary
circumstances, be some position, some point, marked or not, that
represents qua place on the map, the very same point qua place on
the island.

From this statement, we may conclude that Peirce’s own view of the
matter was not altogether fixed. Yet he certainly leaves the door open to auto-
iconic signification in the case of physical objects that signify themselves.
Why, then, would it be any more difficult to consider the possibility of
immaterial, time-dependent musical signs that signify themselves?

In a discussion on the emergence of meaning in a musical context,
questions of hierarchy cannot be skirted. Almost any analytical system or idea
dealing with musical form must also deal with the notion of multiple layers of
information: surface layer, deep layer, and perhaps a multitude of intermediate
layers. Any discussion in such terms could be characterized as Chomskyan,
since the influence of Noam Chomsky’s theory of generative grammars has
been a dominant one in the humanities since the 1960s. However, I would take
issue with the notion that all reasoning about surface and deep structures

108

essentially derives from Chomsky’s work. If we maintain that symbolic
signification is based on iconic processes, we already have a hierarchy.
Consequently, when we discuss musical objects and their various surface-level
appearances, the discussion is not based on the point of view of generative
grammars, but on that of sub-symbolism. Therefore, the claim is made here
that it is possible and justifiable to discuss deep structure and surface structure
without making extensive reference to Chomskyan grammatical
representations. These notions in question are more universal, and need not be
confined to language. Surface structure and deep structure can rightly be
discussed as a dialectic between sinsign and legisign.

Empirical analysis mainly has direct access only to the surface structure
of music – sinsigns acting as manifestations of musical legisigns – and only
indirect access to the legisigns themselves. Hence, an analytical system is by
definition one that is capable of approaching the signs that lie beneath the
surface of musical phenomena, by producing generalizations of the dynamic
surface of sinsigns. The generalizations explain the musical legisign by
engaging with its properties and behavior, knowledge of which comes from
studying surface manifestations in context. It is the context that can transport
meanings to the receiver’s side in the musical communication chain. The
purpose of such study is to produce a generalized idea of the sinsigns.
Consequently, a legisign is a generalized, abstracted product of sinsigns, which
comes into being as a result of analysis. As generalization and abstraction
take place, the sign necessarily loses part of its iconic nature, which gives way
to symbolism.

The auto-iconic, sinsign/legisign network forms a special semiotic
system that can produce meanings in a self-sufficient manner, and that allows
for the emergence of abstract concepts without requiring any exogenous
information about coding/decoding. Intuitively, however, it seems essential to
define some ground in contrast to the sign. Before a discussion on the role of
the ground, a closer look at the mechanisms of auto-iconic signification is
needed.

109

5.3 On the emergence of new concepts

There is a striking similarity between the emergence of symbols from sub-
symbols in connectionist system, and the emergence of symbols from icons in
an auto-iconic process. The relationship between sub-symbolic and iconic
domains of communication obtains by means of data-reduction techniques.
We could say that the emergence of symbolic representations from a sub-
symbolic information base is a parallel to the way symbols depend on icons. It
would be a mistake, however, to conclude that sub-symbols and icons are one
and the same thing. Instead, it is obvious that sub-symbolic signs simply
possess rather strong iconic qualities. We have already noted that associative
processes have an indexical aspect as well, whether the context is musical or
some other kind. Sub-symbols are inherently iconic signs, and their dynamic
behavior is very much like that of icons. It has already been suggested that
iconism might serve as the basis of an analytic technological system. In the
remaining chapters of this study, we shall investigate how successfully this
might be done by using a particular parallel computing system.

A rather intriguing philosophical question concerns the parallelism
between connectionist and semiotical processes of emerging structures. Based
on what has been said thus far, it is obvious that symbolic information may be
generated by a technical system. On the other hand, in semiotical systems,
higher-level concepts may emerge from dynamic processes among elements of
lower-level information. Consequently, one might reach the almost frightening
conclusion that abstract concepts could originate from a strictly technological
procedure. The experiment described in the following chapters provide
additional information, which can help us decide if such a conclusion is valid.

110

5.4 Musical signification as a set of
procedures

The marriage of semiotic and computational concepts is performed here with
formalisms that use a step-by-step model and apply it toward an analytical end.
We call the application of such formalism procedurization. The latter term
seems has a strong association with algorithmic ways of problem-solving. The
use of algorithms for analytical purposes is not unheard of in musical
semiotics. Indeed, one branch of semiotics seeks to formalize analysis almost
to the point of algorithmic form. This branch stems from linguistics, and may
be exemplified by Nicolas Ruwet’s music-analytic method. We shall refer to
Monelle (1992: 83-88) for an account of Ruwet’s mechanism of discovery.

Ruwet’s “analysis algorithm” consists of four main steps. At the first
stage one studies the material in order to find the longest recurrent passages.
At the second stage one identifies the non-recurrent passages. The third stage
consists of a comparison of length between recurrent and non-recurrent
passages. At the final stage one compares all passages in order to find the ones
that are variants of the same passage – or in the terms we have used here, the
ones that are superficially different instances of the same musical object.

In this study, however, we do not insist on rigorous algorithmic
formality, such that algorithmic formalisms are considered synonymous with
symbolic data-processing. The procedurization of ideas can also take place in
a connectionist system, which is not an algorithmic procedure in the strict
sense. Thus, here procedurization does not imply that a strict algorithm or
grammatical rule-set is the main objective, but rather that the problem should
be structured into subparts and tendencies. Processing of the problem should
be taken to the point where it can be subjected to computation using either a
deterministic algorithm, fuzzy logic, or a connectionist network.

A graph representing various factors and mechanisms of musical
signification is introduced below. It depicts four progressive stages. First the
graph will display the four agents of signification: object, representamen,
interpretant, and ground. In addition, two relations are shown. The first
relation is between an object and its representamen, and is called instantiation,

111

or the making of an instance (Peirce 2.230).10 This relation reflects the way
representamens are generated from an object. The purpose of this procedure is
to show that a single musical object may have a number of instances. In a way,
a musical object is a class, an idea, a collection of attributes, or an abstract
entity. Correspondingly, instances, or representamens, are actual-world
realizations of the respective class or idea. Upon instantiation, the options
allowed by the model object (“class object”) are fixed, so as to bring about its
realization as an individual sinsign.

The second relation is the one between representamen and interpretant.
Peirce calls this relation interpretation: “A sign ... addresses somebody, that is,
creates in the mind of that person an equivalent sign, or perhaps a more
developed sign” (Peirce 2.228). Interpretation produces a new sign, which is
an initial step on the way to associative chains. Interpretation is often
immanent, which is to say that a musical interpretant is usually a product of the
listener’s mind. Alongside this type of immanent interpretant, Greenlee (1973)
recognizes other interpretative signs. In the context of linguistic signs, such
interpretants may include a written translation, a spoken sentence, and the like
(Monelle 1992: 194). In computer analysis of musical data-streams, various
representations of musical signs may function as interpretants, whatever their
explanatory value might be. As the first of a series of step-by-step diagrams of
signification processes, Figure 5.1 depicts mechanisms of interpretation and
instantiation.

Since both representamen and interpretant are signs, it is possible to
think of another semiosis, in which the interpretant as a representamen, and
produces another interpretant. This may in turn act as representamen. In this
way, a chain of semiosis can be iteratively formed.

Monelle refers to the “infinite iteration” of the interpretation process,
and attributes the idea to Gilles-Gaston Granger (1968: 114) and Douglas
Greenlee (1973: 26).

This suggests an infinite regression; if the interpretant is itself a
sign, then in its turn it will need an interpretant. The road sign is
interpreted by an official sentence; this verbal explanation is

10 Incidentally, the term instance, present in Peirce’s text, has been put to frequent use in the
technical context of computer science. It usually refers to a technique in object-oriented
programming (OOP), which uses a categorization surprisingly like the process explained
above, in reference to legisigns and sinsigns; however, these notions are replaced by the
terms class and instance in the programming jargon.

112

significant by virtue of a greater sign, the whole system of the
highway code. This interpretant will need an interpretant, and so on
ad infinitum. (Monelle 1992: 194)

Figure 5.1 Instantiation and interpretation

José Luiz Martinez discusses the process of interpretation in depth.
After suggesting a number of different kinds of interpretation, and partly
following another triad used by Peirce11, he states that the step-by-step process
from immediate interpretant to final interpretant is (at least in a musical
context) not necessarily a simple journey by way of the shortest possible route
between two points:

11 The Peircean triad in question comprises emotional, energetic, and logical interpretation.
Because it is not a directly integral part of his famous categorization of signs, it is less
frequently used and cited than are the triads concerning sign categories.

Musical object

Instantiation

Interpretation

Representamen Interpretant

113

The utterer and the interpreter are not simply the musician(s) and
the listeners; and, above all, these concepts must not be understood
as engaged in the simplistic, indication scheme of sender-message-
receiver. The utterer and the interpreter, caught up in the web of
semiosis, may even be difficult to locate in some circumstances, for
they are thoughts among thoughts among thoughts.... Besides, in
many musical situations their positions are irrelevant. (Martinez
1997: 78)

In other words, the semiotic process holds the possibility of a kind of
polymerization. How far polymerization, as such, might in principle continue
also depends on the kind of interpretation in question. Obviously, the
interpretation of sinsigns may produce legisigns, in which case a final
interpretation will probably be arrived at, sooner or later. However, it is also a
conceivable that an interpretation of a sinsign would be homogenous, in the
sense that it might produce the same type of sign as a result – another sinsign.
In that case, a final interpretation may be much further away. It is even
possible that the final interpretation does not exist at all.

It is possible to track down the constituents of such a polymer – the
constituents being transformations and reinterpretations of the musical idea at
the level of sinsigns, along the span of the musical work. This is reminiscent
of a number of linking or looping processes, which have been frequently used
in computer music theory and in simulations of composing strategies. Markov
chains are perhaps the most well-known example of such algorithms (e.g.,
Xenakis 1971: 43-78). Another, somewhat similar case would be the idea of
“grammatical chains”, as discussed together with context-sensitive grammars
by Kohonen et al. (1991: 231-235). The motivation for the chain metaphor of a
grammatical rule-set was the desire to mimic or approximate cognitive
mechanisms of association and memory.12

The case of chaining, or polymerization, in a semiotic process differs
from the Markovian and grammatical models in at least one respect. Because
Peirce’s idea of interpretation was conceived as a psychological and cognitive
mechanism, instead of a strict algorithm, the distancing from initial

12 The term “grammatical chain” is my own, and is not used in the publication by Kohonen
et al. In private communication Kohonen has emphasized that the special grammar used in
his experiment is not as such related to Markovian processes. Nevertheless, in the
experiment described by Kohonen, his grammar-based system was used in a manner similar
to the Markov chains in Iannis Xenakis’s well-known usage of them in musical composition.

114

interpretations by forgetting is hardly ever complete. If the system of object-
representamen-interpretant is considered a genuine trichotomy, as Peirce
argues, then some distinguishable “background” presence from part of the
original object will certainly appear, even in later links of the chain. In other
words, the cognitive memory mechanism is fine-grained, preserving selective
reminiscences of the original situation(s) for long periods of time. Memory
links may be parallel and tangled, so there will be links at several points in the
chain. The topology of the model implies that more than one dimension is
necessary. Consequently, where semiotic relationships are concerned, the
linear, chain metaphor should be replaced by the network metaphor. Because
interpretation-reinterpretation relationships constitute a framework for the
concept of association, it follows that the representamen-interpretant network is
profoundly involved with the technology of associative systems and artificial
neural networks, inasmuch as technical implementations are concerned. The
connection between interpretation and association was referred to by Peirce, in
the context of rhetoric as a way of approaching the interpretation of concepts:
“the task [of pure rhetoric] is to ascertain the laws by which in every scientific
intelligence one sign gives birth to another, and especially one thought brings
forth another” (2.229).

In constructing a computer model, however, it is necessary to keep
things simple. Thus, it is not possible here to emulate associative recollections
of a complexity comparable to those carried out by true cognitive mechanisms.
Instead, in using a simple computational system, we shall approach cognitive
processes by way of procedures oriented toward the more limited phenomena
of short-term memory.

Before we proceed deeper into our signification model, a final remark
should be made concerning data-representation. In the following, we shall
largely avoid discussions about formats in which music should be represented.
The format used may be either a direct translation of acoustic phenomena into
a digital form such as sound (sample) files, or into one of the many available
score-oriented or MIDI-oriented formats. We simply presuppose the existence
of a signal consisting of an ordered set of discrete, iconic signs in time.

115

5.5 Mechanisms of instantiation and the idea
of semiotic ground

Instantiation, which plays a major role in our model of music reception, may be
characterized as the translation of a deep-level entity, such as a legisign or
musical object, into a surface-level entity, i.e., a sinsign or representamen. An
object can generate a great variety of representamens – one legisign may be
instantiated such that it produces many different instances. The number of
possible instances could even be infinite. On the other hand, sinsigns of
common appearance could in some cases be instances of different legisigns. In
such cases, the correct meaning would be determined by the context. In
Peirce’s writings, attention is given to this fact. According to him, instances of
similar appearance but different significance can be considered as discrete
parallel meanings (different legisigns) created by a single sinsign instance, as
they are manifested from the point of view of a sinsign:

The word Sign will be used to denote an Object perceptible, or only
imaginable, or even unimaginable in one sense – for the word
“ fast”, which is a Sign, is not imaginable, since it is not this word
itself that can be set down on paper or pronounced, but only an
instance of it, and since it is the very same word when it is written
as it is when it is pronounced, but is one word when it means
“rapidly” and quite another when it means “immovable”, and a
third when it refers to abstinence. (Peirce 2.230)

What Peirce says above applies to a linguistic context, in which meaning
is mainly symbolic and parallel meanings remain relatively discrete, that is,
separate from the primary meaning. Musical meaning, on the contrary, largely
resides in iconic semiosis, and therefore allows for a wide, continuous
spectrum of somewhat indistinct or representamens. Therefore, in musical
meaning, signs of similar appearance but differing signification will be more
apt to evoke associations, and hence more apt to take an active role in forming
connotations and building structural cues that contribute to the embodied

116

meaning of the message.
How sinsigns are formed on the basis of legisigns, with respect to

qualisigns, is a question of importance to music analysis, whether the process is
called instantiation, Auskomponierung, or something else. Peirce (2.228)
maintains that it is the dialectic between object and ground that, through
instantiation, brings forth the representamens. We have already developed a
notion of what the object – the musical legisign – in the limited context of one
musical work might be. It is an idea behind sinsigns, which is to some extent
distanced from the details, yet close enough to musical reality that it can be
expressed in such terms that it can easily be realized as legisigns. The object
has some abstract properties, forms, and/or attributes that are projected in
music and that stand out in respect to the ground. This fact returns us to the
concept of ground in musical semiosis.

Two statements sum up the view of ground assumed in this study. First,
the musical ground is not completely arbitrary – it is not made up of symbolic
knowledge alone, even though it expresses cultural conventions. The ground is
not arbitrary because of the iconic character of musical semiosis. An iconic
sign conveys information by relationships and proportions, and the ground
plays an active role in defining these proportions. Second, we must distinguish
between different types of grounds of musical sinsigns – cognition-oriented,
culture-oriented, genre-oriented, and work/piece/performance-oriented
grounds, from the most general to the most particular. Each different
contextual ground takes its own attitude toward iconic and symbolic modes of
signification, a fact which deserves further explanation.

Components of the cognition-oriented ground have their basis in extra-
musical reality. This has a pronounced effect on such things rhythmic patterns,
which connect to psychological laws of perception. Rhythms and tempos,
though largely matters of culture, are also tied to our bodies’ biological clocks.
Our ideas about harmony are built on the natural system of wave-forms,
harmonic series, partial tones, and the mechanisms of hearing such things.
These have important iconic relationships with physical and physiological
frameworks on which cognitive processes are based, such as the way sound is
conveyed to our nervous system through the cochlear transform of physical
vibration into neural signals.

The culture/system-oriented aspect of ground involves laws of a
prevailing musical system, such as tuning lattices, rules of harmonic thinking,
scales and keys available, rhythmic patterns, tempos, timbres, and properties of

117

instruments. It involves traditions, both written and aural, concerning
composition and performance. All this forms a body of knowledge that makes
up a musical culture, and involves less iconic aspects of signification than does
cognition-oriented signification.

The genre/corpus-oriented ground involves conditions and characteristic
features determined by musical style. This ground is more conventional than
are the mentioned general characteristics of entire musical cultures, but may
sometimes possess iconisms having to do with extra-musical aspects of culture,
such as social codes for courtship or interaction between sexes, as in the case
of dance music. Many norms of genre-oriented musical signs are qualisigns.

The work/piece/performance-oriented ground may play a larger role in
the domain of art music than it does in popular, dance, and ritual music,
because art music tends to strive more for originality and continued expansion
of its vocabulary. This ground permits us to approach the dynamics of
musical sinsigns and legisigns at the level of an individual musical work.
Iconicity is an integral part of the dynamics that produce meanings at this level
of signification, for it lends itself handily and understandably to the interaction
of signs within a musical work. Into this niche fits our strategy for algorithmic
analysis of music-based time series. In what follows, the term ground refers
primarily to this work/piece/performance-oriented ground, which, contrary to
other types of ground, is well-suited for a reasonably simple computing
environment.

In general, the ground provides a framework for interpretation that leads
from representamen to interpretant. Considering that the ground is so multi-
layered and multi-faceted, we appreciate the fact that the relations between it
and between both representamen and interpretant is a complex process. To
lump such complexity under a single rubric, and use it as a semiotic operand, is
quite a reduction indeed, but may be useful as a theoretical aid. The composite
role of the semiotic ground is illustrated in Figure 5.2.

118

Figure 5.2: Ground, representamen, and interpretant

Let us now turn to a somewhat novel idea of the interpretant in music.
In music semiotics, probably the most common notion of interpretation is the
one that emphasizes symbolic signification in the relationship between sinsigns
and their ground. In such a case, we are dealing cultural and genre-oriented
interpretation through an existing person. According to Peirce, an interpretant
is generated when a “sign ... addresses somebody” (Peirce 2.228), meaning that
semiosis involves someone who receives a sign. The interpretant lives in the
listener’s mind. A question then arises: What about more iconic, less
subjective signification processes?

Using the work/piece/performance-oriented ground would make it
possible to establish an interpretation process within a musical piece or

Musical object

Instantiation

Interpretation

Representamen
Interpretant

Deep level

Instance / manifestation
 Surface level

Product of the interpretation
chain in relation to ground.
 Association level

The interpretation process is dependent on the choice of ground, which
in turn is defined by the methods of instantiation. Ground forms

a context, which explains why and how representamens are
formed from their objects. Ground may be defined in an
arbitrary (symbolic) way, or non-arbitrary (iconic) way.

119

performance. The point of view becomes that of the transmitting side of
musical communication, and the focus is on the internal message of the
transmission – i.e., features in the signal which can be used to decode the
message without need for an external “Rosetta stone”. Associations in the
signal become the key elements in decoding the message. This is how the
representamen-interpretant, interpretation-reinterpretation network directly
manifests itself in music. The associations are established in a networking
process inside the musical message. In this mini-universe, the musical
intelligence and competence of composer and performer serve as engines and
generators. In a somewhat strange way, this adds a slightly impersonal flavor
to the semiosis, since the whole process is expressed only within a musical
work. Nevertheless, a source of musical intelligence is needed, even though it
works in such a restricted domain as that of a single piece of music.

5.6 Reverse instantiation and association
tracing

“Reverse composition” is necessary in order to get at information about a
musical work. One needs to have a specific manifestation or group of
manifestations (sinsigns) as a starting point, and proceed towards a general
definition of the musical legisigns in question. Since we have defined both
instantiation and interpretation as taking place in the piece, reverse operations
are needed; namely, reverse instantiation, or deinstantiation (an equally
appropriate name might be generalization), and reverse interpretation, or
association tracing. Without going in to detail about how such operations
might work, their positions and relationships are shown, together with the
operands and operations of earlier diagrams, in Figure 5.3.

120

Figure 5.3: Association-tracing

The starting point for analysis of a musical signal is first to consider the
data, all the given signs, as sinsigns. Initially, there is no way of determining
whether two or more sinsigns are manifestations of a common legisign, or
which sinsign would be the most simple materialization of the legisign in
question. This means that, at first, all manifestations of the musical object are
equally important. No sinsigns are to be taken as having a primary or
preferable form over the other ones, since the distinction between
representamen and interpretant in relation to ground has not yet been made
clear. As stated above, by ground we refer primarily to the
work/piece/performance-oriented type of ground, which is the most feasible
concept of ground in the context of algorithm-driven analysis.

A process giving rise to signification in the reception of musical signals

Musical object
Instantiation

Interpretation

Representamen
Interpretant

Deep level

Instance / manifestation
 Surface level

Product of the interpretation
chain in relation to ground.
 Association level

Association tracing

Deinstantiation
 (Generalisation)

121

is sketched in Figure 5.4. The figure also indicates the multi-dimensional
nature of the legisign/sinsign13 process of semiotic interpretation and
reinterpretation. Chains thus formed may, in conceivable practical situations,
have considerable length and a high degree of connectedness. The graph
represented in the figure may be called a reinterpretation network.

Figure 5.4: The reinterpretation network

Each of the sinsigns in a musical signal is a node of the reinterpretation
network. Each node has a logical link to the corresponding legisign.
Information about the musical object is not encoded into any single one of
these object-representamen arcs, but to all the nodes and arcs as a whole. This

13 Throughout the present text, “legisign/sinsign process” is a term used synonymously with
that of surface level/deep level process or object/manifestation process.

Musical object
Instantiation

Interpretation

Representamen
 Interpretant /
Representamen

Deep level

Surface level /
Association level

Association tracing

Deinstantiation

Interpretation

Association tracing

Interpretation

Association tracing

Etc.

Instantiation

Deinstantiation

Instantiation
Deinstantiation

Instance /
manifestation

 Interpretant /
Representamen

Surface level /
Association level

122

is a natural link to connectionist thought, and an argument for using technical
solutions of a similar nature in order to engage the problem. The network
forms a distributed representation of data. Generalizing properties of a suitable
connectionist network should provide access to attributes of the legisign, and
thus carry out deinstantiation. Obviously, cognitive reasons also speak for the
connectionist approach: in musical signification, intuitive, non-formalized
knowledge usually plays a crucial role where instantiation or meaning in
general is concerned. Since explicit rules for instantiation are usually not
available, neither are rules for deinstantiation.

The role of the work/piece/performance-oriented ground is a complex
matter because of the multiplicity of legisigns in a single musical signal. One
challenging feature in association-tracing is that in a single semiotic space
created by a time-ordered data sequence, there are a number of legisigns, and
the corresponding sinsigns for each of them can exist throughout the sequence,
in variable quantities and even overlapping. Pattern recognition involves three
problems:

1) how to differentiate between ground and legisign – i.e., how to
distinguish between those signs in the signal which manifest the ground, and
those which manifest a legisign;

2) how to distinguish among signs manifesting different legisigns;

3) how to find all the manifestations of a certain legisign.

Little can be known about the possible number of either legisigns or
sinsigns in a free data-sequence, if no limitations are specified concerning the
kind of musical material that can be processed. Nor is it easy to give any
information, concerning their general properties, that would facilitate
algorithmic processing. On the other hand, if such information could be
specified, then there would be extremely few possibilities for extracting
relevant and interesting information about music, for music that yields to such
limitations would likely be banal at best. Systems aimed at taxonomic
classification of a free sequence must be able to find the ideal number of
classes, and to distinguish between sinsigns and ground. This may be an
idealistic position, though. Perhaps elementary information about the ground
will always be needed, at least at the level of what Hofstadter calls the “frame

123

message (1997: 166). The latter refers to the capacity of messages to point out
that they actually are messages, i.e., those traits that say, I am a sign. In any
case, keeping the ground information to a minimum will assist us in
maintaining the general motivation and applicability of the method.

Conditions like the above have not been easy to reach with conventional
computer programming methods. If they can be fulfilled, then deinstantiation
may take place.

Provided that a procedure for deinstantiation is available, the next step
would be to construct a model that reverses interpretation, by reverse tracking
of the associative references of the time sequence. Association tracing (AT)
uses knowledge provided by the deinstantiation process – as we have seen,
deinstantiation is a prerequisite for AT. The latter provides new information
about the main structural units of the time series. The beginnings and endings
of structural segments will stand out, and appropriate segmentation may be
studied by means of the logical structure provided by the data. In this way,
groundwork may be laid for mapping the tendencies of the piece, be they
developmental, variational, or cyclical. If successful, such a treatment will
reveal the general direction of the interpretation chain.14

In unsupervised learning the grounds for classification and recognition of
patterns in the input signal are data-driven – they are retrieved from the signal
itself. Flexibility and generality are desirable traits of any analysis system. If
classification of sequences may be carried out in a data-driven manner, it is
easily imaginable that interpretation may also be accomplished. In Figure 5.4 a
scheme was introduced that presented interpretation in musical semiosis as a
process of connecting to a new sinsign from a previous one. If we thus take
interpretation of a musical sinsign as interaction that takes place mainly among
sinsigns, then the process involves sub-symbolic representations of data. In the
sinsign-legisign network of the music, surface-level entities communicate with
the deep level through sub-symbolic information. The relationship between
sub-symbolic and symbolic representations is not a strict, unidirectional
hierarchy, but a tangled one on the order of Hofstadter’s heterarchies
(discussed in Chap. 4.4).

14 The appropriateness of the chain metaphor has already been questioned in this context.
After all, our treatment of interpretation depends on a parallel networking process. It is used
here only because a musical time-series is a sequential medium. In that sense, it is a one-
dimensional string, even though it may possess a plethora of dimensions, which can be
revealed by studying its structure in the light of music theory, as well as from the point of
view of its signification.

124

The semiotic status of these sub-symbols can now be made more
specific. Connectionist semiosis is characteristically sub-symbolic, but these
sub-symbols are a special case of iconic sinsigns, not generic icons. The sub-
symbolic transform maintains a diagrammatic relationship to their objects,
which is to say that reversibility of process is a significant quality for any such
signs. For example, a series of sub-symbols may be constructed to reflect the
pitch structure of a melody, and the pitch structure in question should be
retrievable from the series. This reversible nature of data set and its object is a
distinctive feature of a sub-symbolic treatment in its pure form. A
diagrammatic relationship between a sign and its object can be conceived not
only in semiotic terms but also in mathematical ones – it is a monotonic
function. This situation should not be confused with the relationship between
two sinsigns in the sign-object-interpretant schema, which does not need to be
diagrammatic any more than it needs to be monotonic. The creative
interpretation process in musical signals has considerably greater freedom.

125

6 Summary of principles used as
the basis for the experiment

To draw together the ideas presented in the previous chapters, and as a starting
point for the empirical part of this study, we now present the working
hypotheses for the experiment:

1) The aim of the experiment is to create a model for segmenting time-
sequences in a flexible, simple, and compact form. The functionality of this
aim is tested by means of a computer program that implements the model.

2) Flexibility, in this context, means applicability to a variety of musical
styles, and the ability of the system to handle signals complex enough to
exemplify real-world musical situations. Simplicity and compactness add to
unity of concept. In practice, this means that the computer program, which
models the theory of analysis, reflects a single, clearly definable principle of
operation.

3) The experiment can to some extent be evaluated in terms of cognitive
justification. Nevertheless, the main goal is not to create a new cognitive
model. Instead, the purpose is to build a functional performance model of a
single process with no unnecessary theoretical ballast, even though the
relationship of the core idea to various cognitive models deserves
consideration.

4) The traditional way of building a performance model capable of analysis
has included a model of the listener’s subjective knowledge. To include such

126

information is practically equivalent to claiming that a performance model
should always contain much a priori musical competence. On the other hand,
one may suppose the contrary – that the inner cohesive force of a musical work
contains enough structuring information on which to base an analytical
process. In this case, the necessary competence would be drawn from the work
being analyzed. This is made possible by the interaction of various parts of a
musical passage, this interaction constituting the internal cohesive forces of
music. The latter strategy seems more interesting from a systems-theory point
of view, since the operation of the system is triggered by music.

5) In the experiment we pursue quantitative aspects of the foundations of
musical meaning. It is somewhat paradoxical that a system applicable to data
sequences in general should be “more musical” than those which include a
priori knowledge of music theory. Yet one can find reasons for such a position
in Leonard B. Meyer’s idea of embodied meaning in music. As Meyer states,
an important part of meaning in music derives from “stimuli pointing not to
extra-musical concepts and objects but other musical events that are about to
happen” (1956: 35). Embodied meaning belongs to the internal reference
structure of a piece. It involves detection of similar and different subsequences
within a sequence, in such a way that covers different degrees of similarity;
such detection goes beyond merely checking for identical elements. Such an
idea of similarity/difference is believed to be the bottom line in thinking about
musical form. Whether or not references to other musical works or to extra-
musical objects occur in a piece (which would manifest the presence of
culture/system-oriented or genre/corpus-oriented grounds of semiosis), the
internal reference structure acts as a unifying force. Since our experiment
strives to exclude extrinsic musical concepts, we naturally turn to embodied
meaning as a framework for our ideas.

6) The experiment takes the massive-parallel approach used in cognitive
and computer sciences. A massive parallel system can operate mainly with or
without a priori knowledge. Some a priori knowledge will in any case be
present, for signification necessarily involves the cultural/system-oriented
ground in respect to the sign at some level.

7) In sum, the present study aims to use minimal a priori knowledge in a
sub-symbolic performance model of iconic sinsigns and their processing, for

127

the purpose of segmenting time-ordered data sequences that originating from
musical signals.

By assuming these working hypotheses, we face a number of opposing views
in the literature. To conclude his discussion of segmentation strategies of
music, Monelle states the following: “Segmentation in music will always be
ultimately based on intuition, because the relation of phonology and semantics,
of expression and content, functions differently in music ...” (1992: 89).

This study is in part an attempt to challenge Monelle’s statement, though
he ultimately acknowledges the need for formality: “Analytical segmentation
should be based on rational and explicit principles” (ibid.). Our experiment
serves as a defense of using the work/piece/performance-oriented ground of
semiosis as a basis for interpretation, as will be made clear in the following
chapter.

James Tenney and Larry Polansky (1987) have produced a study similar
to our own. The basic principles differ, however, in that the authors rely on
rules derived from common Gestalt laws (proximity, similarity of parameters,
mean interval, boundary interval). It was considered desirable here to use
pattern similarity – likeness and difference as the defining structural factors –
instead of parameter similarity. Our aim has been to avoid dependence on any
prefixed properties of phrase or pattern at the possible cost of generality. In
contrast, Tenney and Polansky’s adaptation of Gestalt laws seems to be
influenced by classical notions of what melodies should be like. This leads
them into difficulties, which are dealt with by the introduction of weight
parameters into the system. The problem still remains of not knowing in
advance what the weights should be or how they should be determined, and
this leads to a trial-and-error way of problem-solving. While we share some of
their views, their terminology is different from the one used here. For
instance, by sequence they mean a particular hierarchical level of temporal
organization consisting of clangs, which in turn consist of elements, whereas
here the term “sequence” is used rather interchangeably with the more general
(computing) concept of a string of elements.

Another study that is closely related to our own is the one by Emilios
Cambouropoulos (1996a, 1996b). It, too, has a different focus from that of the
present study, in that it is constructed on common Gestalt laws, as was Tenney
and Polansky’s earlier work.

128

7. Test-report on an association-
tracing system propelled by self-
organizing feature maps

 7.1 Features of software implementation

 We now put to use ideas discussed earlier, about the machine model of
learning, or adaptation to data environment. The operating strategy for the
machine is one of unsupervised knowledge-acquisition. The particular
operating principle is a self-organizing map (SOM) based on an altered version
of Kohonen’s model (see Chap. 4.8). Hereinafter, the modified Kohonen
model will be called SOMAT (Self-Organizing Map with Association-
Tracing).

 Current musical applications of SOM method are often designed for
classifying the organization of time-independent, non-sequential elements
(Leman 1991b). In contrast, the present task involves segmenting a time-
sequence, in order to detect the possible phrase structure in it. It is first
necessary to explain further the nature of this data stream.

 Time sequence refers here to a string of “equi-durational” data elements
obtained by the sampling of some real-world process at constant time intervals,
and presenting it as a sequence of values. Each value-element represents a
quantity depicting the process. If only one variable quantity is sampled, there
will be only one data value attached to each element, and we can call the

129

sequence one-dimensional. One could easily think of cases wherein several
quantities, constituting a multi-dimensional vector, would accompany each
sampling point in time. We do not attempt to tackle such cases in this study.

 Much has been said, above, about the iconic nature of suitable input data
for the SOMAT system. Accordingly, it seems likely that SOM method is not
able to grasp the meanings in an arbitrary (symbolic) data stream. Rather,
Kohonen’s architecture is designed to reflect the relationships of given data in
the end result, the map. These relationships denote a correspondence between
data and their mapping in a non-arbitrary, iconic manner. Iconicity means that
the data will not be processed by means of a mainly symbolic strategy.
Moreover, it means that some internal organization exists in the data sequence
itself, which reflects its represented object. This naturally requires that the
object be a real-world construct (in this case, a work of art), in which some
degree of cohesion and internal laws of organization exist.

 In the present application, the data sequence is drawn from a musical
score. As has been pointed out, a score of common-practice musical notation
is iconic, to the extent that it represents musical pitch and time. The numerical
representation maintains this iconicity, and even makes it more diagrammatic
and reversible. A pre-process used for encoding the data samples the musical
pitch at regular intervals, so as to form the individual signs in the discrete
signal.

 Let the time sequence (discrete signal) thus sampled be called S, and the
length of the sequence be called K . Each sign S[k] of equal time-span
represents the pitch of a note at a specified moment of musical time. An N-
dimensional feature vector F consists of N successive elements of this time-
series. Each feature vector may be written as follows:

 F = {F[1], F[2], …, F[n]}

 which is equivalent to:

 F = {S[k + 1], S[k + 2], …, S[k + n]}

 For each location of the data sequence (save for the n – 1 last ones) S[1],
S[2], …, S[k – n], a feature vector of length N can be defined. Such a vector
essentially opens a window, N elements wide, on the data stream. During each
iteration of the teaching process, this window slides one element at a time,

130

from the beginning to the end of the musical passage. A data stream of K
elements will thus be represented, step by step, with K – N + 1 feature vectors.

 Since the feature vectors are introduced to the SOM one by one, each
vector acts as a stimulus, prompting the map for a response. The map
manifests its response by focusing on a cluster of activation centered around a
single node at a certain location on the map. Feature vectors with greater
mutual resemblance will typically prompt responses from nodes located close
to each other, whereas feature vectors with greater shape-wise deviation tend to
settle at distant locations on the map. This is in accordance with the
topological ordering principle discussed in Chapter 4. Generally, the location
of the response-focus reflects the ordering of knowledge on the map.

 The representation of successive moments in a sliding time-window as
vector components differs somewhat from other existing SOM applications,
such as those of Kohonen (1989: 140-142) and Leman (1991b: 10). Hence, the
SOM is here being put to a rather novel use in being applied to time-ordered
vector components. Moreover, here the SOM acts as a measure of pattern
distance rather than as a classifier.

 Our initial goal, however, was not to produce new measurements of
pattern distance, but to pursue the foundations of musical meaning. As stated
earlier, we adopt Meyer’s concept of “embodied meaning” in music, and the
experiment seeks to establish such meaning in a computational way. In other
words, the model concentrates on (self)referentiality within pieces of music. A
semiotic view of association-tracing was introduced earlier. Let us now
consider one possible implementation of it, in the form of “reference tracing”.

 Our working definition of “reference” is as follows. In the model,
feature Fa is considered to have reference to feature Fb if there exists similarity
between Fa and Fb according to some metric. The metric suitable for this
purpose calls for further discussion. First, however, we shall define the tracing
procedure itself, and merely suppose that there is a method at hand for
determining the degree of similarity among the feature vectors. Let us further
suppose, that there is an implementation of this method, which we call
ComputeSimilarity().

 The tracing of similarities and differences among subsequences in a
supersequence comes down to pattern-matching that is governed by some
higher-level construct. Comparison of every possible subsequence against
every possible subsequence is essentially a two-dimensional matrix
comparison, which is simple enough in principle, though costly in terms of

131

computing time; but even that will not represent the important information
concerning segmentation. Instead of simple comparison, the model runs an
iterative check procedure on preceding elements in the sequence from among
the elements to be compared, in order to trace the starting points for correlation
chains. Let the data sequence be called S and the output signal from the system
be called G. We can now define two feature vectors, Fa and Fb , at locations a
and b on S. The correlation between Fa and Fb will be called Cab, while Ctot

represents the running total of correlation detected in a chain of successive
locations on S. A procedure for one step of reference-tracing is implemented
roughly along the lines of the following, simplified pseudo-language example:

 procedure LocateTransient (a, b, S, G)

 begin

 Cab = ComputeSimilarity (a, b, S, G) // compute reference value

 if C ab > threshold // if reference detected

 Ctot = C tot + C ab; // increment total correlation

 LocateTransient (a-1, b-1, S, G);

 // the above line takes care of the backstep

 // by recursion with decremented indexes

 else

 Ctot = C tot + C ab; // increment total correlation

 Ga = C tot ; // set output signal to Ctot

 return();

 endif

 end

 A less formal explanation would be the following. When a reference is
detected between feature vectors in the data stream, the feature vectors Fa – 1

and Fb – 1 are checked against each other. If they also correlate, the same check
is carried over to Fa – 2 and Fb – 2. The iteration is carried out backwards from
locations S[a] and S[b]; back-steps are taken until no more referentiality is
found after m steps backwards. The locations a – m and b – m are marked;
these correspond to the last feature vectors that correlate. It is likely that some
locations in the sequence S attract such markings significantly more than other
ones do. These are obvious candidates for transitory regions, and are treated as
segment boundaries. The process is repeated as a comparison against every
location S[n] (n = 1, 2, 3, …, k), where k is the total length of the sequence.

132

This tracing part of the algorithm, performed in a loop, may be recursive, as in
the above example, or it may be iterative.15 The markings generated in the
process are collected in each location n to form the output signal G[n] from the
input S[n], since the whole cross-tabulation is carried out for every n.

 A measure of pattern similarity is needed to carry out the comparison.
This part of the algorithm is carried out by another procedure,
ComputeSimilarity() . A number of different similarity-measurement
engines might be used for this purpose. Some earlier work of the present
author includes attempts to use grammatical and computational constructs as
such an engine (Tiits 1992: 348). Such attempts were found to lack sufficient
flexibility for the analysis of free stochastic sequences. In the present project,
the adaptive properties of the SOM serve as the pattern-matcher. The purpose
is to provide the kind of flexibility necessary for processing real-world data,
which does not always follow preconceived categorizations in an expected
way. Evidence from the experiment seems to suggest that SOMs are able to
make generalizations of musical patterns, i.e., to develop recognition abilities
of general pattern-classes such as the ones depicted in Figure 7.1. All the
patterns represent different prototypes of possible outlines for 3-component
feature-vectors in terms of increasing/decreasing tendencies.

 level-up up-level up-down down-up level-down down-level

 Figure 7.1: Some possible prototypes of pattern-classes

 Though the SOM is a conceptually elegant method of categorization,
most implementations of it involve heavy computation.16 For example,

15 More detailed documentation of these details of the SOMAT system is found in Chapter
8.3.1, and the complete listing for the program implementation is provided as an appendix.
16 An SOM would naturally be effective in a massively parallel computing system, even in
an analog computing environment. It is the implementation in digital serial machines that
brings efficiency issues into the picture as being potentially problematic.

133

Schalkoff (1992: 284) estimates the number of teaching cycles as typically
being around 10 000 or more, so as to have self-organization take place at a
desirable level of accuracy. It should be mentioned, however, that documented
experiments have been conducted with less than 1000 teaching cycles.
Kohonen (1989: 133) makes a distinction between initial ordering and final
optimization of weights (“fine-tuning”), the latter often taking considerably
more time than the former. This costliness is magnified by the load of using
matrix comparison with every element of the input sequence. Hence, some
attention will be given to procedures that might help keep the computational
load as small as possible.

 Let us now turn to the notions of similarity measurement and pattern
distances. The metric by which a SOM depicts the topology of input data
should in some way reflect a metric similar to that involved in the cognitive
processes of listening to music. The simplest case of referentiality, of course,
is that of identical-feature vectors. Identity checking is trivial, and easily
accomplished by even the most modest pattern-matching systems. The
nontrivial part – recognition of different variations and degrees of partial
correlation – reveals the strength of the system. In the finer shades of
recognition lies the justification for such a compositionally laborious procedure
as SOMs.

 Its pragmatic nature is one way in which the present SOMAT
implementation deviates from the standard SOM. An important point, which
Hecht-Nielsen (1991: 68-69) has noted, is the possibility of overly large
differences between the distribution of feature vectors, in comparison to the
distribution of weight vectors as they are originally initialized to random
values. Such situations may lead to poor representations of the pattern space.
He reports the solution given by Duane Desieno, which is a “conscience
mechanism” that prevents each unit of the layer from too often overtaking the
others in excitatory response. In the present context, however, such finesse
may not be necessary. The purpose of SOMAT is to make use of the
adaptation and unsupervised-learning capabilities of the Kohonen layer, while
not attempting to construct a set of equally probable, distributed weight
vectors. The computational load thus becomes substantially lighter.

 The main technical differences between SOMAT and standard SOM
implementations are the following. Kohonen (1989: 127-133) uses decreasing
learning speed as well as shrinking neighbourhood radius for the lateral
interaction of units. This is to ensure that the system converges to a particular

134

topological ordering instead of drifting aimlessly from one ordered state to
another; it also enables the fine-tuning of weights, while retaining the main
contours arrived at in teaching. In the designing of SOMAT, it was felt that
finely tuned ideal topological order was not of primary importance. Thus,
variable neighbourhoods, as well as decrease of learning speed, were done
away with. Another mechanism was devised to compensate for the
shortcomings of ordering. I call this mechanism shadow activation.

 In the experiments, it was observed that the mismatch between weight-
vector distribution and pattern feature-vector distribution was dependent on the
lateral feedback function chosen for the system. There are several workable
ways of implementing lateral feedback in the layer. Even in Kohonen’s
original account of the SOM he feels no need to specify lateral functions
beyond general guidelines (1989: 127). In many cases, it seems likely that the
lateral function can be chosen so that the distribution mismatch will not be
large enough to distort the behaviour of the system significantly, at least from
the point of view of shadow activation.

 Now it is time to define the way to measure pattern distances by means
of the Kohonen layer, while using minimal effort in teaching cycles. The SOM
seems to lend itself well to pattern matching via the topology of the layer – the
distance between excitatory foci for two feature vectors acting as the measure
of pattern distance. In this experiment, however, the objective of ideal
ordering of adaptive units was set aside in the pursuit of computational
efficiency. The layer was used with significantly less training. Furthermore, in
layers with a relatively small small number of elements, only a coarse
classification is possible on the basis of Euclidean (or some other metric)
distances on the layer. Therefore the pattern distance has been defined
differently:

 Definition 7.1: Shadow activation of feature vector Fa in respect to feature
vector Fb is the amount of activation invoked in the element
specialized in responding to Fb, when a trained self-
organizing layer is stimulated with Fa.

 Shadow activation, as manifested in the present implementation of SOM,
can be thought to have a biological interpretation, too. It closely resembles the
so-called afterimage, the neural phenomenon wherein a visual image remains
after the stimulus that caused it has disappeared.

135

 Shadow activation can provide a measure for pattern distance. It
performs in ordered fashion and is distinguishable after much fewer training
cycles than are required for an ideal topological organization of the layer. Yet
it retains some of the distributed information gathered in the adaptation
process, which takes places during the teaching of the map, thus exceeding the
flexibility of any conceivable non-adaptive process.

 7.2 On structuralist ideas, holism, and
 transience

 Throughout the twentieth century and continuing today, an unforeseen process
of specialization has had a pronounced effect on most branches of science and
the humanities. At times, this analytical spirit seems to split and shatter every
effort to perceive the world as a whole. There has been a counterreaction to
this analytical tendency, however, and parallel distributed computing is but
one representative of an ongoing revival of holistic ideas in scientific thought.
The desire to see natural phenomena as totalities can be traced back to
antiquity, but during the last two or three centuries has somewhat been eclipsed
by the desire of mechanistic minds to analyze the world by dissecting it.
Among other twentieth-century intellectual movements, structuralism stepped
forward to emphasize the importance of looking at various phenomena as
totalities. Michael Lane portrays the objects of structuralist study as
“expressed wholly in the relations constituted between them” (1970: 24).
Certain structuralist ideas curiously foreshadowed technological advances in
the 1980s and 90s in connectionist computing and parallel systems, which
share some of structuralism’s non-historical – some might even say, non-
causal – nature.

 Structuralist ideas have left their mark on music studies, often in
connection with the semiotic research of scholars such as Jean-Jacques Nattiez,
David Lidov, Fred Lerdahl, and Ray Jackendoff, to mention only a few. In the
spirit of musical semiotics, we often speak of two dimensions when inquiring
about musical sequences: paradigmatic and syntagmatic. In the case of

136

“intelligent machine-driven” segmentation, the pursuit of syntagmatic
(sequential) relations is the initial step of the procedure. Only on the basis of
syntagmatic results, derived from segmentation, can paradigmatic relations be
defined.

 The subject matter of syntagmatic analysis is segmentation, i.e., locating
the boundaries of segments. Because we wished to account for multiple
variants and similarities among segments, it was decided to use an SOM in
order to have a flexible measure of pattern-similarity. By traversing the
syntagmatic line, from the beginning to the end of the time sequence, we detect
segment boundaries, or transition points from one segment to another. To be
able to detect them, we needed a way to measure the “transitoriness” of
elements (time positions) of the temporal sequences. Let this quantity be
called transience. It is understood as a scalable quantity related to each
particular time position of the sequence.

 Transience is not formalized to a precise measurement here. Calculating
absolute transience values is not possible without further specification, and it is
not certain that attempting such a calculation would serve any purpose. Here
we simply introduce a means of approximating such a quantity in a relative
way, which is sufficiently formal for algorithmic treatment.

 The strategy is as follows. The algorithm described in the previous
section (7.1) outputs a resulting signal, which is a discrete function
representing the changes of transience, computed from the input signal. The
transience value at any point n, corresponding to the element S[n], is related to
the number and length of correlation chains pointing at S[n]. These values
constitute a new signal reflecting the transience properties of the original time
sequence, which will peak at the segment transitions, thus producing a
syntagmatic division of the original message. Every element of the sequence is
computed against the context of all other elements; hence the ground for
forming the transience signal is effectively all of the original signal. The aim is
to propel the procedure by means of holistic, parallel detection of relations
present in the input signal. Figure 7.2 visualizes the division of the analysis
machinery into subsystems.

137

 Figure 7.2: Time sequence analysis using SOM: Diagram of SOMAT
 subsystems.

 Tenney and Polansky (1987: 216) introduce a quantity called
disjunction, which is used in a way that is comparable to our notion of
transience. The authors seek to give a specific, quantitative definition in terms
different from the ones adapted here, by using Gestalt principles. Therefore, it
is not feasible to use their terminology at this time, though the role of
disjunction in their theoretical construct is very much related to transience.
Tenney and Polansky’s term segregation is also used in a rather similar way.
Also, Cambouropoulos (1996a: 282) speaks about boundary strength-values in
a sense comparable to that of transience and disjunction.

138

 7.3 Experiment reports: SOMAT at work

7.3.1 Principles and parameters

 In these experiments, the input sequence is taken from the pitch information of
a musical score. Absolute pitch is used, with no information concerning octave
equivalency or related notions, such as pitch-class or key. Because the purpose
was to feed truly monodic material into the system, the example material was
chosen from the solo flute repertoire. This material was considered suitable
not only because of its lack of polyphony (and multiphonics as well), but also
because of less variation in the treatment of timbre than is the case with many
other orchestral instruments. The examples were chosen from twentieth-
century music, because it is conceived as being less regular in structure, and
thus more challenging as concerns formal aspects, than is music of, say, the
classical period.

 The SOMAT program allows for several parameters to be changed.
Some of these changes are only to facilitate its practical usage, while others
have a pronounced effect on segmentation. The substantially important
parameters also greatly influence the running time, so there are practical
limitations to the values. These parameters are as follows:

 -Number of training cycles for the SOM
 -Number of components for the feature vectors (equivalent to the
 dimensionality of feature vector space)
 -Size of the SOM (length of one side of a square)

 -Coefficients determining the shape of the lateral function

 The lateral function creates an environment of 3 concentric circles
around a central node. Thus the furthest nodes of the environment are located 3
nodes away from the center. Larger environments would actually be
nonsensical, given the relatively small map sizes used in the experiments.

 The series of tests reported here used mainly a map size of 18, for a total
of 324 (18 * 18) nodes. Only 30 teaching cycles were used, to provide a very

139

rudimentary organization of the map. The system was run with two sets of
parameters, each set with a different setting for dimensionality. Higher
dimensionality yields higher convergence to a specific state of the system,
whereas lower dimensionality means lesser specialization and higher
generality. The first of the two sets of parameters uses lower dimensionality;
the second set uses higher dimensionality. This is the sole difference in the
runs. Other user-set parameters of the program include size (number of nodes)
of SOM, coefficients of the lateral feedback function, and number of training
cycles in the teaching mode.

 7.3.2 Paul Hindemith’s Acht Stücke

 As another example, we present Number 6 of Paul Hindemith’s Acht Stücke.
Before going into the SOMAT process, we make some observations
concerning the context. The piece belongs to a cycle of eight miniature pieces
for unaccompanied flute. It is quite brief, its length spanning only 14 bars. In
all eight of these small pieces Hindemith builds form and coherence by
classical means of repetition and variation. Nevertheless, the models and
templates used for harmony, melodic movement, and treatment of rhythm and
form in the piece are not reproductions of classical models. Instead, and
despite of the likeness, more degrees of freedom are allowed than in the
classical vocabulary – exactly what one would expect from someone
committed to neo-classical means of expression. There are gradually-moving,
chromatic sequential patterns, which deviate from traditional tonality. The
composer uses gestural or vector-based17 movement as a tool for building form.
Anaphoric repetition is also an important compositional device in some of
these pieces. These methods of repetition and variation are used differently in
different parts of Acht Stücke.

 Let us now briefly consider the character of each piece in the cycle. The
piece no. 1 employs sequential patterns repeating at different pitch levels.
Repetitions of the same phrase appear 2-3 times. No. 2 is similar to Number 1,

17 The term vector is not used at this instance in the strict mathematical or formal sense. It is
used to mean a general tendency of movement from one pitch level to another; typically
from the apex to the nadir of a pitch pattern, or vice versa.

140

in that the same phrase appears two or three times. No. 3 has a characteristic
interval, the minor second. Its chromatic nature might make an astute listener
wonder if a twelve-tone row is involved; but in closer study reveals that this is
not the case. A salient theme and variational tendency exist, and the structure
is built largely on variation. Piece No. 4 is built on triple repetition of a single
phrase, the repetition being somewhat anaphoric. The number 3 seems to be
the important notion here, as far as form is concerned. Piece No. 5 contains
double, triple, and quadruple repetition, such that a final repetition is linked to
the first appearance of the next repeating pattern. No. 6 is the most
conventional of the cycle, in its treatment of rhythmic structures. The time
values could be a direct quotation from Mozart or Haydn. Only the
chromaticism identifies this melody as one of the twentieth century. Piece No.
7 appears to be the most capricious one of the set, due to its numerous
variations in time values. Here the repetition is extended to such small
temporal units that it almost ceases to be a form-building element. Piece No. 8,
the finale of the set, brings together materials that have appeared in the
previous ones. The contrast of among time values is not as great as in the
previous piece, yet a similar feeling of caprice is created by sudden accents,
dynamic change, and free treatment of rhythm. The cycle ends with two
extensive accelerandos and a presto cadenza.

 The material of No. 6 of the cycle is derived from two simple motifs
which appear in the first two bars (see Fig. 7.3). Both of the basic motifs fit the
4/4 time signature comfortably. Both are primarily rhythmic in character, and
undergo major changes in pitch structure during the piece. Thus, despite its
seeming simplicity, this example may present a considerable challenge for a
segmentation system based primarily on pitch information.

 Before going into the results of the computer runs, let us first study the
melody “manually”. One way to interpret the material would be as follows.
Motif a, which begins the first bar, consists of one crotchet, a dotted quaver
followed by demisemiquavers, ending on another crotchet and a pause. The
general direction of pitch is descending. Motif b consists of two quavers,
followed by four semiquavers, followed by a quaver. In this motif, too, there is
a tendency to descend in pitch.

 After introducing the motifs, the melody expands its pitch range with an
upward scale in m. 3, which brings the melody to a variation of motif b in m. 4.
The scale itself is quite diatonic, in a slightly unexpected way, with a
mixolydian flavor. Measures 5 and 6 reintroduce motifs a and b with a slight

141

variation. Measures 7 and 8 introduce contrasting material, which, however, is
easily related to both of the main motifs. In mm. 9 and 10, motifs a and b are
repeated in their original form, leading to a development in mm. 11 and 12.
The piece ends in mm. 13-14, with material that seems to be derived from
motif b. Thus, the form may be understood in conventional terms, as built on
phrases of 2 bars each. Yet because of the development of material, not all of
the two-bar divisions are equally important. The recurrence of the original
material at the beginning of m. 9 is likely to be heard as weightier than others,
such that the total length of 14 measures can be divided into the proportion 8:6,
which is the major division of time. A deviation from the normal two-bar units
can also be distinguished on the last beat of m. 11, which stands out as the
beginning of the recapitulation of the closing phrase (which is actually derived
from motif b). Thus, the phrase starting at the beginning of m. 9 would also
include the first 3 beats of m. 11. The ending, from the last of m. 11 through
m. 14, is also likely to be heard as one phrase.

 Of course, the foregoing analysis is not the only possible interpretation
of the piece – others may well be derived on the basis of the score (Fig. 7.3).

142

 The present computer simulation represents activation as integer
numbers ranging from 0 to 99. The choice of integers was based on
computational efficiency. The upper limit of 99 is rather arbitrary, but the
overall range is believed to be a safe one in which this particular system will
work, without the undesirable side-effects of an overly coarse weight-
adjustment taking over the process and causing instability.

 The map itself is the 18 x 18 matrix of 324 nodes total, as was already
mentioned. In order to avoid undesirable effects caused by incomplete
environments close to the edges of the map, the latter effectively forms a torus
shape, so that left and right edges are adjacent, and the top and bottom edges as
well. In the model, each feature-vector component represents the duration of
1/32-note (demisemiquaver). Since the time signature of the piece is 4/4, each
bar is represented by 32 feature-vector components, whereas the number of
feature vectors in the bar depends on the choice of vector-space dimensionality.
The vectors used for the example consisted of either 3 or 6 components.

 Two outputs of the SOMAT system for No. 6 of Acht Stücke are shown
in Figure 7.4. The figure consists of three curves. The top one represents the
input signal, which is the extracted pitch information. The second curve
represents SOMAT output with 3-component feature vectors (3-dimensional
space). The bottom curve represents SOMAT output with 6-component feature
vectors. The expectation is that the latter output signal should give more
precise information, since the specialization of 6-component vectors is greater
than that of 3-component ones. Some smoothing (made with simple 1st order
low-pass filtering) and scaling were used in creating the curves in order to
make them easier to read. Otherwise, they are faithful reproductions of the
signals.18 The horizontal positions of the curves are locked to each other, so
that approximate comparisons may be done on the basis of the figure.

18 One aspect of making such graphical images is that, if nonlinearities such as signal-
clipping distortion creep in to the process, they may be hard to see from the images, but may
still greatly affect the conclusions drawn from the images. As a careful reader may notice,
some clipping distortion is present in Figure 7.7 (Saariaho’s M. C. Escher), but is left in
place because of the rather large dynamic changes between the beginning and ending of the
piece.

143

Paul Hindemith: Acht Stücke nr. 6

(1) original signal

(2) Test run with 3-component feature vectors

(3) Test run with 6-component feature vectors

 Figure 7.4: SOMAT input and output signals in graphic form.

 Figure 7.4 does not include any means of facilitating interpretation of the
curves, such as musical notation or bar lines. Nevertheless, because of the
vertical coincidence of the curves, and with careful examination of the figure,
approximate conclusions may be drawn. Segmentation between principal
motifs a and b is recognized by both the 3-dimensional and the 6-dimensional
cases. Moreover, the latter case also clearly recognizes the end of motif b,
while the former is not as clear in this respect. Both recognize the
transposition of these motifs in mm. 5 and 6, but locate the beginning of a
segment slightly early. The 6-dimensional case again notices the change from
motif a to motif b at the beginning of m. 6, and both recognize the change to
developmental material at the beginning of m. 7. The large division of the
melody takes place at the beginning of m. 9, which repeats the beginning motif.

144

Both the 6-d and the 3-d case recognize this division, but this cannot be taken
as a significant achievement for a learning system, since this is an identity
check and could be recognized by just about any existing pattern-matcher. The
slight change between mm. 10 and 11 is recognized by 3-d analysis, whereas
the 6-d case misses this change, and prefers to set the segment border to the last
crotchet of m. 11; this might in fact be a good choice, for reasons already given
in the “manual” analysis. Both cases recognize the last two bars as forming a
single segment.

 236936 11588 10546 7988 12104 2621 3392 23030
 9421 27625 15274 23861 702910 167912 106501 95951
 75767 134509 65053 52439 56652 46066 45232 39458
 33974 42552 36074 44136 49951 44992 22785 67012
 18763 20962 16073 6069 14137 8193 14490 11759
 20140 15892 21325 105689 95693 3529 12893 8910
 5835 5123 11789 7639 10589 2536 14217 174056
 31940 19216 12562 13234 345654 28218 21024 202341
 37477 24747 30438 30630 30921 32004 34173 36831
 40154 64862 57528 245894 173803 176167 8058 3531
 4554 34627 60706 28077 4317 7935 7549 18082
 15998 125165 26673 30886 37320 46177 13324 12131
 10253 8669 7771 8444 6877 6877 3168 20463
 15026 20641 20430 48044 31365 5111 329584 35213
 19667 21745 7677 14970 9668 10539 16301 26364
 9019 45033 63680 35333 51477 35747 10832 5917
 23291 12033 4122 45631 5679 6375 8060 7587
 9640 9493 32038 20225 15437 167103 140967 67150
 35369 101526 13524 9084 26054 25137 24837 13929
 13159 27530 520133 46592 61908 81483 46527 64758
 65643 67122 23856 37362 73176 76359 77533 54608
 98878 627022 110090 70666 8790 22176 22374 21186
 20493 19995 23519 21843 23088 25270 87636 39368
 42860 84991 45108 73251 116527 124995 907252 8688
 7092 5322 6234 56174 54364 69951 74405 2829
 81212 45173 9077 5977 15510 11185 124037 594
 1782 20513 9946 57450 13055 1760 7454 1848
 76022 77996 5088 13014 880 4321 53085 14844
 5128 4534 4022 1964 1172 7035 3316 33917
 116655 21507 32120 51833 22321 20830 19719 13231
 19460 19024 16338 165781 14914 15964 10210 16737
 8516 9875 29814 16995 35516 23359 32068 711146
 191333 167688 157429 77047 134509 65053 52439 56652
 46066 45232 39458 33974 42552 36074 44136 49951
 44992 22785 67012 18763 20962 16073 6069 14137
 8193 14490 11759 20140 15892 21325 105689 95693
 3529 12893 8910 5835 5123 11789 7639 10589
 2536 14217 176119 28467 36002 15981 13248 45018
 41881 18394 209856 20133 30089 32879 32673 27109
 29301 30409 53227 261833 66359 54803 71914 29134
 66746 28850 68452 114150 78370 84595 303938 199175
 317515 87027 8698 31856 909363 32271 91572 88899
 87810 85236 86817 85729 83946 79692 78699 78496
 79782 78976 104527 54150 77712 79296 80583 89889
 89683 84540 85432 86718 83652 82461 82159 81666
 81850 84577 76824 80979 84341 91356 101537 100883
 167017 107143 115311 99271 115428 120883 1286007 17076
 44992 14929 18398 15804 138868 5772 54196 4683
 2667 4146 92402 37765 71319 28617 179379 27956
 24343 14929 17606 98265 6084 2541 32266 4683
 2667 4146 108590 57109 83751 20244 187849 30405
 24343 14929 19483 100938 9442 2541 45532 6294
 6906 16113 17499 19578 22452 29757 59286 29076
 23256 22566 22569 23265 24651 26136 31179 128892

 Figure 7.5: Output signal of 6-component vector-process shown
 in numerical form

145

 Should the reader be disturbed about the effect of the smoothing process
used in realization of the curves, the raw numerical data for one of the curves
are presented in Figure 7.5. These data are given in 8 columns, each number
representing a time value of 1/32-note. Each row represents a quarter-note
time value, and each of the 14 bars of the melody, in 4/4 meter, occupies 4
rows.

7.3.3 Claude Debussy’s Syrinx

Another test run used input data from Claude Debussy’s well known solo flute
piece Syrinx. The results are given in Figure 7.6. The SOM used is a 324-node
18*18 layer, as was used in the Hindemith example. The meanings of the three
curves in the diagram are also similar to those in the Hindemith piece. The top
curve represents the contour of the melody (input signal). The other two
curves display the two output signals, resulting in the two control-parameter
sets. The middle one represents the results with 3-dimensional feature vectors,
and the bottom one displays the results using 6-dimensional vector space. The
directions for reading the curves are similar to those of piece No. 6 from Acht
Stücke.

Though neither of the runs produced a perfect analysis, both outputs bear
more than incidental resemblance to the phrase structure of the melody. The
output produced by 6-dimensional feature vectors seems more musically
justifiable than that of the less specialized, 3-dimensional representation. A
number of reasonable divisions resulted, along with some clumsy ones.
Clearly differentiated are the first phrase, which introduces the main melodic
ideas of the piece (Austin 1966: 7-13), its repetition, and its development. The
next division is not in the correct location, since it does not recognize the unity
of mm. 1-8 and their difference from the variant of the first idea as developed
in mm. 9-14. Then, a short bridge which follows (in mm. 14-15) and the
contrasting middle section of the piece (mm. 16-26) receive fairly clear
recognition, as does the melodic climax at m. 27, the very significant moment
described by one music scholar as “stretched out to extreme poignance” (ibid.).
In the last part of the melody (mm. 28-35), which project an affective sense of
resignation, the program easily discerns the short, individual phrases.

146

Figure 7.6: Test run on Debussy’s Syrinx

In comparison to the results obtained by Tenney and Polansky (1987:
232-234), it may be said that, as concerns the most obvious segment
boundaries, their system seems to have performed more reliably than our own.
They present a more hierarchy-oriented segmentation, whereas the output of
the present project does not make much distinction between different levels of
form. However, SOM-based pattern recognition seems better than Tenney and
Polansky’s model at recognizing the less clear boundaries. Yet it is hard to
declare one system to be “better” than the other. This is because optimal
segmentation often is not very clear on the basis of music itself, and ambiguity
is an integral part of certain musical paroles. In any case, a considerable
amount of test material would be necessary in order to make a definitive
judgement. On the basis of this experiment, however, it appears that the SOM-
based system might serve well as an adaptive, sequence-segmentation machine.

147

7.3.4 Kaija Saariaho’s Canvas

 The next piece of music is rather different from that of Hindemith and
Debussy. Kaija Saariaho’s Canvas is a set of three pieces for solo flute, which
demonstrate composer’s fascination with formalism and abstraction. The first
piece of the set, subtitled M. C. Escher, will be studied here. Again, only pitch
information (and, indirectly, timing information via time-slicing) is considered
in building the input signal for SOMAT. This is definitely a loss in terms of
interesting information being reduced away, since the piece makes heavy use
of ties, staccatos, accents, and dynamic markings. No traces of diatonic scales
are distinguishable. Permutation is used extensively, as are contrapuntal
variation techniques. Octave equivalence, in the serialist sense, is used
abundantly. The piece is built around a single motif, which in its basic form
consists of four 1/8-notes E flat, C, B, and E. It must be noted that in many
European languages including Finnish, E flat is read as Es, and B as H. Thus
the motif takes the form Es-C H-E, derived directly from the name Escher of
the subtitle. Any meanings of this kind are based on arbitrary (from the point
of view of music listening) assignment of significance, and as such are purely
symbolic. Therefore SOMAT, which is built to detect iconic information, has
no chance whatsoever of understanding such meanings. Also, the abstract
nature of the compositional tools used in this piece may present a challenge for
the system. After all, being able to distinguish immediately the variation
techniques treasured by serialist composers, such as permutation and inversion,
is not self-evident to listeners, not always even to musically educated ones.
SOMAT is essentially a “musically uneducated, time-sequence listener that has
a simple memory mechanism and that is prepared to educate herself”. What
exactly is left, then, for the computer to analyze, after leaving out the
possibility of understanding notational cryptographs and puns? The time
sequence will represent patterns in time, vectors, and tendencies just as it did in
previous examples. Furthermore, matters such as the messages conveyed by
these forms and their interplay are probably closer to the essence of music as
an art form of than is the solving of verbal puzzles and puns. To make sense of
such matters continues to be the objective of the system. The output signals

148

and the input signal of Canvas are displayed in Figure 7.7.
 The piece has no barlines or time signature. Lightly dotted lines are

provided, in lieu of traditional barlines, in the version of the score that was
used for input data coding.19 Obviously they serve to help the instrumentalist
practice the piece. In other editions, as a rule such a division always comes
after 8 quavers, so this “virtual pulsation” largely follows a time signature of
4/4. Exceptions this metric pattern occur, however, in mm. 9-15 and 24-29,
which introduce rhythmic augmentations of the material. Still, let us refer to
these as “bars” or “measures”, since they actually belong to the music. There
are 33 such bars in Part 1 (M. C. Escher) of Canvas.

 Figure 7.7: Saariaho, Canvas for solo flute, Part 1 (M. C. Escher).

19 This was the version available at the Finnish Music Information Center.

149

 The treatment of material has other connections to serialism, too. In
mm. 1-2 the motif Es-C H-E is repeated twice, then once more in octave
transposition. Then comes the first permutation, transposed up two semitones
from the original pitch. The motif is such that the original and the
transposition together fill eight successive positions of a 12-tone scale, a
chromatic scale segment covering B to F sharp. The rest of the 12-tone chroma
– pitch classes G, G sharp, A, and A sharp – do not appear at all in the piece.

 The 3-component case of the SOMAT output signal clearly omits salient
events that should be recognized. The distinction between higher and lower
peaks is not very evident, and there are too many of them to make far-reaching
conclusions. My visual inspection of the score reveals two major formal
divisions. The first one is at the end of m. 9, which is the conclusion of a
strong ascending motion. After this local high point in pitch, the melody
returns to the original register at the beginning of m. 10. Another significant
division of form occurs before the beginning of m. 24, at the a tempo marking,
which, after the development in the middle section of the piece, returns to the
basic form of the Es-C-H-E motif.

 The 6-component case of SOMAT output signal seems more successful.
The big segment boundary at the start of m, 10 is recognized perfectly, as is the
beginning of m. 24. There is a problem, however: in the final part of the piece
the program indicates other strong boundaries, which are not completely
compatible with listening or studying the score. In addition, one slightly
weaker boundary is indicated at the center of m. 5. The latter boundary,
however, is possible from the perspective of listening, and perhaps should not
be counted as an actual fault or misbehavior.

7.4 Discussion of test runs

As expected, in all three experiments the 6-component case of the SOMAT
output signal performed better than the 3-component one did. In the
Hindemith example, the difference between the 3-component case and the 6-

150

component case was not very large. In Syrinx, the 3-component cases lumps
together the whole middle section of the work, from m. 9 to m. 24, as not
having significant segment boundaries. This is obviously not right, and the 6-
component case solves the problem. Part 1 of Saariaho’s Canvas seems to be
the hardest of the three music examples for the system to process. The results
of the 3-component case are quite unclear, whereas the 6-component case
produces a reasonably intelligible output signal. As a conclusion drawn from
the preceding discussion, we can say that 3-dimensional space does not seem to
be able to provide sufficient specialization for feature vectors.

A general assessment of the performance of SOMAT system is that it
performs remarkably well, considering them narrow slot of information given
to it. The fact that increasing the dimensionality of the vector space enhances
the performance, as it theoretically should, suggests that the system is built on
sound principles. An in-depth series of experiments, using larger maps and
additional teaching cycles, would certainly reveal more about the functionality
of SOMAT. In settings such as the ones described in this chapter, it probably
cannot outperform rule-based systems. To do so, however, was not the point of
the experiment. Originally, the objective was to collect empirical evidence for
the hypothesis: that a system for time-series analysis, using non-supervised
learning, and justifiable both in the light of Peircean semiotics and parallel
computation might actually work. For this hypothesis, the examples from Acht
Stücke, Syrinx, and Canvas give strong, though not completely unambiguous,
positive support.

The example of Canvas also pointed up the inevitable limitations of the
system. Purely symbolic information lies beyond the scope of SOMAT. Also,
to what extent the system can handle different variation techniques, was not
determined by these experiments. The best way to draw any conclusions about
such matters would probably be to construct artificial sequence examples
instead of using “real” music. In that case, it would be possible to isolate the
effect of multiple influences on recognition, and to concentrate on one
variation technique at a time. On the other hand, due to the holistic nature of
the system, any performance in a real musical situation might differ from such
artificially constructed tasks. Also, what makes this study belong to
musicology, instead of computer science, is the very use of data originating
from real music, and the choice of material that may be expected to challenge
the performance of the method on musical grounds.

The test runs on the three melodies were conducted originally at the

151

same NeXT workstations that served as development platforms for SOMAT.
Thus, the computing power was severely limited, by present-day standards, and
no possibility existed for examining the behavior of larger networks or higher-
dimensional spaces. Additional runs were later made using a Silicon Graphics
Origin 2000 supercomputer, which allowed those aspects to be studied. The
input signal for the latter test runs was taken from Hindemith’s Acht Stücke,
No. 6. Figure 7.8 presents the resulting signal for a network of 2500 nodes.

a) Input signal

b) Output signal of a network with 2500 nodes

Figure 7.8: SOMAT input and output signals for Acht Stücke, No. 6, using a
larger SOM.

A general observation about the behavior of the larger network is that it
seems to produce more peaks with the small amount of training given. This
accords with common sense about the matter: it is easy to suppose that a larger
number of processing elements is apt to produce more noise and require more
teaching cycles to achieve the state of organization equivalent to that of a
smaller network.

152

Still more test runs were made with more teaching cycles and higher
space dimensionality. The output and input signals are given in Figure 7.9.

a) Input signal

b) Output signal of a network with 2500 nodes and 300 teaching cycles

c) Output signal of a network with 2500 nodes, 300 teaching cycles
and 10-dimensional vector space.

Figure 7.9: SOMAT input and output signals for Acht Stücke, No. 6, using a
larger SOM, more teaching, and higher dimensionality for the
feature-vector space.

These last examples confirm the notion that putting more teaching
cycles into the larger network will produce a more organized state. Also, they
point up the fact that having a larger network does actually not do any good if
all other parameters remain the same (including the input signal), unless more
teaching cycles are used in training the system.

The output signal depicted in figure 7.9c also leads one to believe that

153

increasing dimensionality (adding more components to the feature vector)
enhances precision of the process, since the patterns represented are more
specialized. To give more precise and certain information about the process, a
more thorough testing program would be necessary. The test run of Figure
7.9c locates the major formal division at the beginning of m. 7. If this result
were taken as an approximation that includes the last two semiquavers of the
previous bar, then the solution would be musically credible, though it is not
located as nearly to the Golden Section as is the return to motif a at the
beginning of m. 9. The latter bar is where I am personally inclined to place a
major division. In any case, the division at m. 7, or actually at the end of m. 6,
is plausible from a musical point of view.

154

8 Technical implementation of the
experiment: The SOMAT
program

8.1 General

The program called SOMAT (Self-Organizing Map with Association-
Tracing)20 was created as part of this study and was used in the experiment
described in Chapter 7. SOMAT was written in C programming language in
UNIX environment. The test runs were carried out in NeXT machines, but the
code follows standard C and is designed with cross-platform portability in
mind. User interface is a plain command line one. Developing a graphical
user-interface was not attempted, because of the long execution time of the
software, and also in the interest of total portability. In the past, the demand
for computing power has also ruled out the use of some low-end computer
platforms, depending on the amount of input data. An MS-DOS compiling
option is also provided as macros in the code, but because UNIX systems were
available, which are generally more usable and manageable in this type of
work, the SOMAT program has not been tested in MS-DOS.

The code was structured to different levels, following modular
programming practice: the definition and implementation of a single node and
an entire map, respectively, have both been separated from the main control

20 SOMAT is essentially a revised and more developed version of the SONA program,
introduced in the present author’s earlier work (Tiits 1994).

155

structure of the program. Both node and map occupy their own
implementation and definition files – node.c and node.h for node, and
map.c and map.h for map. The main program and main control structure are
in a “workbench” file called wbench.c . There is also a general header file
somat.h for global variables and a definition of the data structure for holding
them. Documentation of the software is given in this chapter, and the C
language source-code can be found in Appendix 1.

The general logical structure of the program is divided into three
sections: 1) input and output; 2) initializing and teaching the map; and 3) using
the map to measure pattern distances and to produce analyses of connectedness
between different subparts of given streams of input data. In Chapters 4 and 6
it was explained that, to feed input to the map, the data are broken into feature
vectors, the latter being short data vectors of constant length, which provide a
sliding time-window on the data. The number of components in these vectors
corresponds to the dimensionality of the vector space used in computation.

When running, the program creates a 2-dimensional Kohonen layer with
randomized weights, reads input signal, adjusts the weights, measures shadow-
activation values for independent feature vectors via a matrix cross-table
comparison procedure, and writes the output signal. The running time may be
considerable, depending on the length of the input sequence, number of
teaching cycles, and size of the SOM.

8.2 Input and output data

The program command line has the following syntax:

somat parameterFileName < filein > fileout

The parameters for SOMAT processing are given in a separate parameter
text file instead of in a command line. The parameter file consists of lines,
each containing a parameter name and its accompanying value separated by
space. The name for the parameter file is passed as an argument to the

156

command. Input and output signals are read from and written to text files at
standard i/o. Thus, it is easy to use piping with the somat command and
include it in shell scripts, should one wish to do so.

The following are the parameters and their meanings in the parameter
text file:

seed weightRange
trainings lateralFunctionGains (3 values)
spaceDimension verbose
mapSize bidirectionalProcess
outputFormat

seed

This parameter defines the seed for the random-number generator, which
is used at the initialization of the weight-vector components of the map. The
generated numbers are pseudo-random, so identical parameters will always
produce identical network topology and identical results.

trainings

This parameter defines the number of training cycles. The number is used
for changing the weights of the map according to the input signal.

spaceDimension

This parameter defines the dimensionality of the vector space used in
describing the features, i.e., the number of components in the feature vectors.

mapSize

This parameter defines the size of the SOM used as the length of the edge
of the map. A value of 10, for instance, instructs the system to build a square
map of 10*10 nodes, or 100 nodes altogether. SOMAT always builds the
SOM in the form of a square, the edges connected to their respective, opposite

157

sides, so as to form a toroidal surface.

outputFormat

This parameter defines the number of columns used in formatting the
output text file.

weightRange

This parameter defines the range of integer values possible for the weight
vector components. The larger the value, the finer-grained and slower the
adjustment process is. On the other hand, smaller values cause learning to be
faster, but any non-linearities and possible artifacts tend to get stronger.

lateralFunctionGains (3 values)

These three parameters should be small positive or negative integer
values. They define the gains for weight-vector changes that take place during
the adjustment of weights according to the states of nodes in the neighborhood.
Essentially, they define the shape of the lateral function. The neighborhood is
defined as a three-stage one, with increasing radii around the center node. The
first one of the gains controls the inner circle, the second one the intermediate
circle, and the third one the outer circle of the neighborhood.

verbose

This parameter is used mainly for debugging purposes. A non-zero value
will cause information to be printed out concerning changes made to weight
vectors during the teaching process.

bidirectionalProcess

If this parameter is set to non-zero, the process will run from start to end,
and then again from end to start.

Values of less than 6 for parameter mapSize are not allowed because of
the three-stage neighborhood definitions in the lateral feedback functions. If a

158

smaller value is entered, it is replaced by 6 to prevent neighborhood zones from
wrapping around the torus. Very large values (30 or more) are likely to lead to
combinatorial explosion, but the practical upper limit naturally depends on the
performance of the computer system and the number of training cycles used.

The input file is a text file containing a stream of values from a time-
series, such as the time-slices of melodic pitch shown in the example in
Chapter 4. The output file is a text file, and in the present version of the
program it first prints the reactions of the network organized as matrices of
node states, one for each feature vector. Then the results of the analysis
(transience signal values) are printed.

8.3 Structuring and the program flow

8.3.1 The contents of the source-code files and the
function-call structure of the program

SOMAT functions are found in source files as follows. The function
descriptions, set out in Chapter 8.3.2, are organized so as to correspond to this
division.

Section 1: file somat.h : definition of run-time data structure for
global variables of the system.

Section 2: file node.h : definitions of run-time data structures for an
individual node of the self-organizing map.

Section 3: file node.c : functions that implement the properties and
functionality of an individual node of the map.

Section 4: file map.h : definitions of run-time data structures for

159

an entire map.

Section 5: file map.c : functions that implement the properties and
functionality of the entire map.

Section 6: file wbench.c : a workbench with main program.for
testing the functionality, and for operating the test runs.

1 main: int (), <wbench.c 273>
4 getParameters: int (), <wbench.c 213>
10 quickRandom: int (), <wbench.c 13>
11 initMap: struct nd *(()), <map.c 4>
12 initNode: struct nd *(()), <node.c 5>
14 quickRandom: 10
15 initDataVector: int (), <wbench.c 255>
16 readVector: int (), <wbench.c 25>
18 scaleDataVector: int (), <wbench.c 187>
19 getMinData: int (), <wbench.c 167>
20 getMaxData: int (), <wbench.c 177>
21 trainMap: int (), <map.c 258>
22 trainingCycle: int (), <map.c 240>
23 setMapResponse: int (), <map.c 66>
24 setNodeResponse: int (), <node.c 18>
25 abs: int (), <node.c 26>
26 getFocusNode: struct nd *(()), <map.c 165>
27 getPeakState: int (), <map.c 77>
28 getPeakXitationIndex: int (), <map.c 141>
29 getXitationIndex: int (), <map.c 101>
31 displayMap: int (), <wbench.c 43>
34 getXitationIndex: 29
35 teachFeature: int (), <map.c 218>
36 adjustZoneWeights: int (), <map.c 185>
37 adjustNodeWeights: int (), <node.c 30>
38 quickRandom: 10
40 focusMap: int (), <wbench.c 197>
41 setMapResponse: 23
42 getFocusNode: 26
43 classifyDataVector: int (), <wbench.c 150>
44 searchReference: int (), <wbench.c 122>
45 getVectorCorrelation: int (), <wbench.c 94>
46 setMapResponse: 23
47 normalizeMapState: int (), <map.c 51>
48 getPeakState: 27
49 getBaseState: int (), <map.c 89>
50 searchReference: 44
51 displayReaction: int (), <wbench.c 76>
53 setMapResponse: 23
54 displayPeakNode: int (), <wbench.c 56>
55 getFocusNode: 26
57 normalizeMapState: 47
58 displayMap: 31
59 reverseDataVector: int (), <wbench.c 262>
60 displayData: int (), <wbench.c 33>

Diagram 8.1: Program flow-diagram for the SOMAT system.

160

The function call structure of the program was generated with a UNIX
utility program cflow, as shown in Diagram 8.1. In the diagram, all calls for C
library functions have been omitted in order to enhance readability, hence the
gaps in the ordering of line numbers.

8.3.2 Function descriptions

As a convention, large capital letters indicate types (e.g., Node), and
small letters denote variables (e.g., aNode). Large capitals are also used to
separate words into function and variable names (e.g., weightVector ,
initNode).

Section 1: file somat.h

Description: File somat.h defines the run-time data structure for global
variables of the system.

All global variables are stored in a single structure ParamStruct . It is
defined as follows:

typedef struct {
 Node *focusVector[MAXDATA];
 int seed, trainings, spaceDimension, mapSize;
 int outputFormat, weightsChanged, errorCount;
 int weightRange, lateralGain[3];
 int verbose, bidirectionalProcess;
} ParamStruct;

Section 2: file node.h

Description: File node.h defines the run-time data structure for a node
of the map. In addition, some constants and two global variables for the
system are defined.

161

The data structure for a node of the map is called Node by type
definition:

typedef struct nd {
 int weightVector[MAXDIMENSION];
 int state;
 struct nd *n, *w, *s, *e;
} Node;

The vector weightVector contains input weights that correspond to
each input of the node. Unlike many other implementations of self-organizing
maps, the weights in this system are integers. The number of inputs is same as
the number of components of the input data-feature vectors. Variable state
stores the computed state of the node. Links n, w, s and e are abbreviations of
the four main points of the compass – north, west, south, and east – and serve
as links to the neighboring nodes. The immediate neighborhood of a node
consists of eight adjacent nodes, four of which connect to the center node with
pointer links; the other four links – north-west, north-east, south-west and
south-east – are implemented as logical operations in file map.c . The
constant, MAXDIMENSION, contains the maximum number of feature and
weight vector components available.

Section 3: file node.c

Description: File node.c contains the routines for initializing and
teaching a node of the map:

Node *initNode(void)
void setNodeResponse(aNode,featureVector)
void adjustNodeWeights(aNode,featureVector,gain)

Node *initNode(mapSize) allocates storage for a node of the map. The
size of the map is given in the parameter mapSize as the length of one edge
of the map when perceived as a flat rectangular surface instead of as a torus.

162

The routine does the following: it initializes pointers n, w, s, and e to NULL
and state to 0; initializes weightVector components to random numbers
between 0 and global parameter weightRange ; returns a pointer to the node;
is called by: initMap() .

void setNodeResponse(aNode,featureVector) computes the response of a
node to a given feature vector and stores the value to the state-variable of the
node. It is called by: setMapResponse() .

void adjustNodeWeights(aNode,featureVector,gain) adjusts the node
weight-vector in relation to a given feature vector in a proportion defined by
gain value, which is given as a parameter. The present solution chooses one
component of the feature vector at random, updates it, and then returns. The
function branches to treat cases of negative and positive gain separately. It also
incorporates a mechanism for limiting the weight adjustment, so as to prevent
it from passing the value of the respective feature-vector component – which
might happen, especially at higher gain settings. It is called by:
adjustZoneWeights() .

Section 4: file map.h

Description: File map.h defines the run-time data structure for the map,
as well as for a subset of the map called “zone”. It also defines constants,
macros, and variables for the map and its zones.

In the SOMAT system, the overall shape of the map is that of a torus.
When it is convenient to do so, however, the map can also be thought of as a
two-dimensional rectangular surface. When this surface is folded over so that
the upper edge joins the lower one, and the right edge joins the left one, the
shape of torus is formed.

In the two-dimensional surface metaphor, the nodes in the extreme left
column act as token nodes for each line (horizontal list) of nodes. This column
of token nodes (called a token list) does not store data, nor is it an active part of
the map. For each token node, the state-variable of the node is initialized to the
constant TOKEN, which is also defined in map.h . Moving around on the torus
surface is done with four macros north(Node *aNode), east(Node

163

*aNode), south(Node *aNode), and west(Node *aNode) . The
purpose of these macros is to describe directions and, more importantly, to pass
the token nodes, so that they are never arrived at while browsing through the
contents of the map. They are to be thought of as the four main points of
compass (north, west, south, and east) in order to remain compatible with the
direction pointers of the node links, which were referred to in the description of
header file node.h .

In addition to the token list, there is one more token node for the entire
map, which provides a uniform master access point to the map. It points to the
token list with its south pointer, all other direction pointers being NULL. The
operations on the map are conceived so that they all can be made via this
pointer. Bearing this in mind, we note that type-definition of the map is
identical to that of a single node, since both Node and Map are pointers.
Certain operations, which deal with the environment of a single node, are
needed for processing the map. The concept of zone is used for this purpose.
Zone is defined as follows:

typedef struct {
 Node *centerNode;
 int gain, largeRadius, smallRadius;
} Zone;

Typically, the zone around a center node is processed in three stages:
The closest neighborhood of a node specializes action similar to that of the
center node (positive lateral feedback). A further “ring” around this inner
circle specializes in weaker positive-feedback function. In yet a further “ring”,
a weak negative lateral feedback is present, which resists the tendencies of the
center node.

Macro maxDistnc(mapSize) computes the maximum distance
between two nodes on a torus surface, when given map-size as a parameter. To
define the three-stage neighborhood of a node, three macros are provided to
compute the limits of the neighborhood. The width of the neighborhood
depends on the size of the map, so the macros are to be passed using global
variable mapSize as a parameter. Macro primNeighb(mapSize) will
return the radius of the most immediate neighborhood;
secnNeighb(mapSize) will return the radius of the intermediate
neighborhood; and tertNeighb(mapSize) will return the radius of the

164

outermost one. They divide the maximum distance between any two nodes
into three equal parts, or to their nearest integer approximation. The constant
MAXDATA defines the maximum number of elements in the input and output
data-arrays.

Section 5: file map.c

Description: File map.c contains the routines for implementing the map.

Map *initMap(mapSize)
void normalizeMapState(aMap)
int setMapResponse(aMap,featureVector)
int getPeakState(aMap)
int getBaseState(aMap)
int getXitationIndex(aNode)
int getPeakXitationIndex(aMap, peakState)
Node *getFocusNode(aMap)
int focusMap(aMap,responseFocus,dataVector,dataLength)
int adjustZoneWeights(aZone,featureVector)
int teachFeature(focusNode,featureVector)
int trainingCycle(aMap,responseFocus,dataVector,dataLength)
int trainMap(aMap,dataVector,dataLength,trainings)

Map *initMap(mapSize) allocates storage for the map with function
initNode() , joins the pointer connections to torus structure, and sets the
token nodes’ state-fields to the constant, TOKEN. The size of the map is
determined by the parameter mapSize . This routine also returns a pointer to
the map. It is called by: main() .

void normalizeMapState(aMap) tracks the maximum and minimum
state-values in the map, using functions getPeakState() and
getBaseState() . It normalizes all values between 0 and the global
parameter weightRange . It is called by functions: trainingCycle() ,
trainMap() ,displayReaction() .

int setMapResponse(aMap,featureVector) sends one stimulus feature-

165

vector to all nodes of the map. It computes the response of the map, and stores
the values to the state-variables of the nodes, using function
setNodeResponse() . It is called by functions: trainingCycle() ,
focusMap() ,displayReaction() .

int getPeakState(aMap) returns the maximum value found among the
state-fields of the map. It is called by: normal izeMapState() ,
getFocusNode() .

int getBaseState(aMap) returns the minimum value found among the
state-fields of the map. It is called by: normalizeMapState() .

int getXitationIndex(aNode) returns the so-called excitation index for an
excitation zone – a quantity describing the product of size and excitation level
for a given zone of uniform excitation on the map. The excitation index is
defined as the weighted product of two factors: 1) the diameter of a zone of
uniform state value – an excitation cluster; 2) the sum of the state-values of all
nodes in the zone. It is called by: getPeakXitationIndex() .

int getPeakXitationIndex(aMap, peakState) returns the maximum
excitation index for the map (see the description of getXitationIndex() ,
above, for the definition of excitation index). It is called by:
getFocusNode() .

Node *getFocusNode(aMap) returns a pointer to the node that is
returning the maximum excitation index. It is called by:
trainingCycle() , displayPeakNode() ,
getVectorCorrelation() .

int adjustZoneWeights(aZone,featureVector) implements lateral
feedback for a given zone and feature-vector on the map. The nodes, including
and around the small radius but within and exclusive of the large radius, are
adjusted as dictated by the gain field of the zone structure. Returns (1). It is
called by: teachFeature() .

int teachFeature(focusNode,featureVector) implements both direct and
lateral-feedback teaching for one node of the SOM, which acts as the center

166

node (focus node) for a given feature vector, and its neighborhood. It manages
zone specifications for three stages of lateral feedback. In the closest
neighborhood region excitation for the feature vector is strengthened with high
gain, as intermediate neighborhood implements a weaker strengthening of
excitation. In the outer neighborhood the lateral function will be set to slight
inhibition. teachFeature() calls function adjustZoneWeights() to
run lateral feedback for center node and each stage of neighborhood. The sizes
of the regions are dependent on the size of the map as defined in the header file
map.h and explained in its documentation. Returns (1). Called by:
trainingCycle() .

 int trainingCycle(aMap,responseFocus,dataVector,dataLength)
implements one cycle of training for a given data vector; forms display-vectors
on the basis of the data vector; sends each feature vector as a stimulus to the
map, and lets the map develop a reaction by using function
setMapResponse() . It calls the function getFocusNode() to find the
node of highest response value (“focus node”) for each of the feature vectors.
Foci are used to select zone-center nodes in implementing teaching – both
direct and lateral feedback based – by means of the function
teachFeature() . Returns (1). Called by: trainMap() .

int trainMap(aMap,dataVector,dataLength,trainings) executes a given
number of training cycles with a given data vector by calling the function
trainingCycle() . It provides bookkeeping of the weight changes made
on each cycle. Returns (1). Called by: main() .

Section 6: file wbench.c

Description: File wbench.c contains the main program. It forms a
workbench for testing SOMAT functions, implements a command-line user
interface, and makes test runs with real data possible. Additional functions are
provided for displaying the results of program runs.

int quickRandom(initialization,limit)
int readVector(dataVector)
int displayData(dataVector,dataLength)

167

int displayMap(aMap)
void displayPeakNode(aMap,label)
int displayReaction(aMap,dataVector,dataLength)
int getVectorCorrelation(aMap,stimulusVector,indexVector)
int searchReference(aMap,dataVector,referenceVector,dataLength,k,l,

transfer)
int classifyDataVector(aMap,referenceVector,dataVector,dataLength)
int getMinData(aVector, dataLength)
int getMaxData(aVector, dataLength)
void scaleDataVector(aVector,dataLength,limit)
main(argc,argv)

Constants IA, IC and IM are used in pseudo-random number
generation. Constant REF_THRESHOLD is an experimentally chosen ratio
used in pattern recognition functions.

int quickRandom(initialization,limit) returns a positive-integer random
number between 0 and limit. A nonzero value for initialization is treated as the
seed for a pseudo-random sequence. Called by: main() , initNode() .

int readVector(dataVector) fills the array dataVector[] with
integers, reading them as formatted text from standard input, and it returns the
number of integers read. Called by: main() .

int displayData(dataVector,dataLength) prints the contents of the array
dataVector to the standard output. The integers are printed as formatted
text, following the direction of the global variable, outputFormat . Returns
(1). Called by: main() .

int displayMap(aMap) prints the contents of each state-variable of a map
to the standard output row by row. Returns (1). Called by:
displayReaction() .

void displayPeakNode(aMap,label) computes the location of the node of
the map in relation to the peak excitation state, and prints it to the standard
output. The integer variable label can be used to assign a number to a specific
node of printout. Called by: displayReaction() .

168

int displayReaction(aMap,dataVector,dataLength) computes the
reactions of the map to all feature vectors defined by a data vector. The
variable dataLength specifies the number of items in the data vector. It prints
the reactions of the map as a matrix of state-variable values to the standard
output. Returns (1). Called by: classifyDataVector() .

int getVectorCorrelation(aMap,stimulusVector,indexVector) returns a
correlation figure between two vectors computed on the basis of mutual
“shadow activation” (as explained earlier) on a trained map. In
contradistinction to earlier versions, threshold values are not used in this
function, even though the calling function has a threshold mechanism. Called
by: searchReference() .

int searchReference(aMap,dataVector,referenceVector,dataLength,k,l,
transfer) implements the back-tracing reference chaining, and marks the

detected formal boundaries to a vector called stimulusVector[], which
records the results of the search, and has the same length as dataVector[] .
It receives two indices for the dataVector[] , in order to cross-reference
detection points. As the more stationary of the two, k marks a starting point of
a feature vector called stimulusVector[] . Against this stimulus another
vector, called indexVector[] , is compared. The starting point of
indexVector[] is marked by index l, which runs through the whole
dataVector[] for each k . Correlation between stimulus and index vectors
is computed by means of the function getVectorCorrelation() . If
correlation is detected, backwards chaining is then attempted in a recursive
loop, with the parameter transfer passing accumulated reference information
from each recursion level to the next. When no more correlation is found, or
when the beginning of the data vector is reached, the accumulative sum of
correlation is written to the respective element of reference vector. The
function incorporates a constant REF_THRESHOLD, which is the threshold
value for interpreting any correlations as an actual reference between elements
of dataVector []. If any reference is detected, the function returns (1); if
not, it returns (0). Called by: classifyDataVector() , self (recursion).

int classifyDataVector(aMap,referenceVector,dataVector, dataLength)
executes data segmentation on the basis of shadow activation. Returns (1). It

169

takes care of cross-table comparison. Called by: main() .

int getMinData(aVector, dataLength) returns the minimum values on a
data vector. Called by: scaleDataVector() .

int getMaxData(aVector, dataLength) returns the maximum values on a
data vector. Called by: scaleDataVector() .

void scaleDataVector(aVector,dataLength,limit) scales the values on a
data vector between 0 and limit . Called by: main() .

main(argc,argv) is the program that reads data from the standard input,
and it creates and teaches a self-organizing map, using functions initMap()
and trainMap() . It produces segmentation of an input data sequence, using
the function classifyDataVector() , and displays the results, using the
functions displayReaction() and displayData() . The program
reads 9 parameters from a separate parameter file, according to the format
documentation given in Chapter 8.2.

8.4 Program usability and relation to current
programming techniques

A further point of interest, as regards SOM and reference chaining, is the
following. In principle, it might suitably be applied to analysis of sound, for
undoubtedly there is a metric even in time-domain, sound-sample data, which
are in some respects comparable to notes in a score, even very simple ones, and
are perhaps somewhat easier to detect. The main hindrance to using the system
for sound analysis is its heavy demand of computational power. Still,
experiments with sound can already be made, by using minimally short sound
bursts. An even more restricted area of implementation might be a sequence
made up of spectral analysis windows of sound-sample data (frequency domain
information).

170

Future development of the system will involve assigning labels to the
phrases of music found through this method of segmentation, and using these
labels as source material for a new cycle of analysis. In this way, a higher
order of structural hierarchy may be established. At that stage, the challenge
will be, that the labeling system should bear a sufficient metric (sufficient
amount of iconicity) for SOMAT to allow the abstraction process to take place.
It would be easy to provide arbitrary symbolic labels, but that would be
contrary to the functionality and nature of SOMAT.

Procedurizing of the semiotic model introduced in Chapters 3 and 5
bears a resemblance to the software technology usually called Object-Oriented
Programming (OOP). This resemblance is more than coincidental. It
illustrates the closeness of Peircean semiotic theory to sign-processing
machines. OOP uses the concept of class in a way similar to how we have
treated that of musical object or musical legisign. The term object (instead of
class) was retained in this study for conventional reasons – mainly to retain
compatibility with the humanities, instead of concepts from computer science.
The OOP term object comes very close to what we call representamen in our
model. The idea of instantiation was borrowed directly from the world of
OOP, which we found to be in accordance with Peircean semiotics, as was
already pointed out. One could easily go on to define equivalents, in the world
of musical objects, for abstract superclasses and other OOP concepts.

Because OOP is so close to the subject of this study, one may wonder
why the programming work was not carried out with the aid of an object-
oriented software development package. That might indeed be a natural course
of development. It must be noted, however, that a musical legisign is quite
likely to be far more complex than the class definitions normally used in OOP
applications. More problematic is the fact that legisigns may house ambiguous
properties. This, together with portability reasons and a desire to keep things
simple and under control, made it more preferable to adopt conventions of
traditionally structured functional programming. Nevertheless, the software
was written with possible future porting to an OOP environment in mind.
Whether or not such an enterprise is undertaken in future, the present study has
developed a theoretical framework that might also be usable later.

171

9 Final remarks

On the basis of the experiences with the SOMAT system documented
here, one should be cautious in giving too many promises concerning its
performance. The attempt was made to tie semiotic and philosophical ideas
together into a theoretical construct that is practical enough for computer
implementation. Thus, the system was meant to be able to withstand a series of
empirical tests, which were constructed following a rigid technological
methodology. Hence, if the reader sees worthy achievement in the enterprise
documented in this study, part of that achievement is theoretical in nature. In
my view, that is the most significant part. On no occasion was it assumed that
the main objective of this work would be to develop yet another piece of
computer-music software, though it is neither my place nor desire to criticize
such useful projects. The subject matter and point of view taken here are
simply more theoretical in nature. Nevertheless, it was felt that a real,
practical, and empirical series of tests would be needed to inspire and guide the
formation of the theory, and to enable closer acquaintance with its interaction
with real musical material. In my view, computer-driven empiricism can rarely
(if ever) be regarded as an independent and reliable verification of a theoretical
construct as such, with the obvious exception of computer science. One should
verify or falsify scientific theories by using tools that are not prone to
measurement errors or implementation-oriented programming faults or – even
worse – faults that derive from the programming platform used in the
development of the theory. The value of the kind of empiricism used in this
study has been to guide the formation of concepts, and to ensure that any new
concepts formed are straightforward and compact enough to serve as
cornerstones of functional and applicable systems, and do not remaining “dry

172

academic exercises”. Theory and hands-on testing should coexist in harmony
in the research and development of new concepts in computer-assisted
musicology, even when the work is targeted at studying fundamental
principles, and with no interest in developing software tools for producing
work of one kind or another.

As a new area of implementation for SOMs, the present study is an
example of a growing mass of applications for self-organizing process. It is
my hope that this work forms a small contribution to this area, even though its
main focus is on music and musicology. In terms of computer science, the
present work does contain some new and original material. I would like to
think of the idea of shadow activation used in SOMAT system as a novel
conception. Nevertheless, new ideas rarely appear “out of the blue” without
any predecessor, and such this case here, too: the notion of afterimage
phenomena in self-organizing feature maps came up years ago, in my private
discussions with Teuvo Kohonen, though its use in measuring pattern
similarity is, if memory serves me, my original idea. I certainly take all
responsibility for any plainness and possible lack of elegance regarding its
implementation at the level of computer programming. That is to say, possible
problems found in any part of the SOMAT system are most likely not related to
Kohonen’s ideas.

From the evaluation of examples given in Chapter 7, it is clear that the
performance of a system like SOMAT can not be fully estimated except in the
light of actual musical examples. The use of artificial data can be instructive in
testing some special cases of the behavior of the system, but more general
observations tend to be of greater validity when the data used are taken from
real-world cases. To make such observations requires not only engineering
skills, but also significant musical competence.

The software development environment used in this study is a
conservative one, to say the least: the work was carried out with programming
tools and techniques dating from the 1980s and even the 1970s. On the other
hand, from the beginning the purpose was to build the system on a thoroughly
tested foundation, instead of running the newest development systems. More
flexible tools are already at hand, and no doubt much more developed ones will
appear in the future. The overcoming of technical problems will perhaps
become easier in the future, at least in some respects.

As concerns computer implementations of Peircean semiotic theory, I
see my own contribution as one possible starting point, rather than as a final

173

word of any kind. What this study has clearly shown, is that the branch of
semiotics started by Charles Sanders Peirce, and the increasing body of its
musical applications that have appeared recently, will indeed also be able to
support computer-assisted musical studies, even in the largely machine-
oriented context of algorithm development. Moreover, it seems evident that
Peircean semiotics continues to be a rich source for theoretical frameworks. It
has the capacity to bring together diverse ideas from diverse fields of inquiry,
which was my main target when beginning work on this study. From this, we
may conclude that the original work and thought, which went into building the
foundations of Peirce’s semiotics, have stood the test of time, and have done so
very well.

174

References

Agawu, V. Kofi (1991). Playing with Signs: A Semiotic Interpretation of
Classic Music. Princeton, NJ: Princeton University Press.

Alexander, Igor and Helen Morton (1990). An Introduction to Neural
Computing. London: Chapman & Hall.

Austin, William W. (1966). Music in the 20th Century. New York: Norton.

Backus, John (1969). The Acoustical Foundations of Music. New York: Norton.

Baker, Michael (1989). A computational approach to modeling musical
grouping structure. Contemporary Music Review 4: 311-325.

Baroni, Mario (1983). The concept of musical grammar. Music Analysis 2.2:
175-208.

Baroni, Mario et al. (1982). A grammar for melody: Relationships between
melody and harmony. In: M. Baroni and Laura Callegari (eds.), Musical Grammars
and Computer Analysis. 201-218. Florence: Olschki.

Bent, Ian (1987). Analysis. London: Macmillan.

Bharucha, Jamshed J. (1987). Music cognition and perceptual facilitation: A
connectionist framework. Music Perception 5.1: 1-30.

— (1991). Pitch, harmony and neural nets: A psychological perspective. In:
Peter M. Todd and D. Gareth Loy (eds.), Music And Connectionism. 84-99.
Cambridge, MA: MIT Press.

Bharucha, Jamshed J. and Katherine L. Olney (1989). Tonal cognition, artificial
intelligence and neural nets. Contemporary Music Review 4: 341-356.

Boethius. Fundamentals of Music (1989). Tr. Calvin M. Bower. Ed. Claude V.
Palisca. New Haven, CT: Yale University Press.

175

Broeckx, Jan L. and Walter Landrieu (1972). Comparative computer study of
style, based on five liedmelodies. Interface 1: 29-92.

Cambouropoulos, Emilios (1996a). Musical rhythm: A formal model for
determining local boundaries, accents and metre in a melodic surface. In: Marc
Leman (ed.), Music, Gestalt and Computing. 277-293. Berlin: Springer-Verlag.

— (1996b). A formal theory for the discovery of local boundaries in a melodic
surface. In: Proceedings of the Troisièmes Journées d’Informatique Musicale (JIM-
96). Caen: GREYC – Université de Caen.

Carpenter, G. A. and Stephen Grossberg (1987). ART 2: Self-organization of
stable category recognition codes for analog input patterns. Applied Optics 26:
4919-4930.

Clarke, Eric F. (1989). Mind the gap: Formal structures and psychological
processes in music. Contemporary Music Review 3.1: 1-13.

Cohen, Joel E. (1962). Information theory and music. Behavioral Science 7.2:
137-163.

Dowling, W. Jay and David L. Harwood (1986). Music Cognition. Orlando,
FL: Academic Press.

Ebcioglu, Kemal (1988). An expert system for harmonizing four-part chorales.
Computer Music Journal 12.3: 43-51.

Forte, Allen (1967). Computer-implemented analysis of musical structure. In:
Gerald Lefkoff (ed.), Computer Applications in Music. Morgantown, WV: West
Virginia University.

Frydén, Lars and Johan Sundberg (1984). Performance rules for melodies:
Origin, functions, purposes. In: Proceedings of the International Computer Music
Conference. 221-224. San Francisco, CA: Computer Music Association.

Gjerdingen, Robert O. (1991). Using connectionist models to explore complex
musical patterns. In: Peter Todd and D. Gareth Loy, Music And Connectionism.
138-149. Cambridge, MA: MIT Press.

Granger, Gilles-Gaston (1968). Essai d’une philosophie du style. Paris: Armand
Colin.

Greenlee, Douglas (1973). Peirce’s Concept of Sign. The Hague: Mouton de
Gruyter.

176

Grossberg, Stephen (1976). Adaptive pattern classification and universal
recording II: Feedback, expectation, olfaction, and illusions. Biological Cybernetics
23: 187-202.

Hecht-Nielsen, Robert (1991). Neurocomputing. Reading, MA: Addison-
Wesley.

Hofstadter, Douglas R. (1979). Gödel, Escher, Bach: An Eternal Golden Braid.
New York: Basic Books.

Holtzman, Steven R. (1980). A generative grammar definition language for
music. Interface 9: 1-48.

Holtzman, Steven R. (1994). Digital Mantras: The Languages of Abstract and
Virtual Worlds. Cambridge, MA: MIT Press.

Klír, Jirí and Miroslav Valach (1967). Cybernetic Modelling. London (UK):
Iliffe Books. Original pub. Prague: SNTL, 1965.

Kohonen, Teuvo (1988). The “neural” phonetic typewriter. Computer (IEEE)
21.3: 11-22.

— (1989). Self-Organization and Associative Memory. 3rd ed. Berlin: Springer-
Verlag.

— (2001). Self-Organizing Maps. 3rd ed. Berlin: Springer-Verlag.

Kohonen, Teuvo, Pauli Laine, Kalev Tiits, and Kari Torkkola (1991). A
nonheuristic automatic composing method. In: Peter M. Todd and D. Gareth Loy
(eds.): Music and Connectionism. 229-242. Cambridge, MA: MIT Press.

Kraehenbuehl, David and Edgar Coons (1959). Information as a measure of the
experience of music. Journal of Aesthetics and Art Criticism 17.4: 510-522.

Lane, Michael (1970). Structuralism: A Reader. London: Jonathan Cape.

Laine, Pauli (2000). A Method for Generating Musical Motion Patterns. Diss.,
University of Helsinki.

Laske, Otto E. (1975). Introduction to a generative theory of music: Part 2.
Sonological Reports No. 1b. Utrecht: Institute of Sonology.

— (1988). Introduction to cognitive musicology. Computer Music Journal 12.1:
43-57.

177

Leman, Marc (1991a). Symbolic and Sub-symbolic Description of Music. (=
Seminar of Musicology and Institute for Psychoacoustics and Electronic Music,
Report 20.) Ghent: University of Ghent.

— (1991b). Tone Context and the Complex Dynamics of Tone Semantics. (=
Seminar of Musicology and Institute for Psychoacoustics and Electronic Music,
Report 22.) Ghent: University of Ghent.

— (1992). Some epistemological considerations on symbolic and subsymbolic
processing. In: Actes du Colloque Musique et Assistance Informatique. 35-50.
Marseille: Laboratoire Musique et Informatique de Marseille.

Leman, Marc and Francesco Carreras (1997). Schema and gestalt: Testing the
hypothesis of psychoneural isomorphism by computer simulation. In: M. Leman
(ed.), Music, Gestalt and Computing. 13-29. Berlin: Springer-Verlag.

Leman, Marc and Albrecht Schneider (1997). Origin and nature of cognitive and
systematic musicology: An introduction. In: M. Leman (ed.), Music, Gestalt and
Computing. 13-29. Berlin: Springer-Verlag.

Lerdahl, Fred and Ray Jackendoff (1983). A Generative Theory of Tonal Music.
Cambridge, MA: MIT Press.

Lewin, David (1968). Some applications of communication theory to the study
of twelve-tone music. Journal of Music Theory 12.1: 50-84.

Lindblom, Björn and Johan Sundberg (1970). Towards a generative theory of
melody. Swedish Journal of Musicology 52: 71-88.

Lischka, Cristoph (1987). Connectionist models of musical thinking.
Proceedings of the International Computer Music Conference. Urbana, IL:
Computer Music Association.

— (1991). Understanding music cognition: A connectionist view. In: Giovanni
de Poli et al. (eds.), Representations of Musical Signals. 417-445. Cambridge, MA:
MIT Press.

Loy, D. Gareth (1991). Connectionism and musiconomy. In: Peter Todd and D.
Gareth Loy (eds.), Music and Connectionism. 229-242. Cambridge, MA: MIT
Press.

Maxwell, Harry John Jr. (1984). An Artificial Intelligence Approach to
Computer-Implemented Analysis of Harmony in Tonal Music. Diss., Indiana
University-Bloomington.

178

Martinez, Jose Luiz (1997). Semiosis in Hindustani Music. (= Acta
Musicologica Fennica 5.) Imatra, Finland: International Semiotics Institute.

Meehan, James R. (1980). An artificial intelligence approach to tonal music
theory. Computer Music Journal 4.2: 60-65.

Mesarovic, Mihajlo D (1962). On self organizational systems. In: Marshall C.
Yovits et al. (eds.), Self-Organizing Systems 1962. 9-36. Washington, D.C.: Spartan
Books

Meyer, Leonard B. (1956). Emotion and Meaning in Music. Chicago, IL:
University of Chicago Press.

Meyer, Leonard B. (1967). Music, the Arts and Ideas. Chicago, IL: University
of Chicago Press.

Mirigliano, Rosario (1995). The sign and music: A reflection on the theoretical
bases of musical semiotics. In: Eero Tarasti (ed.), Musical Signification: Essays in
the Semiotic Theory and Analysis of Music. Berlin: Mouton de Gruyter.

Moles, Abraham (1966). Information Theory and Esthetic Perception. Urbana,
IL: University of Illinois Press.

Monelle, Raymond (1992). Linguistics and Semiotics in Music. Chur,
Switzerland: Harwood Academic Publishers.

Morris, Charles (1971). Foundations of the theory of signs. In: Otto Neurath,
Rudolph Carnap, and Charles Morris (eds.), Foundations of the Unity of Science 1.
3rd ed. 78-137. impression. Chicago, IL: University of Chicago Press.

Murre, Jacob Marinus Jan (1992). Categorization and Learning in Neural
Networks: Modelling and Implementation in a Modular Framework. Diss.,
University of Leiden.

Nattiez, Jean-Jacques (1973). Linguistics: A new approach for musical analysis.
International Review of the Aesthetics and Sociology of Music 4.1: 51-68.

Neumann, John von (1966). Theory of Self-Reproducing Automata. Ed. and
completed posthumously by Arthur W. Burks. Urbana, IL: University of Illinois
Press.

Peirce, Charles S. (1936-1958). Collected Papers of Charles Sanders Peirce.
Ed. Charles Hartshorne et al. Cambridge, MA: Harvard University Press. [Referred
to as Peirce [volume number].[paragraph number].]

179

— (1955). Philosophical Writings of Peirce. Ed. Justus Buchler. New York:
Dover.

Pinkerton, R. C. (1956). Information theory and melody. Scientific American
194: 77-86.

Ritter, Helge (1991). Learning with the self-organizing map. In: Artificial
Neural Networks: Proceedings of the 1991 International Conference on Artificial
Neural Networks. 379-384). Amsterdam: North-Holland.

Roads, Curtis (1980). Artificial intelligence and music. Computer Music
Journal 4.2: 13-25.

— (1982). On overview of music representations. In: Mario Baroni and Laura
Callegari (eds.), Musical Grammars and Computer Analysis. 7-37. Florence:
Olschki.

— (1985). Grammars as representations of music. In: C. Roads and John Strawn
(eds.), Foundations of Computer Music. 403-442. Cambridge, MA: MIT Press.

Schaeffer, Pierre (1966). Traité des objets musicaux. Paris: Seuil.

Schillinger, Joseph (1978). The Schillinger System of Musical Composition.
New York: Da Capo Press.

Schalkoff, Robert (1992). Pattern Recognition: Statistical, Structural and
Neural Approaches. New York: John Wiley & Sons.

Schottstaedt, William (1989). Automatic counterpoint. In: Max V. Mathews
and John R. Pierce (eds.), Current Directions in Computer Music Research. 199-
214. Cambridge, MA: MIT Press.

Shannon, Claude E. and Warren Weaver (1949). The Mathematical Theory of
Communication. Urbana, IL: University of Illinois Press.

Sharma, Prem Lata (1970). Rasa theory and Indian music. Sangeet Natak
Academi 16: 57-64.

Slawson, Wayne (1968). Review of G. Lefkoff (ed.), Computer Applications in
Music. Journal of Music Theory 12.1: 105-111.

Smalley, Denis (1986). Spectro-morphology and structuring processes. In:
Simon Emmerson (ed.), The Language of Electroacoustic Music. 61-93.
Houndmills, UK: Macmillan.

180

Smolensky, Paul (1988). On the proper treatment of connectionism. Behavioral
and Brain Sciences 11: 1-74.

Smoliar, Stephen W. (1973). Basic research in computer-music studies.
Interface 2: 121-125.

Tarasti, Eero (1978). Myth and Music. (= Acta Musicologica Fennica 11.)
Helsinki: Finnish Musicological Society.

— (1994). [Private communication.]

Tenney, James and Larry Polansky (1987). Temporal gestalt perception in
music. Journal of Music Theory 24.2: 205-241.

Tempelaars, Stan (1992). Signal Processing, Speech and Music. Den Haag:
Edition Koninklijk Conservatorium.

Thomas, Marily Taft (1985). Vivace: A rule based AI system for composition.
In: Proceedings of the International Computer Music Conference. 267-274. San
Francisco, CA.

Tiits, Kalev (1992). Automatic analysis of melody: A computer implementation.
In: Actes du Colloque Musique et Assistance Informatique. 347-353. Marseille:
Laboratoire Musique et Informatique de Marseille.

— (1994). The Formalized Process of Abstraction in Segmenting Analysis of
Music. Thesis, Licenciate of Philosophy, University of Helsinki.

Todd, Peter (1989). A connectionist approach to algorithmic composition.
Computer Music Journal 13.4: 27-43.

Winograd, Terry (1968). Linguistics and the computer analysis of tonal
harmony. Journal of Music Theory 12.1: 2-49.

Xenakis, Iannis (1971). Formalized Music. Bloomington, IN: Indiana
University Press.

— (1985). Music composition treks. In: Curtis Roads (ed.), Composers and the
Computer. 171-192. Los Altos, CA: William Kaufmann, Inc.

181

Appendix 1 SOMAT source code listing

/* VERSION 1.1 © Kalev Tiits 2001 */
/* the code includes some commented debugging and MS-DOS compile options */

/* file somat.h: global parameter structure */

#define MAXDATA 5000 /* length of input & output data arrays */
#define MAXERROR 10 /* error bookkeeping for development */

typedef struct {
 Node *focusVector[MAXDATA];
 int seed, trainings, spaceDimension, mapSize;
 int outputFormat, weightsChanged, errorCount;
 int weightRange, lateralGain[3];
 int verbose, bidirectionalProcess;
} ParamStruct;

ParamStruct globalPara;

/* file node.h: SOMAT node interface */

/* define MSDOS */
#ifdef MSDOS
#include <malloc.h>
#endif

#define MAXDIMENSION 10
#define NULL 0

typedef struct nd {
 int weightVector[MAXDIMENSION];
 int state;
 struct nd *n, *w, *s, *e; /* n,w,s,e are the 4 main directions */
} Node;

#include "somat.h"
Node *initNode();
int setNodeWeights(), setNodeResponse(), adjustNodeWeights();

182

/* file node.c: SOMAT node implementation */

#include "node.h"

Node *initNode()
{
 extern ParamStruct globalPara;
 Node *aNode;
 int k;
 aNode = (Node*)malloc(sizeof(Node));
 aNode->n = aNode->w = aNode->s = aNode->e = NULL;
 aNode->state = 0;
 for (k = 0 ; k < MAXDIMENSION ; k++)
 aNode->weightVector[k] = quickRandom(0,globalPara.weightRange);
 return(aNode);
}

setNodeResponse(aNode,featureVector)
Node *aNode;
int featureVector[];
{
 extern ParamStruct globalPara;
 int k, sum;
 sum = globalPara.spaceDimension * globalPara.weightRange;
 for (k = 0 ; k < globalPara.spaceDimension ; k++)
 sum-= abs(aNode->weightVector[k] – featureVector[k]);
 aNode->state = sum;
}

adjustNodeWeights(aNode,featureVector,gain)
Node *aNode;
int featureVector[], gain;
{
 extern ParamStruct globalPara;
 int k, difference, increment = 0;
 /* one of the weights chosen at random for updating */
 k = quickRandom(0,(globalPara.spaceDimension – 1));
 difference = aNode->weightVector[k] – featureVector[k];
 if (gain > 0) { /* case of exitatory adjustment */
 if (difference > 0) /* if decrease of weight needed */
 increment = (-1) * ((difference < gain)? difference : gain);
 else if (difference < 0) { /* if increase of weight needed */
 difference*= (-1);
 increment = ((difference < gain)? difference : gain);
 } /* else if */
 }
 if (gain < 0) { /* case of inhibitory adjustment */
 if (difference > 0) { /* if increase of weight needed */

183

 gain*= (-1);
 increment = ((aNode->weightVector[k] + gain) < globalPara.weightRange)?
 gain : (globalPara.weightRange – aNode->weightVector[k]);
 } /* if */
 /* the following case also includes the situation of exact match */
 else if (difference <= 0) /* if decrease of weight needed */
 increment = ((aNode->weightVector[k] + gain) > NULL)?
 gain : ((-1) * aNode->weightVector[k]);
 } /* if */
 if (increment != 0) {
 aNode->weightVector[k]+=increment;
 globalPara.weightsChanged++;
 }
}

/* file map.h: SOMAT map interface */

#include "node.h"
#include <math.h>
#define TOKEN (-1)

/* two ways to define maximum distance of two arbitrary nodes are possible
 on the rectangular map topology; one is called 'city-block distance' */

#define maxDistnc(n) ((int)((float)n/2))

/* other way to measure distances is the familiar Euclidean distance */

/*#define maxDistnc(n) (1 + (int)floor(sqrt(2.0) * (((float)n)/2)))*/

/* Since the zone definitions in SOMAT versions 1.x use rectangular zones, city-
block distance metric is used. If the program is later updated for circular zones,
Euclidean distances and respectively the latter macro for maxDistnc would be
appropriate. For lateral functions three-stage neighbourhood limits are defined in
respect to maximum node distance on the chosen map topology : */

#define primNeighb(n) (maxDistnc(n) / 3)
#define secnNeighb(n) (2 * maxDistnc(n) / 3)
#define tertNeighb(n) maxDistnc(n)

#define east(a) ((a->e->state == TOKEN) ? a->e->e : a->e)
#define west(a) ((a->w->state == TOKEN) ? a->w->w : a->w)
#define north(a) ((a->n->state == TOKEN) ? a->n->n : a->n)
#define south(a) ((a->s->state == TOKEN) ? a->s->s : a->s)

typedef Node Map;

184

typedef struct {
 Node *centerNode;
 int gain, largeRadius, smallRadius;
} Zone;

Map *initMap();
Node *getFocusNode();
int normalizeMapState(), setMapResponse(), getPeakState(), focusMap(),
adjustFeedbackZone(), executeLateralFunction(), trainingCycle(), trainMap();

/* file map.c: SOMAT map implementation */

#include "map.h"
Map *initMap(mapSize)
int mapSize;
{
 Map *aMap;
 Node *rowNode, *colNode, *newNode, *tokenNode;
 int i, j;
 aMap = colNode = initNode();
 for (i = 0 ; i < mapSize ; i++) {
 /* next 4 lines make a new token node */
 newNode = initNode();
 newNode->n = colNode;
 colNode->s = newNode;
 colNode = rowNode = newNode;
 for (j = 0 ; j < mapSize ; j++) {
 newNode = initNode();
 newNode->w = rowNode;
 rowNode->e = newNode;
 rowNode = newNode;
 if (i > 0) {
 newNode->n = newNode->w->n->e;
 newNode->n->s = newNode;
 }
 }
 }
 /* joining and marking of the token nodes */
 for (colNode = aMap->s ; colNode->s ; colNode = colNode->s)
 colNode->state = TOKEN;
 colNode->state = TOKEN;
 colNode->s = aMap;
 aMap->n = colNode;
 aMap->state = TOKEN;
 /* joining the east and the west edges: */
 for (colNode = aMap->s ; colNode != aMap ; colNode = colNode->s) {
 for (rowNode = colNode->e ; rowNode->e ; rowNode = rowNode->e);

185

 rowNode->e = colNode;
 colNode->w = rowNode;
 }
 /* joining the north and the south edges: */
 tokenNode = aMap->s;
 for (rowNode = tokenNode->e ; rowNode != tokenNode ; rowNode = rowNode->e) {
 for (colNode = rowNode ; colNode->s ; colNode = colNode->s);
 colNode->s = rowNode;
 rowNode->n = colNode;
 }
 return(aMap);
}

normalizeMapState(aMap)
Map *aMap;
{
 Node *rowNode, *colNode;
 int peak, base;
 peak = getPeakState(aMap);
 base = getBaseState(aMap);
 peak = peak > 0 ? peak : 1; /* divide by 0 precaution */
 for (colNode = aMap->s ; colNode != aMap ; colNode = colNode->s)
 for (rowNode = colNode->e ; rowNode != colNode ; rowNode = rowNode->e)
 rowNode->state = ((rowNode->state – base) *
 globalPara.weightRange) / (peak – base);
 return(1);
}

setMapResponse(aMap,featureVector)
Map *aMap;
int featureVector[];
{
 Node *rowNode, *colNode;
 for (colNode = aMap->s ; colNode != aMap ; colNode = colNode->s)
 for (rowNode = colNode->e ; rowNode != colNode ; rowNode = rowNode->e)
 setNodeResponse(rowNode,featureVector);
 return(1);
}

186

getPeakState(aMap)
Map *aMap;
{
 Node *rowNode, *colNode;
 int peak = 0;
 for (colNode = aMap->s ; colNode != aMap ; colNode = colNode->s)
 for (rowNode = colNode->e ; rowNode != colNode ; rowNode = rowNode->e)
 if (rowNode->state > peak)
 peak = rowNode->state;
 return(peak);
}

getBaseState(aMap)
Map *aMap;
{
 Node *rowNode, *colNode;
 int base = 10000;
 for (colNode = aMap->s ; colNode != aMap ; colNode = colNode->s)
 for (rowNode = colNode->e ; rowNode != colNode ; rowNode = rowNode->e)
 if (rowNode->state < base)
 base = rowNode->state;
 return(base);
}

getXitationIndex(aNode)
Node *aNode;
{
 extern ParamStruct globalPara;
 int k, state, workDistance, activity, xitationIndex, searchTerminate = 0;
 Zone aZone;
 Node *workNode;
 aZone.centerNode = aNode;
 state = aNode->state;
 for (workDistance = 0 ; ((!searchTerminate) &&
 (workDistance < maxDistnc(globalPara.mapSize)));workDistance++) {
 /* next 3 lines move workNode to upper left corner of the working area */
 workNode = aZone.centerNode;
 activity = 0;
 for (k = 0 ; k++ < workDistance ; workNode = north(workNode));
 for (k = 0 ; k++ < workDistance ; workNode = west(workNode));
 /* next 8 lines process nodes in a region around centerNode */
 for (k = 0 ; k++ < (workDistance * 2) ; workNode = south(workNode)) {
 if (workNode->state != state) searchTerminate = 1;
 activity+= workNode->state;
 }
 for (k = 0 ; k++ < (workDistance * 2) ; workNode = east(workNode)) {
 if (workNode->state != state) searchTerminate = 1;
 activity+= workNode->state;

187

 }
 for (k = 0 ; k++ < (workDistance * 2) ; workNode = north(workNode)) {
 if (workNode->state != state) searchTerminate = 1;
 activity+= workNode->state;
 }
 for (k = 0 ; k++ < (workDistance * 2) ; workNode = west(workNode)) {
 if (workNode->state != state) searchTerminate = 1;
 activity+= workNode->state;
 }
 } /* value of function is a combination of radius of uniform state
 and its excitation level */
 xitationIndex = 300 * workDistance + activity;
 return(xitationIndex);
}

getPeakXitationIndex(aMap, peakState)
Map *aMap;
int peakState;
{
 Node *rowNode, *colNode;
 int index, peak = 0;
 extern ParamStruct globalPara;
 for (colNode = aMap->s ; colNode != aMap ; colNode = colNode->s)
 for (rowNode = colNode->e ; rowNode != colNode ; rowNode = rowNode->e)
 if (rowNode->state == peakState) {
 index = getXitationIndex(rowNode);
 if (index > peak)
 peak = index;
 }
 if (peak == 0) {
 printf("WARNING: getPeakXitationIndex returns 0\n");
 displayMap(aMap);
 globalPara.errorCount++;
 if (globalPara.errorCount > MAXERROR)
 exit(0);
 }
 return(peak);
}

Node *getFocusNode(aMap)
Map *aMap;
{
 Node *rowNode, *colNode, *peakNode;
 int xitationIndex, peakState, peakXitationIndex;
 peakState = getPeakState(aMap);
 peakXitationIndex = getPeakXitationIndex(aMap,peakState);
 for (colNode = aMap->s ; colNode != aMap ; colNode = colNode->s)
 for (rowNode = colNode->e ; rowNode != colNode ; rowNode = rowNode->e)

188

 if (rowNode->state == peakState) {
 xitationIndex = getXitationIndex(rowNode);
 if (xitationIndex == peakXitationIndex) {
 peakNode = rowNode;
 break;
 }
 }
 return(peakNode);
}

adjustZoneWeights(aZone,featureVector)
Zone aZone;
int featureVector[];
{
 Node *workNode;
 int k, workDistance;
 workNode = aZone.centerNode;
 /* adjust weights for centerNode */
 if (aZone.smallRadius == 0) {
 adjustNodeWeights(workNode,featureVector,aZone.gain);
 aZone.smallRadius++;
 }
 /* cover the neighbourhood up to the radius */
 for (workDistance = aZone.smallRadius ; workDistance < aZone.largeRadius ;
 workDistance++) {
 /* next 3 lines move workNode to upper left corner of the working area */
 workNode = aZone.centerNode;
 for (k = 0 ; k++ < workDistance ; workNode = north(workNode));
 for (k = 0 ; k++ < workDistance ; workNode = west(workNode));
 /* next 8 lines process nodes in a 'circle' around focusNode */
 for (k = 0 ; k++ < (workDistance * 2) ; workNode = south(workNode))
 adjustNodeWeights(workNode,featureVector,aZone.gain);
 for (k = 0 ; k++ < (workDistance * 2) ; workNode = east(workNode))
 adjustNodeWeights(workNode,featureVector,aZone.gain);
 for (k = 0 ; k++ < (workDistance * 2) ; workNode = north(workNode))
 adjustNodeWeights(workNode,featureVector,aZone.gain);
 for (k = 0 ; k++ < (workDistance * 2) ; workNode = west(workNode))
 adjustNodeWeights(workNode,featureVector,aZone.gain);
 }
 return(1);
}

189

teachFeature(focusNode,featureVector)
Node *focusNode;
int featureVector[];
{
 extern ParamStruct globalPara;
 Zone aZone;
 aZone.centerNode = focusNode;
 aZone.gain = globalPara.lateralGain[0];
 aZone.smallRadius = 0;
 aZone.largeRadius = primNeighb(globalPara.mapSize);
 adjustZoneWeights(aZone,featureVector);
 aZone.gain = globalPara.lateralGain[1];
 aZone.smallRadius = primNeighb(globalPara.mapSize);
 aZone.largeRadius = secnNeighb(globalPara.mapSize);
 adjustZoneWeights(aZone,featureVector);
 aZone.gain = globalPara.lateralGain[2];
 aZone.smallRadius = secnNeighb(globalPara.mapSize);
 aZone.largeRadius = tertNeighb(globalPara.mapSize);
 adjustZoneWeights(aZone,featureVector);
 return(1);
}

trainingCycle(aMap,dataVector,dataLength)
Map *aMap;
int dataLength, dataVector[];
{
 extern ParamStruct globalPara;
 Node *focusNode;
 int k, l, featureVector[MAXDIMENSION];
 for (k = 0 ; k < (dataLength – (globalPara.spaceDimension -1)) ; k++) {
 for (l = 0 ; l < globalPara.spaceDimension ; l++)
 featureVector[l] = dataVector[(k + l)];
 setMapResponse(aMap,featureVector);
 focusNode = getFocusNode(aMap);
 teachFeature(focusNode,featureVector);
 }
 return(1);
}

190

trainMap(aMap,dataVector,dataLength,trainings)
Map *aMap;
int dataVector[], dataLength, trainings;
{
 extern ParamStruct globalPara;
 int k;
 for (k = 0 ; k < trainings ; k++) {
 globalPara.weightsChanged = 0;
 trainingCycle(aMap,dataVector,dataLength);
 if (globalPara.verbose)
 printf("cycle %4d – chg %5d \n",(k+1),globalPara.weightsChanged);
 }
 return(1);
}

/* file wbench.c: SOMAT map main program and experimentation workbench */

#include "map.h"
#include <stdio.h>

#define IA 577L
#define IC 29L
#define IM 12759L
#define REF_THRESHOLD (29 * globalPara.weightRange / 30)
#define MAX_VALUE 32500

quickRandom(initialization,limit)
int initialization, limit;
{
 static long seed;
 int rnd;
 if (initialization)
 seed = (long)initialization;
 seed = (seed * IA + IC) % IM;
 rnd = (int)((long)limit + 1) * seed / IM;
 return(rnd);
}

readVector(dataVector)
int dataVector[];
{
 int k;
 for (k = 0 ; ((scanf("%d",&dataVector[k]) == 1) && (k < MAXDATA)) ; k++);
 return(k);
}

191

displayData(dataVector,dataLength,outputFormat)
int dataVector[], dataLength, outputFormat;
{
 int k;
 for (k = 0 ; k < dataLength ; printf("%7d ",dataVector[k++]))
 if (!(k % outputFormat))
 printf("\n");
 return(1);
}

displayMap(aMap)
Map *aMap;
{
 Node *rowNode, *colNode;
 for (colNode = aMap->s ; colNode != aMap ; colNode = colNode->s) {
 for (rowNode = colNode->e ; rowNode != colNode ; rowNode = rowNode->e)
 printf("%2d ",rowNode->state);
 printf("\n");
 }
 printf("\n\n");
 return(1);
}

displayPeakNode(aMap,label)
Map *aMap;
int label;
{
 Node *rowNode, *colNode, *focusNode;
 int row, col, peak;
 row = 1;
 focusNode = getFocusNode(aMap);
 for (colNode = aMap->s ; colNode != aMap ; colNode = colNode->s) {
 col = 1;
 for (rowNode = colNode->e ; rowNode != colNode ; rowNode = rowNode->e) {
 if (rowNode == focusNode)
 printf("Map %d, Focus row %d column %d\n",label,row,col);
 col++;
 }
 row++;
 }
}

192

displayReaction(aMap,dataVector,dataLength)
Map *aMap;
int dataVector[], dataLength;
{
 extern ParamStruct globalPara;
 int featureVector[MAXDIMENSION], k, m;
 printf("\n\n\n");
 for (k = 0 ; k < (dataLength – (globalPara.spaceDimension – 1)) ; k++) {
 for (m = 0 ; m < globalPara.spaceDimension ; m++)
 featureVector[m] = dataVector[(m + k)];
 setMapResponse(aMap,featureVector);
 displayPeakNode(aMap,(k + 1));
 normalizeMapState(aMap);
 displayMap(aMap);
 }
 return(1);
}

getVectorCorrelation(aMap,stimulusVector,indexVector,k,l)
Map *aMap;
int stimulusVector[], indexVector[], k, l;
{
 Node *stimulusFocus, *indexFocus;
 extern ParamStruct globalPara;
 int shadowActivation = 0;
 stimulusFocus = globalPara.focusVector[k]; /* resp. focus for stim. */
 indexFocus = globalPara.focusVector[l]; /* resp. focus for index */
/* first compute shadow of stimulus to index excitation */
 setMapResponse(aMap,indexVector);
 normalizeMapState(aMap);
 shadowActivation+= stimulusFocus->state;
/* then compute shadow of index to stimulus excitation */
 setMapResponse(aMap,stimulusVector);
 normalizeMapState(aMap);
 shadowActivation+= indexFocus->state;
/* final activation – mean of both values */
 shadowActivation/= 2;
 return(shadowActivation);
}

193

/* the ref. chaining implemented in a recursive loop in searchReference */

searchReference(aMap,dataVector,referenceVector,dataLength,k,l,transfer)
Map *aMap;
int dataVector[], referenceVector[], dataLength, k,l,transfer;
{ /* chaining of the references */
 extern ParamStruct globalPara;
 int stimulusVector[MAXDIMENSION], indexVector[MAXDIMENSION], m,
 correlationStrength = 0;
 for (m = 0 ; m < globalPara.spaceDimension ; m++) {
 stimulusVector[m] = dataVector[(m + k)];
 indexVector[m] = dataVector[(m + l)];
 }
 correlationStrength = getVectorCorrelation(aMap,stimulusVector,indexVector,k,l);
 if (correlationStrength > REF_THRESHOLD) {
 transfer+= correlationStrength;
 if ((k == 0) || (l == 0)) /* beg. of dataVector as a special case */
 referenceVector[k]+= transfer;
 else /* chaining in a recursive loop */
 if (searchReference(aMap,dataVector,referenceVector,dataLength,--k,--
l,transfer) == 0)
 referenceVector[++k]+= transfer;
 return(1);
 }
 else
 return(0);
}

/* cross-reference detection done with two indices k and l. k determines the
feature being detected and l runs through all elements of dataVector except
the one indexed by k. */

classifyDataVector(aMap,referenceVector,dataVector,dataLength)
Map *aMap;
int referenceVector[], dataVector[], dataLength;
{
 extern ParamStruct globalPara;
 int k, l, status;
 for (k = 0 ; k < (dataLength – (globalPara.spaceDimension – 1)) ; k++) {
 for (l = (k == 0 ? 1 : 0) ;
 l < (dataLength – (globalPara.spaceDimension – 1)) ;
 l+= (l != (k – 1)) ? 1 : 2) {
 searchReference(aMap,dataVector,referenceVector,dataLength,k,l,0);
 }
 }
 return(1);
}

194

getMinData(aVector, dataLength)
int aVector[], dataLength;
{
 int k, min = MAX_VALUE;
 for (k = 0 ; k < dataLength ; k++)
 if (aVector[k] < min)
 min = aVector[k];
 return(min);
}

getMaxData(aVector, dataLength)
int aVector[], dataLength;
{
 int k, max = 0;
 for (k = 0 ; k < dataLength ; k++)
 if (aVector[k] > max)
 max = aVector[k];
 return(max);
}

scaleDataVector(aVector,dataLength,limit)
int aVector[], dataLength, limit;
{
 int k, minData, maxData;
 minData = getMinData(aVector, dataLength);
 maxData = getMaxData(aVector, dataLength);
 for (k = 0 ; k < dataLength ; k++)
 aVector[k] = limit * (aVector[k] – minData) / (maxData – minData);
}

focusMap(aMap,dataVector,dataLength)
Map *aMap;
int dataLength, dataVector[];
{
 extern ParamStruct globalPara;
 int k, l, featureVector[MAXDIMENSION];
 for (k = 0 ; k < (dataLength – (globalPara.spaceDimension – 1)) ; k++) {
 for (l = 0 ; l < globalPara.spaceDimension ; l++)
 featureVector[l] = dataVector[(k + l)];
 setMapResponse(aMap,featureVector);
 globalPara.focusVector[k] = getFocusNode(aMap);
 }
 return(1);
}

195

getParameters(s)
char *s;
{
 extern ParamStruct globalPara;
 FILE *in, *fopen();
 char str[120];
 int n;
 if (fopen(s,"r"))
 in = fopen(s,"r");
 else {
 printf("Parameter file not found\n");
 exit(1);
 }
 for (n = fscanf(in,"%s",str) ; n == 1 ; n = fscanf(in,"%s",str)) {
 if (!strcmp(str,"seed"))
 n = fscanf(in,"%d",&globalPara.seed);
 else if (!strcmp(str,"trainings"))
 n = fscanf(in,"%d",&globalPara.trainings);
 else if (!strcmp(str,"spaceDimension"))
 n = fscanf(in,"%d",&globalPara.spaceDimension);
 else if (!strcmp(str,"mapSize"))
 n = fscanf(in,"%d",&globalPara.mapSize);
 else if (!strcmp(str,"outputFormat"))
 n = fscanf(in,"%d",&globalPara.outputFormat);
 else if (!strcmp(str,"weightRange"))
 n = fscanf(in,"%d",&globalPara.weightRange);
 else if (!strcmp(str,"lateralFunctionGains")) {
 n = fscanf(in,"%d",&globalPara.lateralGain[0]);
 n = fscanf(in,"%d",&globalPara.lateralGain[1]);
 n = fscanf(in,"%d",&globalPara.lateralGain[2]);
 }
 else if (!strcmp(str,"verbose"))
 n = fscanf(in,"%d",&globalPara.verbose);
 else if (!strcmp(str,"bidirectionalProcess"))
 n = fscanf(in,"%d",&globalPara.bidirectionalProcess);
 else if ((str[0] != '/') || (str[1] != '*')) {
 printf("Error in parameter file: %s\n",str);
 exit(1);
 }
 }
}

initDataVector(aVector)
int aVector[];
{
 int k;
 for (k = 0 ; k < MAXDATA ; aVector[k++] = 0);
}

196

reverseDataVector(dataVector,dataLength)
int dataVector[], dataLength;
{
 int k, buffer[MAXDATA];
 for (k = 0 ; k < dataLength ; k++)
 buffer[k] = dataVector[k];
 for (k = 0 ; k < dataLength ; k++)
 dataVector[k] = buffer[(dataLength-1-k)];
}

main(argc,argv)
int argc;
char *argv[];
{
 Map *aMap;
 extern ParamStruct globalPara;
 int k, ran, seed, trainings, dataLength, outputFormat,
 dataVector[MAXDATA], referenceVector[MAXDATA];
 if (argc < 2) {
 printf("usage %s parameterFile\n",argv[0]);
 printf(" – parameterFile contains the following parameters:\n");
 printf(" seed\n trainings\n spaceDimension\n");
 printf(" mapSize\n outputFormat\n weightRange\n");
 printf(" lateralFunctionGains (3 values)\n");
 printf(" verbose\n bidirectionalProcess\n");
 exit(0);
 }
 getParameters(argv[1]);
 if (globalPara.spaceDimension > MAXDIMENSION)
 globalPara.spaceDimension = MAXDIMENSION;
 if (globalPara.mapSize < 6)
 globalPara.mapSize = 6;
 globalPara.errorCount = 0;
 quickRandom(globalPara.seed,10); /* initialize random generator */
 aMap = initMap(globalPara.mapSize);
 initDataVector(referenceVector);
 dataLength = readVector(dataVector);
 scaleDataVector(dataVector,dataLength,globalPara.weightRange);
 trainMap(aMap,dataVector,dataLength,globalPara.trainings);
 focusMap(aMap,dataVector,dataLength);/* bookkeeping of resp. foci est. */
 classifyDataVector(aMap,referenceVector,dataVector,dataLength);
 if (globalPara.bidirectionalProcess) {
 if (globalPara.verbose)
 displayReaction(aMap,dataVector,dataLength);
 reverseDataVector(dataVector,dataLength);
 reverseDataVector(referenceVector,dataLength);

197

 trainMap(aMap,dataVector,dataLength,globalPara.trainings);
 focusMap(aMap,dataVector,dataLength);/* bookkeeping of resp. foci est. */
 classifyDataVector(aMap,referenceVector,dataVector,dataLength);
 }
if (globalPara.bidirectionalProcess) {
 if (globalPara.verbose)
 displayReaction(aMap,dataVector,dataLength);
 reverseDataVector(dataVector,dataLength);
 reverseDataVector(referenceVector,dataLength);
 }
 displayData(referenceVector,dataLength,globalPara.outputFormat);
}

	Preface
	Acknowledgements
	Index
	1. Can a theory of computer-driven, connectionist music analysis contribute to discussions on signification and meaning in
	2. A quantitative way of thinking about music
	3. Introduction to semiotic systems and categories
	4. Adaptation, machine learning, and self-organization
	5. Musical information as a fabric of sinsigns and legisigns
	6 Summary of principles used as the basis for the experiment
	7. Test-report on an association-tracing system propelled by self-organizing feature maps
	8 Technical implementation of the experiment: The SOMAT program
	9 Final remarks
	References
	Appendix 1 SOMAT source code listing

