The function of Bmps and Runx2 in normal tooth development and in the pathogenesis of cleidocranial dysplasia

Thomas Åberg

Developmental Biology Research Programme
Institute of Biotechnology
and
Department of Orthodontics
Institute of Dentistry,
and
Department of Oral and Maxillofacial Diseases
Helsinki University Central Hospital
and
Viikki Graduate School in Biosciences
University of Helsinki

Academic dissertation
To be discussed publicly with the permission of the Faculty of Medicine of the University of Helsinki in auditorium 1041 at Viikki Biocenter 2 on November 24th 2006, at 12 noon

Helsinki 2006
Supervised by:
Professor Irma Thesleff
University of Helsinki, Finland

Reviewed by:
Professor Satu Alaluusua
University of Helsinki, Finland

and

Docent Kirsi Sainio
University of Helsinki, Finland

Opponent:
Associate Professor Yang Chai
University of Southern California,
USA

ISSN 1795-7079
ISBN 952-10-3521-8
Helsinki 2006
Yliopistopaino
CONTENTS

LIST OF ORIGINAL PUBLICATIONS 5
ABBREVIATIONS 6
ABSTRACT 8
REVIEW OF THE LITERATURE 10
  Regulation of embryonic development 10
  Cell and tissue interactions 10
  Signal transduction 11
  Transcription factors 11
Families of signal molecules 12
  Tgß superfamily 12
  Fgf family 16
  Hedgehog family 17
  Notch family 18
  Wnt family 18
  Other signaling molecules 19
Tooth as a model for ectodermal organ development 20
Mammalian tooth development 20
  Differences between mouse and human tooth development 21
  Primary and secondary dentition 22
  Initiation of tooth development 22
  Determination of tooth identity 23
  Dental placode – the early signalling center 24
  Enamel knot and bud to cap transition 26
  Secondary enamel knots and cusp formation 27
  Cell differentiation and mineralisation 28
Bone development 30
  Endochondral ossification 31
  Intramembranous ossification 31
Cleidocranial dysplasia and Runx2 32
  Structure and function of Runx genes 32
  Runx genes in embryonic development 34
  Regulation of Runx2 34
  Cleidocranial dysplasia syndrome 36
AIMS OF THE STUDY 39
MATERIALS AND METHODS 40
RESULTS AND DISCUSSION 42
  Expression of Bmps during tooth development (I) 42
  The function of Bmps in the regulation of tooth morphogenesis (I) 43
  Later function of Bmps in the differentiation of odontoblasts and ameloblasts and dentin and enamel deposition (I) 45
  The role of Runx2 during tooth development (II, III, IV) 46
    Runx2 expression during tooth development (II) 46
    The dental phenotype of Runx2 null mutant mice (II-III) 47
    Regulation of Runx2 expression in embryonic mesenchyme 48
(II, IV)
Search for downstream targets of Runx2 (IV) 49
Attempts to rescue Runx2 mutants tooth development (III, IV) 52
Runx2 and CCD 52
CONCLUDING REMARKS 54
ACKNOWLEDGEMENTS 56
REFERENCES 58
LIST OF ORIGINAL PUBLICATIONS


* Equal contribution


* Equal contribution
ABBREVIATIONS

AER   Apical ectodermal ridge
APC   Adenomatous polyposis coli
ActR  Activin receptor
Alk   Activin like receptor-like kinase
Bmp   Bone morphogenetic protein
Bmpr  Bone morphogenetic protein receptor
BSA   Bovine serum albumin
Cbfa  Core binding factor alpha
Cbβ   Core binding factor beta
CCD   Cleidocranial dysplasia
Dhh   Desert hedgehog
DNA   Deoxyribonucleic acid
Dkk1  Wnt inhibitor dickkopf
Dlx   Vertebrate homologue of Drosophila distal-less gene
Dspp  dentin sialophosphoprotein
E     Embryonic day
Eda   Tnf ligand ectodysplasin
Edar  Tnf receptor for ectodysplasin
Fgf   Fibroblast growth factor
Fgfr  Fibroblast growth factor receptor
Fox   Forkhead box
Gli   Vertebrate homologue of Drosophila cubitus interruptus gene
Gsk   Glycogen synthase kinase
HED   Hypohidrotic ectodermal dysplasia
Hip   Hh interacting protein
Hh    Hedgehog
Hox   Vertebrate homeodomain box gene
Hspg  Heparan sulphate proteoglycans
Ihh   Indian hedgehog
Jnk   Jun N-terminal kinase
Lef1  Lymphoid enhancer factor1
L-fng Lunatic fringe
Lhx   LIM hoemeodomain genes
MAPK  Mitogen-activated protein kinase
mRNA  Messenger ribonucleic acid
Msx   Vertebrate homologue of Drosophila muscle segment (msh) gene
Mmp   Matrix metalloproteinase
Osf2  Osteoblast specific factor 2
Otlx  Rieg/Pitx2, gene causing Rieger syndrome
P     Post natal day
p21   21 kD cyclin dependent kinase interacting protein
Pax   Paired- like homeobox
PCR   Polymerase chain reaction
Pebp2 Polyoma enhancer binding protein
RT-PCR Reverse transcription – polymerase chain reaction
Pitx2 Pituitary homeobox 2
PST   proline/serine/threonine
PTHrP Parathyroid hormone-related protein
Ptc   Patched
Q/A glutamine and alanine repeats
Rankl Receptor activator of nuclear factor κB ligand
Rieg Otx2/Pitx2, gene causing Rieger syndrome
RNA Ribonucleic acid
Runx Vertebrate homologue of the Drosophila runt gene
Shh Sonic hedgehog
Smad Vertebrate homologue of the Drosophila mother against decapentaplegic (MAD)
Smo Smoothened
Tcf T-cell specific transcription factor
Tgfβ Transforming growth factor
Tle Transducin-like enhancer of split
Tnf Tumor necrosis factor
Tnfr Tumor necrosis factor receptor
Vegf Vascular endothelial growth factor
Wnt Wnt-family member
ZPA Zone of polarizing activity

Mouse genes are written in italics and proteins in non italics. Human genes are written in uppercase letters and italics.
ABSTRACT

Teeth form as epithelial appendages such as hairs and glands. During development, reciprocal and sequential epithelial-mesenchymal interactions regulate processes such as proliferation, differentiation and morphogenesis. These interactions are mediated by conserved signaling pathways that are reiteratively used during development of all organs. Bone development begins with the formation of mesenchymal condensates. Most bones form through the endochondral ossification mechanism although in the facial area intramembranous ossification predominates. Both tooth and bone development is characterized by formation of mineralised tissues, which in the tooth include bone-like dentin and cementum as well as epithelially derived enamel.

Mutations in genes encoding molecules in the signaling pathways cause numerous abnormalities in craniofacial bones and teeth including missing or supernumerary teeth, and disturbances in formation of dentin and enamel. Cleidocranial dysplasia (CCD) is a congenital syndrome where both bone and tooth development is affected. The syndrome is characterized by short stature, missing or abnormal clavicles, general bone dysplasia, tooth eruption problems, and supernumerary teeth. CCD is caused by mutations in \textit{RUNX2}, a transcription factor that is a key regulator of osteoblast differentiation and bone formation.

The first aim of this study was to analyse the expression of a family of key signaling molecules \textit{Bone morphogenetic protein} (\textit{Bmp}) at different stages of tooth development. \textit{Bmps} have a variety of functions and they were originally discovered as signals inducing ectopic bone formation. We performed a comparative \textit{in situ} hybridisation analysis of the mRNA expression of \textit{Bmp2}, -3, -4, -5, -6, and -7 from initiation of tooth development to differentiation and crown formation. \textit{Bmp2}, -4, and -7 were frequently coexpressed and showed marked associations with epithelial-mesenchymal interactions. Their expression shifted between the epithelium and mesenchyme starting from the stage of tooth initiation and they were subsequently expressed in the enamel knot, the signaling center regulating morphogenesis. In addition, their expression domains prior to and during the differentiation of odontoblasts and ameloblasts were in line with functions in cell differentiation and/or secretory activities of the cells. The expression of \textit{Bmp3} was confined to mesenchymal cells, in particular to the dental follicle cells that give rise to the cementoblasts. \textit{Bmp5} was expressed only in the epithelial ameloblasts. \textit{Bmp5} may be involved in the induction and formation of dentine and enamel, and \textit{Bmp3} in the development of cementum, respectively. The remarkable overlaps in the expression domains of different \textit{Bmp} genes may implicate functional redundancy and/or formation of active heterodimers between different \textit{Bmps}.

The second aim was to study the role of Runx2 during tooth development and thereby to gain better understanding of the pathogenesis of the tooth phenotype in CCD. To elucidate Runx2 function we analysed the tooth phenotype of \textit{Runx2} knockout mice. Molars of both wild-type and \textit{Runx2} mutant mice were analysed using several methods including \textit{in situ} hybridisation, tissue culture, bead implantation experiments, and epithelial-mesenchymal recombination studies. \textit{In situ} hybridisation analysis of \textit{Runx2} expression showed that it is restricted to dental mesenchyme between the bud and early bell stages of tooth development. Although
Runx2 regulates osteoblast differentiation, it was downregulated in fully differentiated odontoblasts. However, it was expressed in ameloblasts during the maturation phase of enamel formation. Epithelial-mesenchymal recombinants demonstrated that the dental epithelium regulates mesenchymal Runx2 expression during the bud and cap stages. This effect could be mimicked by Fgf but not by Bmp in bead implantation assays.

Phenotypic analysis of Runx2 -/- mutant tooth development showed that teeth failed to advance beyond the bud stage and that mandibular molars were more severely affected than maxillary molars. Runx2 -/- tooth explants, when transplanted beneath the kidney capsules of nude mice, failed to progress in development. Tooth epithelial-mesenchymal recombinations using wild-type and Runx2 mutant tissues indicated that the defect in the mesenchyme cannot be rescued by normal dental epithelium.

We searched for downstream targets of Runx2 by extensive in situ hybridisation analysis. The expression of Fgf3 was downregulated in the mesenchyme of Runx2 -/- teeth. FGF-soaked beads failed to induce Fgf3 expression in Runx2 -/- dental mesenchyme whereas in wild-type mesenchyme they induced Fgf3 in all explants. Fgf3 was induced by overexpression of Runx2 in cultured Runx2 -/- calvarial cells suggesting that Fgf3 may be a direct target of Runx2. Furthermore, Runx2 was downregulated in Msx1 -/- tooth germs indicating that Runx2 functions downstream of Msx1 in the dental mesenchyme. Shh expression was absent from the enamel knot in the lower molars of Runx2 -/- and reduced in the upper molars. However, neither FGF or Shh could rescue the expression of Shh in the enamel knot nor morphogenesis of the Runx2 -/- molars. Other enamel knot markers were expressed normally in mutant upper molars, while reduced or missing in lower molars.

In conclusion, these studies showed that Runx2 regulates key epithelial-mesenchymal interactions that control advancing tooth morphogenesis and histodifferentiation of the epithelial enamel organ, and that it mediates the functions of epithelial Fgf signals regulating the expression of mesenchymal Fgf3 which may be a direct target gene of Runx2. These data indicate a non-redundant role for Runx2 in tooth development that may be distinct from its role in bone formation. In addition, in the upper molars of Runx2 mutants extra buddings occurred at the palatal side of the tooth bud which provided clues for the pathogenesis of CCD. We suggest that these extra buds occur at sites where the formation of the secondary teeth is normally prevented in mice and that Runx2 acts as an inhibitor of successional tooth formation by preventing advancing development of the buds. Accordingly, we propose that RUNX2 haploinsufficiency in humans cause incomplete inhibition of successional tooth formation resulting in supernumerary teeth.
REVIEW OF THE LITERATURE

Regulation of embryonic development

Embryonic development is regulated by the genetic code and epigenetic interaction. The development of an organism is accomplished mainly by proliferation, differentiation, patterning and morphogenesis. Embryonic development begins with a single cell, the fertilized egg, which divides mitotically to produce a multicellular organism in which each cell contains the same DNA. During development growth can be accomplished by proliferation, or increase of cell size or by extracellular matrix. Cells that have undergone proliferation usually continue to either proliferate or differentiate. Differentiation results from the expression of specific set of genes according to the type of cells. Patterning is providing the blueprint of the organism, defining where each tissue and organ should be in the three dimensional space. Morphogenesis regulates the modeling of each tissue and organ to produce the shape and function needed. Patterning and morphogenesis are closely linked processes and by morphogenesis the organism is patterned. During gastrulation of the embryo, three germ layers are produced, endoderm, mesoderm and ectoderm. Endoderm gives rise to the lining of the digestive tube and respiratory system. From mesoderm form the bones, muscle, heart, blood cells, kidneys and gonads. Ectoderm gives rise to epidermis, nervous system, pigment cells and, in teeth, the enamel producing ameloblasts. Signals and signaling pathways that regulate morphogenesis have been conserved between different organs, and even between invertebrates and vertebrates (reviewed by Gilbert, 2006).

Congenital anomalies can be caused by genetic or environmental factors. Syndromes consist of sets of developmental abnormalities that are linked to each other. Organs that are linked in developmental syndromes share either a common origin or a common mechanism of formation. In recent years, the molecular etiology of several craniofacial developmental syndromes have been described, including CCD, hemifacial microsomia, Treacher Collins syndrome and many more. In addition, many mutations are known which cause dental abnormalities such as congenitally missing teeth, supernumerary teeth, and dentin and enamel formation disturbances. By finding the causative gene mutation in a developmental syndrome, the understanding of molecular pathogenesis can be further studied and eventually lead to a more complete etiological picture and thus targeted and more effective treatment (reviewed by Rice, 2005).

Cell and tissue interactions

Inductive interactions involve an inducer that signals to a responding tissue, which, if competent, responds to the signal (Fig. 1). Throughout development, reciprocal and sequential inductive interactions take place between tissues. This mechanism ensures that the adjacent tissues are compatible with each other and that the timing is controlled. Cascades of inductive events are responsible for organ development. Most organs are formed of epithelial and mesenchymal tissues and interactions between these tissue layers regulate proliferation, differentiation and morphogene-
sis and are transduced by signaling molecules. Depending on developmental stage and organ system, either epithelium or mesenchyme may play an instructive role in organogenesis. In many organs the mesenchyme is the dominant tissue in early stages but later this capacity shifts to the epithelium by the epithelial-mesenchyme interactions.

**Signal transduction**

![Diagram of signal transduction](image)

**Fig. 1.** Inductive interactions are transmitted through either juxtacrine or paracrine mechanisms. Juxtacrine interactions take place between the cell membranes of adjacent cells or between a cell membrane and an extracellular matrix secreted by another cell (A, B). Paracrine interactions occur when a cell or tissue secretes soluble proteins that induce changes in neighbouring cells (C, D). Paracrine factors are proteins secreted by inducing cells that bind to cell membrane receptors in competent responding cells. In addition, some paracrine factors are thought to act as morphogens, which can diffuse over several cell layers, form concentration gradients and thus, specify distinct cell fates. Competent cells respond to paracrine factors through signal transduction pathways. Signal transduction pathways begin with a paracrine or juxtacrine factor (signaling molecule) binding to cell membrane receptor which leads to activation of the cytoplasmic domain of the receptor protein. This activity allows the receptor to phosphorylate other cytoplasmic proteins. Eventually, a cascade of such reactions activates a transcription factor (or set of factors) that activates or represses specific gene activity (reviewed by Gilbert, 2006).

**Transcription factors**

There is cross talk between signal transduction pathways, which allows the cell to respond to multiple inputs simultaneously. The maintenance of the differentiated state can be accomplished by positive feedback loops involving transcription factors, or signaling molecules. Transcription factors are proteins that bind to enhan-
cer or promoter regions and interact to activate or repress the transcription of a particular gene. Transcription factors have three major domains. The first is a DNA-binding domain that recognizes a particular DNA sequence. The second is a trans-activating domain that activates or suppresses the transcription of the target gene to whose promoter or enhancer the factor has bound. The third is a protein-protein interaction domain that allows the transcription factor’s activity to be modulated by other transcription factors.

Transcription factors can be grouped together in families based on similarities in structure and DNA-binding sites (reviewed by Gilbert, 2006). Such transcription factor families include Homeobox (including Msx, Dlx, OtIx, Hox), basic-helix-loop-helix, Runx, Pax, Fox, Basic leucine zipper, Zinc finger, Nuclear hormone receptors and Sry-Sox families.

Families of signal molecules

Structure and function of signaling molecule families involved in this study will be described in following section. Some details about possible functions during embryonic development are also mentioned. Involvement in tooth and bone development will also be briefly described. The stages of tooth development is described in Fig. 5 (page 25) and 6 (page 29). Tooth and bone development, including molecular regulation, is described in detail in a later section (pages 20-32).

Tgfβ superfamily

Structure and function

The Tgfβ superfamily consists of more than 50 structurally related members with several subgroups including Tgfβs, Bmps and Activin/Inhibin. Most of the molecules are signaling factors and their inhibitors (Massague, 2000; Balemans and Van Hul., 2002). As in many other signal transduction pathways the expression of both the signal, it’s inhibitor and the receptor is under intrinsic control. In the Tgfβ superfamily the signal transduction is fairly well known and studied. Members of the Tgfβ superfamily are synthesized as large precursor molecules that are proteolytically cleaved to yield biologically active dimers. Homodimer is the most common form but some members, e.g., Activins and Bmps, can also form heterodimers (Hogan, 1996).

The activated type I receptor propagates the signal downstream through the phosphorylation of the cytoplasmic Smad family transcription factors (R-smads, receptor regulated). R-smads form heteromeric complexes with Smad4 (common partner Smad, co-smad) mediating the signal into the nucleus for the activation of target genes (Peik et al., 1999; Massague and Wotton, 2000; Balemans et al., 2002). Tgfβ and Activin signals are mediated by R-smads Smad 2 and Smad 3, and Bmp signals by Smad1, -5 and -8, respectively (Fig. 2).
Fig. 2. Schematic presentation of the Tgfβ superfamily signal transduction. Tgfβ1-3, Bmp2-7 and Activin all bind to similar receptor complexes. The receptor complex consists of two transmembrane type I receptors (also known as Activin like receptor-like kinase, Alk) and two type II receptors with serine-threonine kinase activity (Piek et al., 1999). Several different isoforms of type I and type II receptors exist and their affinity for the different signaling molecules in the Tgfβ family varies. Tgfβ binds to the TgfβrII type II receptor, and Activin to the type II receptors Actr-IIA and –IIB. Bmp2/4 bind to the type II receptor Bmpr-II. Bmp7 binds both to the Bmpr-II and Actr-IIA and –IIB. Of the type I receptors Tgfβ binds to Alk5, Activin to Alk2, and -4, Bmp7 to Alk2, -4, and -6 and Bmp2/4 to Alk3 and -6. Upon ligand binding a ligand-receptor complex is formed and the type II receptor activates type I receptor by phosphorylation.

Regulation of the signal transduction is delicately controlled by inhibitory signals on all levels in the pathway. In the Bmp signaling pathway, inhibition takes place intracellularly by inhibitory Smads (I-Smads; Smad6 and -7). Smad6 appears to inhibit Bmp signaling by binding to the Smad1, and Smad7 inhibits Tgfβ signaling by binding to Smad2 and -3 and thus interfering with the complex formation with Smad4 (reviewed by Tsumaki and Yoshikawa, 2005). In addition, Smurfs inhibit Bmp and Tgfβ signaling intracellularly, by degrading Smads1 and -5 and by interacting with Smads6 and -7 to degrade Bmp and Tgfβ type I receptors (Tsumaki and Yoshikawa, 2005). Inhibition can also take place at the plasma membrane level by pseudoreceptor Bambi. At the extracellular level several modulators of the Bmp signaling is known including Noggin, Chordin, Chordin-like, Dan/Cerberus protein family, Sclerostin, Ectodin, Follistatin and Follistatin-related proteins (Balemans and Van Hul, 2002; Laurikkala et al., 2003). In addition, Bmp3 has been shown to inhibit Bmp signaling (Daluiski et al., 2001; Gamer et al., 2005). Bmp/Tgfβ signaling can also be transduced intracellularly by MAP kinase signaling pathways JNK, p38 and Erk that does not involve Smads (Derynck et al., 2003).
Tgfβ superfamily during embryonic development

Members of the Tgfβ superfamily play diverse roles during embryogenesis, including morphogenesis and angiogenesis, and in the regulation of homeostasis in adult tissues. A wide spectrum of cellular functions during embryogenesis such as proliferation, apoptosis, differentiation, and migration are controlled by Tgfβs (Peik et al., 1999; Massague, 2000; Balemans et al., 2002). The role of Tgfβ1-3, Bmp2-7, Activin and Follistatin are probably best known and will be addressed in more detail as examples of function of the superfamily members.

Tgfβ1-3

Three isoforms of Tgfβ are known which have unique expression patterns, e.g. Tgfβ1-3 (Pelton et al., 1991). Tgfβ1-3 are involved in proliferation and differentiation of osteoblasts, osteoclasts and chondroblasts (reviewed by Karsenty, 1998). Tgfβ1 expression was the first to be shown to shift between epithelium and mesenchyme and to be associated with known inductive tissue interactions. In tooth development at bud stage, Tgfβ1 is expressed in the epithelium and then shifts to the condensing mesenchyme. During cap stage it is expressed intensely in the cervical loop epithelium (Vaahtokari et al., 1991). Tgfβ1-3 are expressed intensely during odontoblast and ameloblast differentiation (Pelton et al., 1990; Vaahtokari et al., 1991). Tissue recombination experiments showed that epithelial Tgfβ1 is induced/maintained by mesenchymal signals during tooth development (Vaahtokari et al., 1991). Tgfβ2 deficient mice exhibit a wide variety of defects including a small dysmorphic mandible, cleft palate and a reduction in cranial bone size and ossification (Sanford et al., 1997). Tgfβ3 knockout mice have cleft palate (Proetzel et al., 1995). A role for Tgfβ in suture development has also been demonstrated. Tgfβ1 and -2 are associated with rat suture development and continue to be expressed later during suture closure while Tgfβ3 has a role in keeping calvarial sutures patent (Opperman et al., 1997; Roth et al., 1997, Lin et al., 1997).

Bmp2-7

Bmps were found by their ability to induce ectopic bone and cartilage formation, and hence named bone morphogenetic proteins (Urist, 1965; Wozney et al., 1988). Bmps can initiate ectopic bone formation and they have been suggested to be of key importance during mesenchymal condensation (reviewed by Li and Cao, 2006). Bmps have been shown to have functions in chondrocyte and osteoblast differentiation mediated through induction of Msx genes (reviewed by Li and Cao, 2006). Bmps are expressed in the condensed mesenchyme of bone primordia and in the perichondrium and periosteum (Bmp2, -4, -5 and -7; Lyons et al., 1989; Kingsley, 1994), as well as in osteoblasts and hypertrophic cartilage (Bmp6; Gelberman et al., 1994, 1995). Bmp5 inactivation causes the mouse mutation short ear, which is characterized by several skeletal defects (Kingsley, 1992). Apart from skeletal development, Bmps have also pleiotropic roles in the induction of ventral mesoderm, differentiation of neural tissues, and in controlling multiple organogenic processes (reviewed by Hogan, 1996). Bmp signals have been shown to have
a wide range of biological activities and regulating cell growth, proliferation, differentiation, chemotaxis and apoptosis in various cell types. Several knockouts of Bmps have been made to elucidate their function during embryogenesis. Bmp2/4 knockout mice are early embryonic lethal (Winnier et al., 1995; Zhang and Bradley, 1996). Bmp3 knockout mice exhibit increased bone density (Daluiski et al., 2001). Bmp6 null mutant mice have delayed sternum ossification (Solloway et al., 1998). Bmp7 knockout mouse revealed that apart from few skeletal deformities several other defects were found including those in kidneys and eyes (Dudley et al., 1995; Luo et al., 1995, reviewed by Karsenty, 1998). Bmp2 has been shown to possess functions during heart development and Bmp4 in the development of lungs and testis (reviewed by Karsenty, 1998). Bmp4 and 7 are involved in the patterning of the neural tube (reviewed by Hogan, 1996). Bmp2, -4, and -7 are parts of the signaling networks that regulate patterning and outgrowth in the developing limbs (Francis et al, 1994). In the developing hair follicle Bmp7 is expressed in the epithelial placode whereas Bmp4 is expressed in the mesenchymal condensation beneath the placode (Chuong 1998; Millar 2002).

Bmps in tooth development

The expression of several Bmps has been localized to the developing tooth at several stages (Vainio et al., 1993; reviewed by Thesleff and Mikkola, 2002). Of particular interest was the observation that Bmp4 is associated with the shift of odontogenic potential from epithelium to mesenchyme (Vainio et al., 1993). Bmps have been shown to participate in epithelial mesenchymal signaling regulating tooth morphogenesis (Thesleff et al., 1995). Bmp2, -4, and -7 were localized in a restricted epithelial cell population, the enamel knot together with other signaling molecules suggesting functions as signals regulating the shape of teeth (Jernvall et al., 1994; Vahtokari et al., 1996; Jernvall et al., 1998). Several Bmps have been localized in odontoblasts and ameloblasts (Lianja et al., 1993; Begue-Kirn et al., 1994).

Activin and Follistatin

Activins regulate growth and differentiation in many biological systems, including mesoderm induction, development of reproductive system, erythropoiesis, neural cell differentiation and bone remodelling (Thomsen et al., 1990, Woodruff, 1998; Maeshima et al., 2001; Chang et al., 2001; Lin et al., 2003). Activin βA is expressed in the dental mesenchyme since the initiation of tooth development. At bell stage, intense Activin transcripts are restricted to the cusp region of dental papilla mesenchyme (Heikinheimo et al., 1997; Ferguson et al., 1998). Activin βA null mutant mice die soon after birth with defects in whiskers, hard palate and teeth (Matzuk et al., 1995). Activin βA null mutant mandibular molars and incisors are arrested at the bud stage, but maxillary molars are unaffected (Ferguson et al., 1998). Activin acts on the dental epithelium and reciprocally induces the expression of its own inhibitor Follistatin (Ferguson et al., 1998)

Follistatin is an extracellular inhibitor of several members of the Tgfβ superfamily proteins, including Activin, Bmp2, -4, and -7 (reviewed by Li and Cao,
2006; reviewed by Rosen, 2006). It has been shown that Follistatin regulates tooth
morphogenesis and tooth crown shape (Wang et al., 2004). Furthermore, Follistatin
regulates enamel patterning in mouse incisors by asymmetrically inhibiting Bmp
signaling and thus ameloblast differentiation (Wang et al., 2004).

**Fgf family**

Structure and function

Fgfs form a growth factor family of intercellular signaling molecules which in vertebrates consists of 22 members (Ornitz and Itoh, 2001). Fgfs are major regulators of embryonic development and affect a variety of cellular functions such as proliferation, survival, differentiation, adhesion and migration (Széchenyi and Fallon, 1999). Fgfs bind to cell surface receptors which are single transmembrane proteins with intracellular tyrosine kinase domains. Their extracellular domain consists of immunoglobulin-like motifs one of which (the Ig-3 loop) determines the ligand selectivity. There are four Fgf receptor genes in vertebrates, but in dental tissues only three $Fgfr$ are expressed ($Fgfr1$, -2, and -3). Alternative splicing creates receptors with two different Ig-3 loops and hence Fgfr1, -2, and -3 exist in two isoforms with differences in ligand binding. The extracellular domain of Fgf receptors interacts with heparan sulphate proteoglycans (HSPG), including syndecan and perlecans, which regulates ligand binding (Zhu et al., 1991; Faham et al., 1996; Ornitz 2000; Ornitz and Itoh 2001). When a Fgf-cofactor complex binds to an Fgfr, the receptor either homo- or heterodimerizes, which in turn leads to phosphorylation and intracellular signal transduction (Givol and Yayon, 1992; Johnson and Williams, 1993; Faham et al., 1996). Numerous indirect and direct Fgf-regulated target genes have been identified including Sprouty genes encoding inhibitors of Fgf signaling (Casci et al., 1999; Mailleux et al., 2001).

Fgfs during embryonic development

Most if not all Fgfs are required throughout embryonic development for the morphogenesis of various organs and tissues. Fgfs3, -4 and -5 are involved in early development both prior to and during gastrulation and neurulation (Wilkinson et al., 1988; Haub and Goldfarb, 1991; Niswander and Martin, 1992; Slack, 1994, reviewed by Crossley and Martin, 1995). Fgfs1, -2, -3, -4, -8, and -9 are involved in limb bud development (reviewed by Martin, 1998) and Fgf8 is involved in brain development (Crossley et al., 1996). In the lung, the Fgf family member, Fgf10 has the potential to induce bud formation and thus it stimulates branching morphogenesis (Bellusci et al., 1997). The role of Fgfs has also been analyzed extensively in the morphogenesis of a variety of organs developing as epithelial appendages such as hairs, glands and teeth (Chuong, 1998; Kettunen and Thesleff, 1998; Kettunen et al., 2000; Mailleux et al., 2001).
Hedgehog family

Structure and function

Hedgehog (Hh) gene was discovered originally in *Drosophila* as a signal regulating segmental and imaginal disc patterning. *Drosophila* has only one *hedgehog* gene whereas mammals have three – *Sonic hedgehog*, *Indian hedgehog* and *Desert hedgehog* (*Shh, Ihh, Dhh*) (Echelard et al., 1993; Krauss et al., 1993; Riddle et al., 1993). They encode secreted proteins that are involved in signaling between cells. Hh signal transduction is mediated by transmembrane receptors Smoothened (Smo) and Patched, which has two genes in mammals (Ptc1 and -2). Ptc inhibits Smo but only when a ligand binds to Ptc this inhibition is prevented allowing signal transduction. Ptc itself is also regulated by Hhs establishing a negative feedback loop. Signal transduction through Smo activates intracellular targets including Gli family zinc finger transcription factors (Gli1, -2, -3) (Ingham, 1998). Ptc1 as well as Hh interacting protein (Hip) also restricts Shh signaling by sequestering Shh protein. Hip is a membrane bound protein that binds to all three Hhs (Chuang and McMahon, 1999; Cobourne and Sharpe, 2002).

Hh in embryonic development

In vertebrates, Hhs are involved in cell fate specification, cell survival and cell proliferation in different developmental processes such as limb morphogenesis, myotome and sclerotome specification, cartilage differentiation, hair follicle development, regulation of left-right asymmetry, cranial neural crest survival, motor neuron induction and spermatogenesis (Hammerschmidt et al., 1997; reviewed by Ingham and McMahon, 2001).

Ihh has rather restricted functions during development, regulating mainly skeletal differentiation. In addition it is expressed in gut and in cartilage and is important for postnatal bone growth (Bitgood and McMahon, 1995; Bitgood et al., 1996). Dhh is involved in spermatogenesis and is expressed in Schwann cells and Sertoli cells of the testis. *Dhh* knockout mice exhibit defective spermatogenesis (Bitgood and McMahon, 1995; Bitgood et al., 1996; Clark et al. 2000). In contrast, Shh regulates a wide variety of developmental events such as left-right asymmetry and the patterning of the neural tube and limbs. Shh also regulates the morphology of several organs, predominantly epithelial structures dependent on epithelial-mesenchymal interactions in lung (branching), hair follicle, tooth and bladder. Shh is expressed in three regions that have key organiser activity in the embryo: notochord, floor plate and the zone of polarizing activity in the limb bud (McMahon, 2000; Martin, 1998; Vaahtokari et al., 1996). *Shh* deficient mice have several developmental abnormalities including defects in craniofacial structures, neural tube and limbs (Chiang et al., 1996).
Notch family

Structure and function

Notch was first identified in *Drosophila* as a large membrane receptor controlling cell fate decisions. In vertebrates four Notch homologs are known. In vertebrates the ligands to the Notch receptors are Jagged (*Drosophila* Serrate) and Delta-like molecules. In Notch signaling, both the ligand and receptor are transmembrane proteins and thus signal transduction requires intimate cell-cell contacts (Lewis, 1998; Bray, 1998; Artavanis-Tsakonas et al., 1999).

Ligand binding to the Notch receptor causes the release of the intracellular domain which translocates into the nucleus activating the target genes belonging to the Hes family of basic helix-loop-helix (bHLH) transcription factors, mainly *Hes1* and *Hes5* (Sasai et al., 1992; Takebayashi et al., 1995). Furthermore, activation of Notch in a given cell regulates production of Notch ligands by that cell (Lewis, 1998; Bray, 1998; Artavanis-Tsakonas et al., 1999).

Notch signaling activity is modified by Fringe molecules which are glycosyltransferases that affect the glycosylation of the molecules involved in the Notch signaling at the cell surface. There are three *Fringe* genes in mammals: *Lunatic Fringe*, *Radical Fringe*, and *Manic Fringe* (Wu and Rao, 1999). The modulation by Fringe is context-dependent and varies between different ligands. In *Drosophila*, Fringe inhibits a cell’s ability to respond to Serrate protein (Jagged in vertebrates) and potentiates its ability to respond to Delta protein (Panin et al., 1997).

Notch signaling during embryonic development

Notch signaling has been implicated in cell fate decisions and in the formation of tissue compartments during the development of insects and vertebrates (Artavanis-Tsakonas et al., 1999; Mustonen et al., 2002; Baron, 2003). Fringe functions in the establishment of tissue boundaries in *Drosophila*, and it has been implicated in border formation in the apical ectodermal ridge (AER) signaling centers in vertebrate limbs (Laufer et al., 1997). Interestingly, *Lunatic Fringe (L-Fng)* expression forms a sharp boundary with the enamel knot, which itself is devoid of *Fringe* expression. It is thus possible that L-Fng play a role in the formation of the enamel knot signaling center in the dental epithelium. However, tooth morphogenesis appears unaffected in *L-Fng* null mutant mice (Mustonen et al., 2002).

Wnt family

Structure and function

The vertebrate Wnt family contains over 20 secreted glycoproteins that are involved in a variety of developmental processes such as cell proliferation, migration and differentiation as well as in tumorigenesis (Wodarz et al., 1998; Sharpe et al., 2001). Wnts signal through the Frizzled family of receptors and to date more than ten receptors have been identified in vertebrates. Although extensive research, the ligand specificity and function of the receptors are still far from clear. Wnt function
is also extracellularly modulated by secreted Frizzled-related proteins, such as dickkopf, cerberus, and Wnt inhibitory factor-1. They are thought to have antagonist activity, although in some cases they may also act as Wnt agonists (Wang et al., 1997; Piccolo et al., 1999; Hsieh et al., 1999; Polakis, 2000; Zorn, 2001). Wnts have also a co-receptor, the low-density lipoprotein receptor-related protein (Lrp5/6) which bind the extracellular inhibitor Dickkopf (Huelsken et al., 2001).

After ligand binding to the Frizzled receptor, several different signal transduction pathways can be triggered and at least three different signaling cascades are known. In the classical, canonical, pathway, Wnt signaling through Frizzled activates the intracellular Disheveled. This leads to the inactivation of the glycogen synthase kinase 3 enzyme (Gsk-3) and subsequently to β-catenin stabilisation. When Gsk-3 is active, it prevents β-catenin from dissociation from the adenomatous polyposis coli (APC) protein and thus targets β-catenin for degradation. However, when Wnts signal through Frizzled, activate Disheveled and thus inhibit Gsk-3, β-catenin can dissociate from the APC protein and translocate to the nucleus. In the nucleus β-catenin functions as a transcriptional coactivator by interacting with T cell factor/lymphoid enchancer binding factor (Tcf/Lef) transcription factors to mediate many of the effects of Wnts on gene transcription (reviewed by Krishnan et al., 2006).

Notably, β-catenin is also a structural adaptor protein linking cell-cell adhesion molecules cadherins to the actin cytoskeleton (Nelson and Nusse, 2004). In addition, APC functions as a tumour suppressor in adults and Gsk-3 also regulates glycogen metabolism (Korinek et al., 1997; He et al., 1998).

Wnt gene family during embryonic development

The knowledge of the signaling and developmental functions of Wnts is based on the studies of the Drosophila wingless, the Wnt ortholog of the fly. Wingless is involved in segment polarity patterning and development of various organs. (Cadi-gan and Nusse, 1997; Wodarz and Nusse, 1998; Huelsken and Birchmeier, 2001). In Xenopus Wnts are also involved in axis formation. Wnts have different abilities to promote secondary axis formation in Xenopus and this correlates also with the oncogenic potential and thus Wnts are not functionally equivalent (Polakis, 2000; Kuhl et al., 2000). In humans, constitutive activation of the Wnt signal transduction can cause cancer (Lustig and Behrens, 2003). Mutations in AXIN2, part of the β-catenin degradation complex, can cause severe oligodontia and predispose to colorectal cancer (Lammi et al., 2004). In mice Wnts are involved in the development of most of the organs regulating cell proliferation, migration, differentiation and epithelial-mesenchymal interactions (Millar, 2002). In addition, Wnts are involved in skeletal development and bone remodelling (reviewed by Abe, 2006).

Other signaling molecules

The tumour necrosis factor (TNF) family consists of more than 15 members, most of which are involved in regulating host defence, immunity, and inflammation (Baker and Reffy, 1998; Locksley et al., 2001). TNF family members are also involved in osteoclast survival and differentiation as well as terminal differentiation
of mammary gland alveolar buds (Filvaroff and Derynck, 1998; Fata et al., 2000). The identification of genes responsible for hypohidrotic (anhidrotic) ectodermal dysplasia (HED) syndromes has indicated that TNFs are also important regulators of ectodermal organogenesis (Kere et al., 1996; Headon and Overbeek, 1999; Mikkola et al., 1999). In ectodermal organ development two Tnf members have been implicated, Ectodysplasin A-I (EDA-A1) and EDA-A2, which are splice variants of the same gene (Bayés et al., 1998; Yan et al., 2000). The receptor for EDA-A1 is EDAR (mouse Downless) and for EDA-A2 XEDAR (Headon and Overbeek, 1999; Yan et al., 2000). For a third receptor, TROY, the ligand is unknown (Hu et al., 1999; Eby et al., 2000; Kojima et al., 2000). Troy is coexpressed in teeth with Edar (Pispa et al., 2003).

**Tooth as a model for ectodermal organ development**

The early embryonic ectoderm is divided into three major domains: neural crest, neural tube and the surface ectoderm. The neural crest gives rise to the peripheral nervous system, most craniofacial bones and cartilage and the mesenchymal component of the tooth. The neural tube gives rise to the brain and spinal cord. The main derivative of surface ectoderm is the epidermis of the skin but also several other structures like oral epithelium, olfactory epithelium, lens and the cornea develop from surface ectoderm. Several organs including hair, feather, tooth and glands are formed as appendages of the embryonic ectoderm. These structures are formed of the ectoderm and the underlying mesenchyme through sequential and reciprocal epithelial-mesenchymal interactions (Gilbert, 2006; Pispa and Thesleff, 2003).

During development epithelial appendages protrude out of the epithelium (hair, teeth, feathers) or invaginate into the surrounding mesenchyme (glands including sweat-, saliva- and mammary glands). All these structures share similar regulatory mechanisms and developmental stages, such as initiation, morphogenesis and differentiation. Accordingly, the developmental regulatory molecules are shared between these organs (Thesleff and Mikkola, 2002).

At the initiation stage, a thickening of the epithelium forms an ectodermal placode, which causes the condensation of underlying mesenchymal cells. The placode will subsequently invaginate into the mesenchyme and form an epithelial bud (teeth, hair, and glands) except in feather development where the bud will grow out of the mesenchyme. The bud will then undergo morphogenesis, by growing, folding and/or branching, and attain the final size and shape of the organ. Through differentiation cells gain their organ specific functions and form structures such as dentin and enamel of teeth and secretory cells of glands (Pispa and Thesleff, 2003).

**Mammalian tooth development**

The development of mammalian dentition requires a sequence of events determining the dentition as a whole, subregions of tooth classes (e.g. incisor and molar regions), and morphogenesis of individual teeth within each tooth class (Jernvall and Thesleff, 2000). Mammals usually have three different tooth families: incisors, canines and molars (including premolars). Incisors have blade like crowns for cut-
ting the food whereas canines have a more cone-shaped crown suitable for piercing or tearing the food. Molar crowns consist of several cusps and are used to grind and masticate food (Fig 3; Berkovitz et al., 2002).

Tooth development is a good model for organ development and it has been studied extensively in mice. Although timing, number and final shapes of human teeth differ from mice, it is likely that the signal transduction pathways and molecules are very similar. Furthermore, the early stages of tooth development are morphologically quite similar in mice and humans. In the following description of tooth development we mention the mouse embryonic day for each stage.

**Differences between mouse and human tooth development**

In rodents, only incisor and molar tooth families are present (Fig. 3). In the toothless diastema region in rodents, between the incisors and molars, rudimentary tooth germs develop which are arrested by the bud stage and eventually removed by apoptosis (Tureckova et al., 1995; Keränen et al., 1999). In each jaw quadrant rodents have one incisor and humans have two, and both have three molars (Fig. 3). The incisors of rodents are continuously erupting in contrast to human incisors. Furthermore, the rodent incisors are different in having enamel only on the labial surface.

![Fig. 3. Schematic drawings of mouse and human dentitions](image-url)
Primary and secondary dentition

Rodents have only one dentition whereas most mammals have two, deciduous and permanent teeth (Fig. 3). The permanent incisors, canine and premolars form from the dental lamina at its deepest extremity. The proliferating activity in the dental lamina leads to the formation of another tooth bud on the lingual aspect of the deciduous tooth germ. The molars of the permanent dentition have no deciduous predecessors and thus are formed as a backward extension of the dental lamina forming the first, second and third molar (Ten Cate, 1998). Permanent dentition is predominantly affected in human hypodontia which can be diagnosed in up to 8% of the population, if wisdom teeth are not included (Thesleff and Pirinen, 2004).

Initiation of tooth development

Mammalian tooth development is initiated from the ectoderm covering the maxillary, frontonasal and mandibular processes, where the dental lamina is formed. The dental lamina can be distinguished in mouse at embryonic day 10.5 (E10.5) as a horseshoe-shaped epithelial thickening. The mesenchymal component of the maxilla and mandible is derived from the neural crest cells that have migrated from the posterior midbrain and anterior hindbrain (Imai et al., 1996; Chai et al., 2000; Zhang et al., 2003). Classical tissue recombination experiments have demonstrated that the early stage oral epithelium (E9-11) possesses the odontogenic potential. After initiation stage, at E12, the odontogenic potential shifts to the mesenchyme (Mina and Kollar, 1987; Lumsden, 1988).

The complete picture of the signaling network leading to tooth induction is not known yet although extensive research has been conducted (Fig. 4). Antagonistic signaling between Bmps and Fgfs regulates various developmental processes in limbs and facial processes (Niswander and Martin, 1993; Buckland et al., 1998). Fgf8 is expressed in the oral ectoderm and may be involved in the regional specification of the oral side of the maxillary and mandibular arch by inducing and regulating mesenchymally expressed transcription factors Lhx6 and Lhx7 (Grigoriou et al., 1998).

In addition, Fgf8 stimulates and Bmp2 and Bmp4 inhibits Pax9 expression in the mouse E10 branchial arch mesenchyme, which has also been suggested to determine the correct positions of individual tooth buds within the dental lamina (Neubuser et al., 1997).

Pax-9 is a paired box transcription factor and its expression is restricted to the future tooth mesenchyme prior to any morphological signs of tooth development (E10.5). However, in Pax9 deficient mice, the tooth buds do form in the dental lamina at the right locations, although tooth development does not proceed further (Peters et al., 1998). This indicates that other factors also contribute to the localisation of the tooth buds within the dental lamina. Indeed, other genes are more restricted to the dental lamina, such as the transcription factor Pitx2 (Otlx2, Rieg) (Mucchielli et al., 1997). In mice deficient of Pitx2, the development of maxillary teeth is arrested at placodal stage and mandibular teeth are arrested at bud stage. In addition, in humans, haploinsufficiency of PITX2 is associated with Rieger syn-
drome characterized by several missing teeth (oligodontia) (Semia et al., 1996; Flomen et al., 1998; Lin et al., 1999).

Antagonistic signaling between Shh and Wnt has been demonstrated to be involved in the definition of boundaries of developing tooth germs. Shh expression is restricted to the dental lamina of future incisor and molar regions at early stage and is later confined to the tips of the tooth buds (E11.5-14.5). In contrast, Wnt7b is expressed throughout the oral epithelium but is absent in the Shh expressing tooth forming regions (Sarkar et al., 2000; Hardcastle et al., 1998, Keränen et al., 1999). It has been suggested that Wnt7b restricts Shh expression to act locally in specific tooth forming regions where Shh stimulates cell proliferation required for the tooth bud formation (Gritli-Linde et al., 2001; Hardcastle et al., 1998; Sarkar et al., 2000).

![Fig. 4. Schematic representation of the signals and transcription factors mediating the reciprocal signaling between epithelium and mesenchyme during advancing tooth development.](image)

**Determination of tooth identity**

It has been suggested that neural crest cells may be specified first as odontogenic lineage and later further regionally specified as maxilla/mandible/molar/incisor (Weiss et al., 1998; Tucker and Sharpe, 1999). Tissue recombination experiments have given an indication that the early dental epithelium and not the neural crest determines the tooth type (Kollar and Mina, 1991) but more recently early neural crest in mouse was shown to induce teeth in chick (Mitsiadis et al., 2003). Fgf8 from the oral ectoderm induces the transcription factor Barx1 in the molar region whereas Bmp4 inhibits the expression in the incisor region. The epithelial Bmp4 induces Msx1 in the incisor area. After inhibiting Bmp4 in the incisor region with
Noggin at E9-E10, the Barx1 expression extended to the incisor area leading to the transition from incisor to molar (Tucker et al., 1998). This supports the theory that the oral ectoderm determines the tooth phenotype.

It has been suggested that dynamic patterns of signal molecules in the early facial process result in differential activation of key transcription factors. For instance, specific combinations of homeobox containing transcription factors might determine the identity of teeth (Tucker and Sharpe, 1999). There are a number of homeobox containing genes with overlapping and region-specific expression patterns in the facial ectomesenchyme, such as Alx3, Barx1, Dlx1,-2,-3,-5, -6,-7, Ptx2, Msx1,-2, Lhx7,-7 and Gsc. They are expressed prior to the first morphological signs of tooth development but also during later stages (Cobourne and Sharpe, 2003).

A great number of transcription factors have been identified as targets for early epithelial signals in branchial arch mesenchyme. Fgfs induce the expression of homeobox genes Lhx6,-7, Msx1,-2 and Dlx1,-2, Bmps upregulate Msx1,-2 and Dlx1, -2 whereas Shh induces Gli1,-2, and -3 (Bei and Maas, 1998; Hardcastle et al., 1998; Tucker et al., 1999).

Several of the above mentioned molecules have been shown to be essential for tooth development at early stage, because deletion of their function in knockout mice results in a arrest of tooth development at the dental lamina stage. However, only double knockouts where functions of two genes have been deleted, such as both Msx1 and Msx2 cause an arrest of development at this stage. Similarly, Gli2 and -3 double knockouts arrest also at the dental lamina stage except for the upper incisors that grow to bud stage. In addition, a double knockout of both Dlx1 and -2 results in similar arrest at dental lamina stage except that it only affects maxillary molars (Thomas et al., 1997; Bei and Maas, 1998; Hardcastle et al., 1998). Therefore Msx1-2, Gli2-3 and Dlx1-2 transcription factors are probably functionally redundant because only when both genes are knocked out, an early tooth development arrest phenotype is seen. Although Dlx1 and -2 are expressed both in the upper and lower molar regions, Dlx5 and -6 are present only in the lower molars (Thomas et al., 1997; Weiss et al., 1998). This suggests that the latter genes compensate for the loss of Dlx1 and 2 in the lower jaw resulting in the phenotype only in the upper jaw.

**Dental placode - the early signaling center**

After a specific tooth type has been specified at a regionally specific location within the dental lamina, a thickening of the epithelium takes place (E11). The local thickening will then grow and protrude into the mesenchyme as an epithelial bud. Before the bud stage, epithelial signals induce mesenchymal signals that then act reciprocally on the dental epithelium to form the signaling center, also called a dental placode (Fig. 5). Other ectodermal organs have similar structures that share the morphological and molecular similarities with the dental placode (Pispa and Thesleff, 2003). The placode expresses locally several genes, including Bmp2, Shh,Wnt10a, p21, Msx2 and Lef1 (Jernvall and Thesleff, 2000) (Fig. 4). The early signaling center in tooth is similar to the apical ectodermal ridge in the limb bud and isthmus in central nervous system, as they regulate the behaviour of surrounding cells. At this stage, E11.5-E12, also the potential to instruct tooth development
shifts from the epithelium to mesenchyme (Mina and Kollar, 1987). Furthermore, it has been suggested that the mesenchyme may acquire the full competence to induce tooth development only after signals are received from the dental placode (Jernvall and Thesleff, 2000).

Bmp4 and Activin βA have been proposed to be the key signals from the mesenchyme to induce the epithelial signaling center and subsequent budding of the tooth (Jernvall and Thesleff, 2000). Epithelial Bmp4 induces the mesenchymal Bmp4 expression via Msx1 and this shift of expression from epithelium to mesenchyme (E11.5) coincides with the shift of the potential to instruct tooth development (Mina and Kollar, 1987; Vainio et al., 1993). Simultaneously, Msx1 expression that have been widely expressed throughout the facial mesenchyme, becomes restricted to the tooth bud regions in the mesenchyme (Cobourne and Sharpe, 2003). In addition, Bmp4 induces p21 in the dental placode. p21 is associated with the stop of cell proliferation and is expressed in several other signaling centers (Jernvall et al., 1998). Transgenic mice with deleted function of Activin βA, which is expressed in the mesenchyme and induced by epithelial Fgf8, show a phenotype opposite to the Dlx1-2 double knockout and all teeth except upper molars are arrested at early bud stage (Ferguson et al., 1998). In addition, exogenous Activin βA protein can rescue tooth development in the mutants but only when implemented at E11.5 and not later, which suggests that it has a key function in the initiation of the epithelial budding (Ferguson et al., 1998). Furthermore, in mice lacking p63, all ectodermal organs fail to develop, including tooth and hair. The dental lamina is formed in the p63 −/− mouse but no tooth buds are formed (Laurikkala et al., 2006).

Fig. 5. Schematic representation of the stages of early morphogenesis of first molar tooth. oe, oral epithelium; dl, dental lamina; pl, dental placode; dm, dental mesenchyme; de, dental epithelium; ode, outer dental epithelium; df, dental follicle; ek, enamel knot; ide, inner dental epithelium; dp, dental papilla; eo, enamel organ.
Enamel knot and bud to cap transition

After the dental placode has formed, the epithelial bud grows into the mesenchyme and at E13 it has reached its full vertical height. Subsequently the tip of the bud flattens due to the growth of the width of the bud. Simultaneously a new signaling center is formed, the primary enamel knot (E13.5-E14), at the tip of the widened bud (Fig. 5). The primary enamel knot is a non-proliferating transient structure that is thought to regulate the growth of the flanking epithelial cervical loops which invaginate and form a cap-shaped structure, surrounding the mesenchymal dental papilla (cap stage of tooth development) (Jernvall et al., 1998).

The transition from bud to cap stage is a critical step in tooth development and requires reciprocal and sequential signaling between the epithelium and mesenchyme. Interruption of this signaling leads to an arrest of tooth development at this stage shown in several knockout mice such as Msx1, Lef1, Pax9, and Activin βA (Jervall and Thesleff, 2000) (Fig. 4). In all these mutants, the formation of the enamel knot has been impaired which suggests that it is a prerequisite for the tooth bud to develop into cap stage. Interestingly, a common feature of the knockouts of transcription factors Msx1 and Pax9 is that Bmp4 is missing from the dental mesenchyme. This indicates that Bmp4 is a good candidate for the mesenchymal signal inducing the transition from bud to cap stage (Jernvall and Thesleff, 2000). This is also supported by experiments in which addition of exogenous Bmp4 can rescue the arrest at bud stage of Msx1 mutant embryos (Bei et al., 2000).

The primary enamel knot expresses, when formed at E13.5-E14, mRNA of several genes such as Fgf9, Bmp2, Bmp7, Shh, Wnt10a, Msx2, Edar, p21 and Follistatin (Vaahtokari et al., 1996; Kettunen and Thesleff, 1998; Dassule and McMahon, 1998; Laurikkala et al., 2001; Jernvall et al., 1998; Heikinheimo et al., 1997). In addition, at cap stage (E14-E14.5), when the enamel knot is histologically distinguishable as a cluster of condensed cells at the tip of the tooth germ, also some additional genes are expressed including Fgf3, Fgf4, Bmp4, Wnt3 and Wnt10a (Kettunen and Thesleff, 1998; Sarkar and Sharpe, 1999; Jernvall et al., 1998). Signal pathways of Bmp, Fgf, Shh and Wnt families have been shown to be integrated at different levels in tooth development and they partly activate the same transcriptional targets. Both Fgfs and Bmp4 activate Msx1 and Dlx2, although Msx2 is only activated by Bmp and Dlx1 by Fgf (Vainio et al., 1993; Bei and Maas, 1998; Kettunen and Thesleff, 1998). Furthermore, it has been suggested that Lef1 may integrate Wnt and Bmp signaling as both can induce Lef1 in the mesenchyme and Lef1 interacts intracellularly with β-catenin, which in turn can regulate cell adhesion with E-cadherin (Dassule and McMahon, 1998). Shh has been shown to repress Wnt10b expression in the dental epithelium and Shh receptor Ptc, which is regulated by Shh, require Msx1 in the mesenchyme (Dassule and McMahon, 1998; Zhang et al., 1999).

Fgf have been suggested to be involved in the proliferation of the cervical loops and subsequent growth. All studied Fgfs function as mitogens in cultured dental tissues but epithelial Fgf4 and Fgf9 can stimulate proliferation of both epithelium and mesenchyme, whereas mesenchymal Fgf10 can only stimulate epithelial cells (Jernvall and Thesleff, 2000). Abundance of Fgf receptors in the cervical loops and dental papilla suggest that these are target tissues, and this is in line with the distri-
bution of dividing cells in the tooth germ (Jernvall and Thesleff, 2000). The enamel knot expresses several growth stimulating signals, including Fgf4, Fgf3 and Fgf9, while its cells remain non-proliferating themselves. This is probably due to the lack of Fgf receptors in the enamel knot itself (Jernvall et al., 1998; Kettunen and Thesleff, 1998). p21 is also expressed in the enamel knot and is thought to be involved in the differentiation and withdrawal from the cell cycle (Jernvall et al., 1998). Interestingly, p21 is also expressed in AER which is another signaling center expressing Fgfs while remaining itself non-proliferative (Parker et al., 1995). The reciprocal Fgf signaling between epithelium and mesenchyme regulating gene expression within the same signal family is similar as in limb development (Xu et al., 1998). It has been shown that Lef1 is a critical survival factor for the dental epithelium during tooth morphogenesis (Sasaki et al., 2005). In Lef1 mutants Fgf4 is missing in enamel knot and Fgf3 in dental mesenchyme and Fgfs can rescue the arrest of tooth development in Lef1 mutants (Kratochwil et al., 1996, 2003).

**Secondary enamel knots and cusp formation**

The primary enamel knot is a transient structure that is removed by apoptosis beginning from the distal/posterior end and proceeding until only the anterior portion remains. After primary enamel knot removal in teeth with more than one cusp (e.g. molars), new, secondary enamel knots form at the sites of future cusp tips. In this so-called bell stage, from E15 onwards, cervical loops grow downwards into the mesenchyme. Secondary enamel knots are non-proliferative, express Fgf4 and are removed by apoptosis, similar to primary enamel knots (Vaahtokari et al., 1996; Coin et al., 1999b). The apoptosis in the enamel knot is associated with the expression of Bmp4 which precedes the apoptosis of the knot cells. Apoptosis has been suggested to be a mechanism controlling the duration of the signaling, similar to the removal of the AER in the limb bud (Pizette and Niswander, 1999). Bmp4 regulates also apoptosis in other events during development, e.g. in rhombomeres and formation of digits (Smith and Graham et al., 2001; Guha et al., 2002).

Fgf4 expression is a good marker for secondary enamel knots and is strictly limited to the cusp tips whereas Shh, p21, Fgf9 and mesenchymal Bmp4 have more diffuse expression domains (Jernvall and Thesleff, 2000). Comparison between two mammalian species with different molar morphology suggested that the cusp patterning begins as early as E15, after removal of primary enamel knot, before any cusp development is evident morphologically (Keranen et al., 1998). Secondary enamel knots form in a species-specific pattern and will dictate the future cusp pattern (Jernvall et al., 2000). The spacing of the secondary enamel knots must be accurately controlled as this determines the correct cusp position and size resulting in a functional, specific tooth shape in each species (Jernvall and Thesleff, 2000).

Bmps have been suggested to play a role in formation of periodic patterns by inhibiting the spreading of Fgf signaling (Jung et al., 1998). It has been suggested that in tooth, Fgf4 functions as cusp activator while Bmps and possibly Shh could function as inhibitors regulating the distance between the cusps (Jernvall and Thesleff, 2000). Shh signaling was shown to be essential for asymmetrical growth of the enamel organ (Dassule et al., 2000). However, it has been suggested that the
action of Shh on the dental epithelium is indirect and acts on the dental mesenchyme that reciprocally regulates growth of the epithelial cervical loops (Gritli-Linde et al., 2002).

More insight in cusp formation and patterning has been attained from studies of Tabby mutant mice with defects in cusp patterning. Tabby gene is the mouse homologue of the HED gene EDA and encodes a protein called Ectodysplasin, which is a member of the Tnf ligand superfamily (Mikkola et al., 1999; Pispa and Thesleff, 2003). Both HED patients and Tabby mice are characterized by abnormal development of epithelial appendages such as teeth, hair, and sweat glands. The cusp pattern in Tabby mice molars is compressed as the tips of the cusps are close or united to each other. Furthermore, the last developing cusps as well as the third molar are often missing (Jernvall and Thesleff, 2000). It has been proposed that the cause of the tooth phenotype of Tabby mice is the small size of the tooth germ and subsequently small primary enamel knot. Supporting this is the observation that the Tabby enamel knot express all the knot signals analyzed but is greatly reduced in size (Pispa et al., 1999).

In addition, the central role of Tgfβ/Bmp signaling in cusp patterning has also become evident from the aberrant shapes of molars in the Follistatin transgenic mice. Imbalance between the amount of Activins/Bmps and their inhibitor Follistatin has been suggested to cause abnormal proportion of activators and inhibitors of normal enamel knot formation and thus abnormal cusp patterning (Wang et al., 2004). Computer modelling of the function of activators and inhibitors indicates that the cusp pattern of different animal species can be mimicked by fine-tuning of their activities (Salazar-Ciudad and Jernvall, 2002). Further evidence of the importance of the correct ratio between activators and inhibitors have been shown in studies of mice with deleted Ectodin function (Kassai et al., 2005). Ectodin is a Bmp inhibitor and also a Wnt signaling modulator and these mice have severe cusp patterning defects (Kassai et al., 2005).

**Cell differentiation and mineralisation**

During tooth cusp morphogenesis, the cells at the border between the inner enamel epithelium and the dental papilla mesenchyme begin to differentiate to ameloblasts and odontoblasts. The differentiation process begins in mouse at E16 and continues in the cervical direction until the root starts to develop. The differentiation of odontoblasts and ameloblasts is regulated by reciprocal epithelial-mesenchymal interactions, and the same signal molecules associated with morphogenetic regulation have also been linked with dental cell differentiation.
Fig. 6. Schematic representation of cell differentiation during first molar tooth development. od, odontoblast; d, dentin; e, enamel; am, ameloblast; si, stratum intermedium; sr, stellate reticulum; ode, outer dental epithelium; df, dental follicle; dp, dental papilla.

Odontoblasts

Preodontoblasts are initially cylinder-shaped and organised as a single layer adjacent to the inner enamel epithelium. During differentiation, the preodontoblasts elongate and polarize becoming odontoblasts that are tall columnar cells (Fig. 6). Odontoblasts secrete dentin matrix consisting of mainly type I collagen but also non-collagenous proteins including proteoglycans, glycoproteins and dentin sialophosphoprotein (DSPP) (D'Souza et al., 1997).

Odontoblast differentiation is regulated by the inner dental epithelium (Fig. 5) (Thesleff and Hurmerinta, 1981; Ruch et al., 1995). Since odontoblast differentiation begins in the mesenchymal cells adjacent to the secondary enamel knots, it has been proposed that signals from the secondary enamel knot regulate the initiation of terminal differentiation of odontoblasts (Jernvall and Thesleff, 2000). Signals in the Tgfβ and FGF families have been implicated in odontoblast differentiation. In vitro experiments have shown that Tgfβ1 and -3 and Bmp2, -4 and -6 can induce polarization of preodontoblasts and stimulate dentin matrix secretion (Begue-Kirn et al., 1992; Ruch et al., 1998).

Ameloblasts

Preameloblasts are derived from precursor cells of the inner dental epithelium of the enamel organ and during differentiation into secretory ameloblasts they become highly columnar and polarized with oval-shaped nuclei elongated along the apical-basal axis (Fig. 6) (Ten Cate, 1998). Functional ameloblasts secrete a number of enamel matrix proteins, including amelogenin, ameloblastin, enamelin, tuftelin, DSPP, laminin 5 as well as proteolytic enzymes (Robinson et al., 1998). When the enamel matrix deposition is complete, the secretory ameloblasts shrink in size. During maturation even 25% undergo apoptosis and the remaining cells, together with the outer enamel epithelium, form a protective layer on the enamel until the tooth has erupted (Joseph et al., 1999).
Again, reciprocal epithelial-mesenchymal interactions regulate ameloblast differentiation and presence of functional odontoblasts and/or predentin-dentin is required. Secretion of enamel matrix is only initiated when dentin matrix begins to mineralize (Coin et al., 1999a). Ameloblast and odontoblast cytodifferentation can be induced by Tgfβ1, Bmp2 and Bmp4 (Begue-Kirn et al., 1992, 1994; Wang et al., 2004). It was recently shown that the main signal from odontoblasts inducing ameloblast differentiation is Bmp4, and that Activin emanating from the dental follicle antagonizes the effect of Bmp4 (Wang et al., 2004). In addition, overexpression of Smad2 in the epidermis under keratin 14 promoter resulted in abnormal enamel structure (Ito et al., 2001). It has also been shown that Shh is necessary for regulating cell proliferation within the dental epithelium and controlling cytodifferentiation of preameloblasts (Gritli-Linde et al., 2002).

**Bone development**

Most of the craniofacial skeleton is of neural crest origin, except for the otic and occipital region and the parietal bones that are derived from cephalic and somitic mesoderm (Couly et al., 1993; Chai et al., 2000). Bone development begins with the formation of mesenchymal condensations at sites of future bones, consisting of cells that can differentiate into either chondroblasts or osteoblasts (reviewed by Hall and Miyake, 2000). In mouse, condensations appear between E10.5-E12.5 and subsequently bone formation begins by intramembranous or endochondral mechanism (reviewed by Karsenty, 1998). Most bones form through endochondral ossification but in the facial area intramembranous bone formation predominates. Mutations in the genes encoding paracrine factors, their receptors and transcription factors that regulate these ossification processes, cause numerous craniofacial developmental abnormalities (reviewed by Rice, 2005).

**Fig. 7.** Schematic representation of molecular regulation of chondroblast and osteoblast differentiation (modified from Kobayashi and Kronenberg, 2005). Transcription factors important for certain stages are indicated by a box. Signal molecules are indicated with a arrow.
**Endochondral ossification**

First stage of endochondral ossification is the commitment of mesenchymal cells to become cartilage cells. This is caused by paracrine factors inducing two transcription factors, Pax1 and Scleraxis, that are thought to activate cartilage specific genes (Cserjesi et al., 1995; Sosic et al., 1997). Subsequently, the committed mesenchymal cells condensate into compact nodules and differentiate to chondrocytes. It has been suggested that N-cadherin is involved in the initiation of these condensations, and that N-CAM is critical for maintaining them (Oberlender and Tuan, 1994; Hall and Miyake, 2000). Sox9 is required for cartilage differentiation and expression of chondrocyte-specific genes that encode cartilage extracellular matrix components, including collagen types II, IX, and XI, and aggrecan (Åberg et al., 2005). The stages of chondrocyte differentiation are regulated by a complex series of signaling molecules and transcription factors in addition to Sox9 and Runx2/3 (Fig. 7). Signaling molecules involved in chondrocyte differentiation include Bmps, Fgfs, Ihh and Wnts. Transcription factors involved include L-Sox5, Sox6, Dlx5 and Dlx6 (Fig. 7) (reviewed by Kobayashi and Kroneberg, 2005). During the next phase, chondrocytes proliferate to form the cartilage model for the bone and simultaneously secrete a cartilage specific extracellular matrix. In the next phase, the chondrocytes increase their volume and become hypertrophic chondrocytes and altered matrix production enables calcification of the cartilage. Runx2 and Runx3 are the major transcription factors regulating chondrocyte hypertrophy (Fig. 7) (Kobayashi and Kroneberg, 2005). The chondrocytes are eventually removed by apoptosis (Hatori et al., 1995). In the last phase blood vessels invade the cartilage model and induce the differentiation of osteoblasts. Paracrine factors induce the expression of Runx2 which is essential for the osteoblast differentiation (Otto et al., 1997). Hypertrophic chondrocytes also secrete the angiogenesis factor, Vegf, which stimulates vascularization (Gerber et al., 1999; Haigh et al., 2000). Transcription factors required for osteoblast differentiation are Runx2 and Osterix, which is a downstream target of Runx2 (Kobayashi and Kronenberg, 2005). Recently β-catenin, which is part of canonical Wnt signaling, has been shown to be important for various stages of osteoblast differentiation (reviewed by Kobayashi and Kronenberg, 2005). In addition, Dlx5, Msx1, Twist, Alx4 and androgen and estrogen receptors have been shown to affect the osteoblast differentiation (reviewed by Kobayashi and Kronenberg, 2005). The osteoblasts begin secreting bone matrix constructing a bone collar around the cartilage. Eventually, the cartilage is replaced by bone. Bone formation takes place also at the surface of the bone, in the periosteum, where no cartilaginous model exists. The shapes of bones are modified by this intramembranous-like process (reviewed by Gilbert, 2006).

**Intramembranous ossification**

In the skull, the calvarial, maxillary, mandibular, and facial bones are formed by intramembranous ossification. In addition, also a large part of the clavicle is formed by the same mechanism. In intramembranous ossification, the mesenchymal cells condense into compact nodules, and the central cells differentiate into osteoblasts which secrete bone extracellular matrix and form ossification centers.
Intramembranous bone formation is regulated by transcription factors Runx2 and Osterix similarly as osteoblast differentiation in endochondral bone formation (Fig. 7) (reviewed by Kobayashi and Kroneberg, 2005). In addition, signaling molecules in the Bmp and Fgf families regulate formation of intramembranous calvarial bones and suture fate (reviewed by Rice, 2005). Those osteoblasts that become embedded in the calcified matrix become osteocytes. A single bone may have several ossification centers that fuse to form the final bone (reviewed by Kaufmann and Bard, 1999). Surrounding the bone is the periosteum that is a membrane of compact mesenchymal cells. Cells at the inner surface of the periosteum differentiate into osteoblasts and subsequently growth is achieved. Similarly to endochondral ossification, induction of Runx2 is essential for osteoblast differentiation and subsequent bone formation (Otto et al., 1997).

**Cleidocranial dysplasia and Runx2**

**Structure and function of Runx genes**

The Runx gene family of transcription factors comprise a small group of genes characterized by a DNA-binding Runt domain that is highly conserved among different species. In Drosophila, two runt domain genes are known, Runt and Loozenge and additionally two more have been found that are still functionally uncharacterized (reviewed by Coffman, 2003). The mammalian Runx genes are homologs of the Runt domain transcription factor family in Drosophila. In mammals, three Runx genes are known; Runx1 (Cbfa2/Pebp2aB/Aml1), Runx2 (Cbfa1/Pebp2aA/Aml3) and Runx3 (Cbfa3/Pebp2aC/Aml2). The three Runx genes are very similar with respect to their genomic organisation and DNA sequence (Bangsow et al., 2001; Levanon et al., 2001; Thirunavukkarasu et al., 1998). Mammalian Runx genes exhibit two alternative promoters (P1 and P2) and subsequently two different Runx isoforms can be produced with possibly distinct functions (Bangsow et al., 2001; Coffman, 2003). In Runx2, type II isoform transcription is initiated at the distal P1 promoter, while type I isoform transcription is initiated at the proximal P2 promoter (reviewed by Stock and Otto, 2005). Type I isoform (pebp2αA) was originally cloned as a T-cell-specific factor but is also expressed in other non-osseus tissues and in osteoblasts, and type II isoform (Osf2, til1) as an osteoblast specific factor (reviewed by Stock and Otto, 2005). Also a third potential N-terminal isoform in mouse has been described (Ducy et al., 1997). In addition, the primary type I and II transcripts are processed into several alternatively spliced mRNA isoforms that are differentially expressed in various cell types and at different developmental stages. The role and biological relevance of these different isoforms are still unknown (reviewed by Stock and Otto, 2005). Also other mammalian Runx genes can generate alternatively spliced transcripts with possibly different roles during embryogenesis (Levanon et al., 1996; Bangsow et al., 2001). The functional transcription factor is a heterodimer of two subunits, α-subunit encoded by the Runx genes in mammals, and the β-subunit (CBFβ) which is encoded by only one gene but appears in the mouse as three alternatively spliced products (Nagata and Werner, 2001). CBFβ does not bind to DNA itself but can enhance the DNA binding affinity of Runx proteins and also possibly stabilize
Runx from degradation (Coffman, 2003; reviewed by Ito and Miyazono, 2003). The CBFβ subunit is essential for the function of Runx proteins (Huang et al., 2001).

The α-subunit (Runx) has the DNA binding domain Runt, which is a 128 amino acid motif (Fig. 8). The runt domain directs DNA binding of Runx proteins, and also contributes to protein-protein interactions, ATP binding, and nuclear localization (reviewed by Stock and Otto, 2005). Furthermore, the N-terminal region is rich in glutamine and alanine repeats (Q/A) (Fig. 8). In the C-terminal region is a proline-serine/threonine rich region (PST), which is necessary for nuclear matrix targeting, transcriptional activation or repression of target genes, and also contains MAP kinase phosphorylation sites (reviewed by Stock and Otto, 2005). In addition, most Runx genes terminate with a common pentapeptide, VWRPY, which can recruit the Groucho/TLE family of corepressors (Fig. 8) (Levanon et al., 1998; Javed et al., 2001)

Runx transcription factors bind to several DNA motifs, such as PyGPyGGT, on a number of enhancers and promoters, including murine leukemia virus and polyomavirus enhancer (Ducy et al., 1997; Karsenty and Wagner, 2002). In addition, Runx2 has been shown to bind to the OSE2 DNA motif AACAC within the 5´regulatory regions of genes (Ducy et al., 1997). Binding partners for Runx2 include DNA binding partners, chromatin remodelling factors (histone deacetylase 5) and mediators of signal transduction pathways (YES-associated protein) (Westendorf, 2006).

**Fig. 8.** Schematic representation of the Runx2 protein. Runx2 protein is composed of a glutamine/alanine-rich region (Q/A) in the N-terminal region, a centrally located DNA binding domain (Runt domain) and nuclear localization signal (NLS), and the C-terminal proline-serine/threonine-rich PST region containing transactivation and repression domains and a nuclear matrix targeting signal domain.
**Runx genes in embryonic development**

Runx and Lozenge control a large number of developmental processes in *Drosophila*. Runt is part of a network of signals that control pattern formation in the embryo. In the central nervous system, Runt function is necessary for the development of a subset of neurons. In addition, Runt is also a key regulator of sex determination. Lozenge controls pre-patterning and cell-fate choices in the development of the visual system and is also required in haematopoiesis for the specification of a *Drosophila* blood cell lineage (Coffman et al., 2003).

In humans RUNX1 is essential for angiogenesis and mature haematopoiesis and is most frequently involved in acute leukemia (Otto et al., 2003; reviewed by Ito, 2004). *Runx1* knockout mice exhibit early embryonic lethality with massive haemorrhage due to lack of definitive haematopoietic stem cells and defective angiogenesis (reviewed by Ito, 2004). Also the β-subunit, CBFβ, is frequently involved in chromosome rearrangements associated with human leukemia (reviewed by Ito, 2004). Runx3 is involved in neurogenesis, thymopoesis and in addition, a possible candidate to be a gastric cancer tumour suppressor (reviewed by Ito, 2004). The function of Runx proteins during development was first discovered when several research groups confirmed that Runx2 is a key regulator of osteoblast differentiation and bone formation (Ducy et al., 1997; Mundlos et al., 1997; Otto et al., 1997; Komori et al., 1997).

*Runx2* knockout mice die soon after birth and show no osteoblast differentiation and hence completely lack bone (Komori et al., 1997; Otto et al., 1997). Runx2 activity is needed for osteoblast differentiation in both intramembranous and endochondral bone formation where it also has a positive role in the differentiation of hypertrophic chondrocytes (reviewed by Kobayashi and Kroneberg, 2005). Runx2 is a transcriptional activator of osteoblasts and activates most osteoblastic markers, including osteocalcin, type I collagen and collagenase (Ducy et al., 1997); *Runx2* expression is both necessary and sufficient for osteoblast differentiation (Ducy et al., 1997). *RUNX2* haploinsufficiency is the cause of CCD in humans and inactivation of one *Runx2* allele in mice causes a similar skeletal phenotype (Mundlos et al., 1997; Otto et al., 1997). In addition, a mouse deficient for type II isoform of Runx2 have been generated by targeted disruption of the P1 promoter. The phenotype showed disturbances mainly in endochondral ossification in contrast to total *Runx2* heterozygous knockout mice that exhibit disturbance in intramembranous ossification. (reviewed Stock and Otto, 2005). CBFβ is required for Runx2 function during skeletal development and thus *CBFβ* mutations can also cause CCD-type phenotype (reviewed by Rice, 2005).

**Regulation of Runx2**

Bmps that are inducers of osteoblast differentiation and bone formation upregulate *Runx2* expression in osteoblasts (Ducy et al., 1997). Runx2 mediates Bmp-induced osteogenic signaling pathway and is essential for Bmp signaling and regulation of downstream target genes (Afzal et al., 2005;). The activity of Runx2 can also be altered by direct interactions with other transcription factors such as Smads and AP1 factors (reviewed by Stock and Otto, 2005). Tgfβ has also been shown to re-
press Runx2 function through Smad3 (Kang et al., 2005). Runx2 can form a complex with Smads and function synergistically to regulate the target gene (Ito and Miyazono et al., 2003). Furthermore, β-catenin/TCF1 regulates directly Runx2 in stimulation of bone formation (Gaur et al., 2005). There is recent evidence that a complex interaction between Wnt/β-catenin and Bmp/Tgfβ signal transduction occurs in the development of several tissues, including the skeleton and it has been proposed that these pathways converge in Runx2 to promote osteoblast differentiation (Gaur et al., 2005).

In addition, Runx genes can bind to the same DNA motifs and interact with a common transcriptional modulator (Ito, 1999). Furthermore, all Runx genes contain Runx binding sites in their promoter region. Hence it is possible that both positive and negative cross-regulation exists among Runx proteins (reviewed by Otto et al., 2003). Furthermore the transcription factors Msx2, Bapx1, Hox1-2 and PPARγ have been shown to regulate Runx2 expression (reviewed by Otto et al., 2003).

Runx2 is also regulated by Stat1 that interacts with Runx2 latent form in the cytoplasm, inhibiting nuclear localization and thus its nuclear transcriptional activity. Consequently, Stat1-deficient mice exhibit accelerated osteoblast differentiation which results in increased bone mass (Kim et al., 2003). Runx2 is inhibited by Twist, which is expressed in osteoprogenitor cells but not in mature osteoblasts and has been suggested to act as a negative regulator of osteogenesis (Rice et al., 2000; Yousfi et al., 2002). Loss-of-function mutations in Twist result in craniosynostosis, a condition with excessive osteogenesis of the calvarial bones. In addition, double heterozygotes for Twist1 and Runx2 deletion show a partial rescue of the widened calvarial sutures seen in Runx2 heterozygous mice (Bialek et al., 2004).

Runx2 is phosphorylated and can be activated by the mitogen-activated protein kinase (MAPK) pathway, stimulated either by extracellular matrix binding integrin on the cell surface or Fgf2. Parathyroid hormone/parathyroid hormone-related peptide is also able to phosphorylate and activate Runx2 protein (Thirunavukkarasu et al., 1998; reviewed by Franceschi et al., 2003). All three Runx genes are also transcriptionally controlled by retinoid/vitamin D nuclear receptors with positive regulatory effect on Runx1 and 3 but negative for Runx2 (Drissi et al., 2002).

At least Osterix, a zinc finger containing transcription factor, has been shown to act downstream of Runx2 during osteoblast differentiation. In Osterix -/- mice, both the endochondral and intramembranous bone formation is absent but Runx2 expression is normal and no tooth defects are present (Nakashima et al., 2002).

Runx2 heterozygous mice have delayed tooth eruption and reduction of osteoclast recruitment to the jaws (Yoda et al., 2004). Rankl, a member of the Tnf family, is produced by osteoblasts and acts as a differentiation and activation factor for osteoclasts (Yasuda et al., 1998). Rankl expression is severely diminished and osteoclastogenesis abolished in Runx2 -/- mice and by adding soluble Rankl protein, partial rescue of the osteoclastogenesis can be achieved (Enomoto et al., 2003).
Cleidocranial dysplasia syndrome

Cleidocranial dysplasia is a rare bone dysplasia caused by mutations in Runx2 gene with autosomal dominant inheritance. The condition is characterized by generalized bone dysplasia including delayed ossification of calvarial sutures and fontanelles, supernumerary and unerupted teeth, hypoplastic or missing clavicles and short stature (Gorlin, 2001). RUNX2 haploinsufficiency is the cause of CCD in humans and mice (Mundlos et al., 1997; Otto et al., 1997). Mutations in RUNX2 causing haploinsufficiency include chromosomal translocations, insertions, deletions, nonsense, missense and frameshift mutations (Otto et al., 2002) (Fig. 9). It has been suggested that 20%-40% represent new mutations (Gorlin, 2001).

Fig. 9. Schematic representation of localization and type of mutations in RUNX2 causing CCD (based on review by Otto et al., 2002). RUNX2 gene is located on chromosome 6p21 and contains eight exons.

The general appearance of CCD patients is characterized by short stature, pronounced frontal and parietal bossing, hypertelorism, hypoplastic maxilla and zygoma, broad nose at the base and narrow shoulders (Gorlin, 2001). The cranium is large but shows short biparietal bossing and the cranial base has a short sagittal diameter (Richardsson et al., 1994). In addition, the mandibular length is increased, maxilla is short vertically, paranasal sinuses and mastoids may be underdeveloped or absent and closure of the anterior fontanelle and sagittal and metopic sutures is delayed (Gorlin, 2001). Secondary centers of ossification may form in the sutures and give rise to Wormian bones, especially in lambdoid suture (Gorlin, 2001).
The clavicles are usually hypoplastic and the defect is more frequent at the acromial end. In some cases the clavicle has a central gap where fibrous connective tissue has replaced the bone. The clavicles are absent unilaterally or bilaterally in about 10% of the patients (Gorlin et al., 2003). Also other bones of non intramembranous origin are affected in CCD patients, including pubic symphysis with delayed closure, cone-shaped thorax, lumbar spondylosis, short broad thumbs, short middle phalanges and metatarsals (Gorlin, 2001).

CCD patients have several oral manifestations such as highly arched palate, delayed union at the mandibular symphysis, cleft palate, deficient ossification of the hyoid bone and poor development of premaxilla. The most characteristic features are, however, the dental anomalies including multiple supernumerary teeth but also multiple crown and root abnormalities, ectopic localization of teeth, and lack of eruption of permanent teeth. Some patients may even have a complete tertiary dentition (Jensen and Kreiborg, 1990). Based on the observation that epithelial remnants were associated with extracted teeth of CCD patients it was suggested that the supernumerary teeth may have resulted from lack of resorption of dental lamina epithelium (Lukinmaa et al., 1995). It has also been reported that cellular cementum in the roots of CCD patients’ permanent teeth is absent and acellular cementum is partially hyperplastic (Jensen, 1990; Seow and Hertzberg, 1995; Lukinmaa et al., 1995). It has been proposed that insufficient Runx2 activity may affect the differentiation of both osteoblasts and osteoclasts thus leading to diminished bone resorption of bone surfaces and delayed resorption of the primary teeth and subsequent delayed eruption of permanent teeth (Kreiborg et al., 1999).

Supernumerary teeth appear most often in the mandibular premolar and maxillary incisor region and the average number of extra teeth is five (Gorlin, 2001). Jensen and Kreiborg carried out a thorough study of 20 patients and showed that the primary teeth and permanent tooth crowns were normal. Primary teeth did also erupt normally but the permanent teeth did not, except for the first molars and occasionally other teeth too. Interestingly, they showed that during permanent tooth crown development the dental lamina was reactivated to form supernumerary teeth. Hence, supernumerary teeth are usually morphologically similar to their predecessors (Jensen and Kreiborg, 1990).

Several studies have tried to establish a correlation between the genotype and phenotype in CCD patients by mutational analysis of RUNX2 (Yoshida et al., 2002; Quack et al., 1999; Zhou et al., 1999). It has been shown that mutations affecting the runt domain and resulting in haploinsufficiency yields a classic CCD while mutations outside this domain may result in hypomorphic states with wide clinical variety (Zhou et al., 1999). Accordingly, mutated protein associated with mild CCD, including isolated dental anomalies, have been shown to exhibit normal DNA binding and not causing haploinsufficiency but to be hypomorphic in nature, probably due to disturbance of Runx2 interaction with other modulators (Zhou et al., 1999). In addition, also a missense mutation in the very 3’ end of the coding region caused an isolated dental anomaly consisting of supernumerary teeth with no other CCD features (Quack et al., 1999). In this mutation the VWRPY motif that has been suggested to interact with the TLE transcriptional corepressor family is affected (Quack et al., 1999). A mutation in RUNX2 from a CCD patient has been described where RUNX2 protein failed to interact and respond to Smads

37
(Zhang et al., 1999). A correlation between short stature and supernumerary teeth has also been made and from the number of supernumerary teeth predictions of final height could be made, although the generality remains to be established (Yoshida et al., 2002). It has also been suggested that the intramembranous bone formation is more sensitive to RUNX2 gene-dosage than endochondral bone formation thus explaining why almost always some cleidocranial abnormality is present but not always skeletal abnormalities (Yoshida et al., 2002). Interestingly, the dental and skeletal abnormalities correlate but also isolated dental abnormalities can occur. This could reflect the different functional components of Runx2. It seems that Runx2 is developmentally differentially regulated in bone and tooth with different upstream regulators and downstream targets (James et al., 2006).
AIMS OF THE STUDY

The aim of this study was to investigate the pathogenesis of CCD, in particular the functions of Runx2 and Bmps in tooth development. The specific aims were:

1. to perform a thorough comparative analysis of the expression of \textit{Bmps2} through 7 during mouse tooth development in order to elucidate possible functions
2. to examine in detail the tooth phenotype of \textit{Runx2} mutant mice
3. to analyze the expression pattern of \textit{Runx2} during mouse tooth development as a basis for functional studies
4. to identify the possible upstream regulators and downstream targets of \textit{Runx2} during tooth development in order to understand CCD pathogenesis
MATERIALS AND METHODS

Materials and methods used in the thesis are listed in following three tables; Mouse strains, Probes, and Methods. A detailed description of each method can be found in the original publications.

**Table 1. Mouse strains used in articles I-IV**

<table>
<thead>
<tr>
<th>Mouse strain</th>
<th>Used in article</th>
<th>Described in article</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBAT6T6 x NMRI</td>
<td>I, II, III, IV</td>
<td>-</td>
<td>Expression pattern analyzes of mRNA and proteins</td>
</tr>
<tr>
<td>Runx2 null mutant mice</td>
<td>II, III, IV</td>
<td>Originally; Otto et al., 1997. Maintenance; III.</td>
<td>Analysis of phenotype and role in tooth development</td>
</tr>
<tr>
<td>Msx1 null mutant mice</td>
<td>III</td>
<td>Satokata and Maas, 1994; Bei and Maas, 1998.</td>
<td>Runx2 upstream regulation</td>
</tr>
<tr>
<td>Lef1 null mutant mice</td>
<td>III</td>
<td>van Genderen et al., 1994</td>
<td>Runx2 upstream regulation</td>
</tr>
<tr>
<td>Tabby null mutant mice</td>
<td>III</td>
<td>Pispa et al., 1999</td>
<td>Runx2 upstream regulation</td>
</tr>
<tr>
<td>Nude mice</td>
<td>III, IV</td>
<td>Kratochwil et al., 1996</td>
<td>Kidney capsule transplantation of explants</td>
</tr>
</tbody>
</table>

**Table 2. Probes used for in situ hybridisation in articles I-IV**

<table>
<thead>
<tr>
<th>Probe</th>
<th>Description or reference</th>
<th>Used in publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activin βA</td>
<td>Erämaa et al., 1992</td>
<td>IV</td>
</tr>
<tr>
<td>Ameloblastin</td>
<td>Lee et al., 1996</td>
<td>III</td>
</tr>
<tr>
<td>Bmp2 and Bmp4</td>
<td>Vainio et al., 1993</td>
<td>I, IV</td>
</tr>
<tr>
<td>Bmp3, -5, -6, and -7</td>
<td>Åberg et al., 1997 (III)</td>
<td>I, IV</td>
</tr>
<tr>
<td>Proα1(I) collagen</td>
<td>Metsäranta et al., 1991</td>
<td>II, III</td>
</tr>
<tr>
<td>Dan</td>
<td>Dionne et al., 2001</td>
<td>IV</td>
</tr>
<tr>
<td>Dspp</td>
<td>D’Souza et al., 1997</td>
<td>II, III</td>
</tr>
<tr>
<td>Dentin matrix protein-1</td>
<td>D’Souza et al., 1997</td>
<td>III</td>
</tr>
<tr>
<td>Ectodin</td>
<td>Åberg et al., 2004 (IV)</td>
<td>IV</td>
</tr>
<tr>
<td>Eda and Edar</td>
<td>Laurikkala et al., 2001</td>
<td>IV</td>
</tr>
<tr>
<td>Fgf3 and Fgf10</td>
<td>Kettunen et al., 2000</td>
<td>IV</td>
</tr>
<tr>
<td>Fgf4</td>
<td>Jernvall et al., 1994</td>
<td>IV</td>
</tr>
<tr>
<td>Fgfr1</td>
<td>Trokovic et al., 2003</td>
<td>IV</td>
</tr>
<tr>
<td>Hairless</td>
<td>Åberg et al., 2004 (IV)</td>
<td>IV</td>
</tr>
<tr>
<td>Hes1 and Hes5</td>
<td>Mustonen et al., 2002</td>
<td>IV</td>
</tr>
<tr>
<td>Lef1</td>
<td>Travis et al., 1991</td>
<td>IV</td>
</tr>
<tr>
<td>Lunatic Fringe</td>
<td>Mustonen et al., 2002</td>
<td>IV</td>
</tr>
<tr>
<td>Mmp2</td>
<td>Sahlberg et al., 1999</td>
<td>IV</td>
</tr>
<tr>
<td>Msx1 and Msx2</td>
<td>Jowett et al., 1993</td>
<td>IV</td>
</tr>
<tr>
<td><strong>Gene</strong></td>
<td><strong>Authors</strong></td>
<td><strong>Article</strong></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Osteocalcin</td>
<td>Ducy et al., 1997</td>
<td>III</td>
</tr>
<tr>
<td>p21</td>
<td>Jernvall et al., 1998</td>
<td>IV</td>
</tr>
<tr>
<td>Pax9</td>
<td>Neubuser et al., 1997</td>
<td>IV</td>
</tr>
<tr>
<td>Runx1 and Runx3</td>
<td>Yamashiro et al., 2002</td>
<td>IV</td>
</tr>
<tr>
<td>Runx2</td>
<td>D’Souza et al., 1999</td>
<td>II, IV</td>
</tr>
<tr>
<td>Shh</td>
<td>Vahtokari et al., 1996</td>
<td>IV</td>
</tr>
<tr>
<td>Sprouty1, -2, and -4</td>
<td>Zhang et al., 2001</td>
<td>IV</td>
</tr>
<tr>
<td>Tgflβ1</td>
<td>Vahtokari et al., 1991</td>
<td>IV</td>
</tr>
<tr>
<td>Timp1 and Timp3</td>
<td>Sahlberg et al., 1999</td>
<td>IV</td>
</tr>
<tr>
<td>Twist</td>
<td>Rice et al., 2000</td>
<td>IV</td>
</tr>
<tr>
<td>Wnt5a, -10a, -10b, and -11a</td>
<td>Dassule and McMahon, 1998; Sarkar and Sharpe, 1999</td>
<td>IV</td>
</tr>
</tbody>
</table>

**Table 3. Methods used and described in articles I-IV**

<table>
<thead>
<tr>
<th><strong>Method</strong></th>
<th><strong>Described in</strong></th>
<th><strong>Used in article</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Processing of tissues</td>
<td>I</td>
<td>I, II, III, IV</td>
</tr>
<tr>
<td>Tissue culture and bead implantation assays</td>
<td>II, III, IV</td>
<td>II, III, IV</td>
</tr>
<tr>
<td>Rescue experiments</td>
<td>IV</td>
<td>IV</td>
</tr>
<tr>
<td>Kidney capsule implantation</td>
<td>III, IV</td>
<td>III, IV</td>
</tr>
<tr>
<td>Genotyping by PCR</td>
<td>II, IV</td>
<td>II, III, IV</td>
</tr>
<tr>
<td>Radioactive in situ hybridisation of sections</td>
<td>I, II</td>
<td>I, II, III, IV</td>
</tr>
<tr>
<td>Whole mount in situ hybridisation</td>
<td>II</td>
<td>II, IV</td>
</tr>
<tr>
<td>Immunohistochemistry</td>
<td>IV</td>
<td>IV</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>II, III</td>
<td>II, III</td>
</tr>
<tr>
<td>Cell transfection and analysis of gene induction</td>
<td>IV</td>
<td>IV</td>
</tr>
<tr>
<td>3D reconstruction</td>
<td>I</td>
<td>I</td>
</tr>
</tbody>
</table>
RESULTS AND DISCUSSION

Expression of Bmps during tooth development (I)

We performed a careful comparative analysis of the expression of Bmp2, -3, -4, -5, -6, and -7 from the time of initiation of mouse tooth development to the stage of mineralization of the dentin and enamel matrices. Morphological details of the stages of tooth development which were analyzed is shown in Figs. 5 and 6 (pages 25 and 29) and a summary of the expression patterns in Fig. 10 (page 45)(based on publication I, Figs. 3-5).

Bmp4 expression was detected in the oral epithelium at the time of tooth initiation at E10 and subsequently, at E11-12, expression was detected transiently both in the epithelium and mesenchyme. However, before the dental placode is formed, it shifted completely to the mesenchyme. Bmp2 transcripts were detected in those areas of the dental lamina where it started to form a bud, including the dental placode. Bmp7 transcripts were detected throughout the oral epithelium at the time of the formation of the dental lamina, at E10 (data not shown).

At early bud stage Bmp2 was detected throughout the bud but it became subsequently concentrated at the tip of the bud during bud stage. Weak expression of Bmp3 transcripts was first detected at early bud stage and localized at the lingual aspect of the dental lamina in the area of tooth bud. Bmp4 was detected in the condensed dental mesenchyme around the epithelial bud with somewhat more intense expression at the buccal side of the tooth. Weak expression of Bmp6 was first detected at the early bud stage in the condensed mesenchyme surrounding the bud. Bmp7 transcripts became localized at early bud stage in the tip of the bud. The expression pattern resembled that of Bmp2 except that the expression was present also in the oral epithelium.

The expression of Bmp2 was intense at E14 and restricted to the epithelial enamel knot. As the enamel knot started to disappear during late cap stage (E15), Bmp2 expression spread to the neighbouring inner dental epithelium. At cap stage expression of Bmp3 was seen in the dental papilla mesenchyme underlying the enamel knot. Bmp3 expression was also seen in the dental follicle mesenchyme and intense expression was seen in lingual side of the outer dental epithelium. A high level of Bmp4 expression continued in the dental papilla mesenchyme, and it reappeared in the epithelium in the distal part of the enamel knot. Bmp6 was expressed in the dental mesenchyme underlying the lingual epithelial cervical loop. Expression of Bmp7 was localized to the enamel knot extending somewhat outside the area. When the enamel knot started to disappear (E15), the expression of Bmp7 continued in the inner dental epithelium.
At the early bell stage, *Bmp2* expression had disappeared from the epithelium (E16) and had shifted to the central cells of the dental papilla mesenchyme (E17). Subsequently (E18), expression extended coronally in the dental papilla and became prominent in the preodontoblasts. Expression of *Bmp3* continued in the dental follicle. The expression of *Bmp4* disappeared from the dental epithelium with the removal of the enamel knot, and became intense in the cuspal area of the dental papilla including the preodontoblastic layer. The central cells of the dental papilla showed very weak or no expression. The expression of *Bmp5* was seen for the first time in the differentiating preameloblasts (E18). The expression of *Bmp7* continued throughout the inner enamel epithelium/preameloblasts (E18) except in its cervical parts. It shifted to the preodontoblasts as they started to secrete predentin matrix (E19).

Expression of *Bmp2* continued in the odontoblasts when predentine secretion began (P1). During the first postnatal days, transcripts disappeared from the most advanced odontoblasts in the cuspal areas, and *Bmp2* expression was subsequently detected in functional ameloblasts. At P4, transcripts were seen mainly in the apical parts of the crown where differentiation continued. Some expression continued in the central cells of the dental papilla. Intense expression of *Bmp3* continued in the dental follicle cells. Expression of *Bmp4* was detected in the odontoblast and ameloblast cell layers. Expression in the odontoblasts decreased with advancing development whereas it persisted in the ameloblasts. *Bmp5* expression continued intensely in the ameloblast cell lineage during all stages of their differentiation and matrix secretion. The expression pattern of *Bmp7* was similar to that of *Bmp2*.

**The function of Bmps in the regulation of tooth morphogenesis**

Bmps regulate most aspects of embryonic development and they are used repeatedly during the morphogenesis of various organs. The identification of signaling centres, i.e. enamel knots, in the developing tooth has greatly advanced the understanding of the interactions involved in tooth development. At the time of our expression pattern analysis there was very little functional evidence of Bmp involvement in tooth development. It is obvious that the expression does not implicate function of any gene product, but the function of some of the Bmps in tooth have been demonstrated after 1997. Our expression pattern analysis has later proven to be a valuable resource of information in these studies.

Knockout studies showed that null mutants of *Bmp2* and *Bmp4* are early embryonic lethal. *Bmp7* knockout lacked a tooth phenotype, perhaps due to redundancy with *Bmp2*. In addition, a Cre-mediated deletion of the gene encoding Bmp receptor 1A in the surface epithelium and its derivativ causes arrest of tooth morphogenesis. The tooth buds, although significantly smaller, are formed but then regress (Andl et al., 2004). Furthermore, it has been shown that attenuation of *Smad2* results in an advancement of tooth development wheras attenuation of *Smad7* inhibits tooth development (Ito et al., 2001).
During the initiation of tooth development, epithelial signals induce mesenchymal factors that then reciprocally act on the dental epithelium to form the signaling center, also called dental placode. Bmp4 and Activin βA have been proposed to be the key signals from the mesenchyme to induce the epithelial signaling center and subsequent budding of the tooth (Jernvall and Thesleff, 2000). Epithelial Bmp4 induces the mesenchymal Bmp4 expression via Msx1 and this shift of expression from epithelium to mesenchyme (E11.5) coincides with the shift of the potential to instruct tooth development (Vainio et al., 1993; Mina and Kollar, 1987). Simultaneously, Msx1 expression becomes restricted to the tooth bud regions in the mesenchyme (Coburne and Sharpe, 2003). Bmp4 induces p21 in the dental placode. p21 is associated with the stop of cell proliferation and has been shown to be expressed in several signaling centers (Jernvall et al., 1998).

Later, during the cap stage, Bmp4 is expressed in the enamel knot as well as in the mesenchymal dental papilla. Bmp7 is coexpressed with Bmp2 during early tooth development and also expressed in all signaling centers, if not as specifically as Bmp2. Better understanding of Bmp functions has been gathered from knockouts of other genes involved in tooth development. A common feature of the knockout of transcription factors Msx1 and Pax9 is that expression of Bmp4 is missing from the dental mesenchyme. In all of these mutants, the formation of the enamel knot has been impaired which suggests that it is a prerequisite for the tooth bud to develop into cap stage. This indicates that Bmp4 is a good candidate for a mesenchymal signal inducing the transition from bud to cap. Accordingly, in the Msx1 knockout, tooth development is arrested at bud stage but can be rescued by adding exogenous Bmp4 protein. Bmp signaling requires also the receptors in the target tissues to be functional, expression of Bmps as such does not indicate if it is functional or redundant. Recently, presence of Bmpr1A and –II has been shown by immunostaining at bud stage in the epithelium and of BmprIB and -II in the mesenchyme (Nadiri et al., 2006). At cap stage, BmprIB but not -II was shown to be present in the epithelium and at later cap stage both Bmpr1A and –II were present in the enamel knot, simultaneously with Bmp4 (Nadiri et al., 2006). These results coincide with the Bmp expression and suggesting that there is functional signaling possible.
Later function of BMPs in the differentiation of odontoblasts and ameloblasts and in dentin and enamel deposition

The dentin-forming odontoblasts and the enamel-forming ameloblast differentiate during bell stage at the interface between the dental epithelium and mesenchyme, and there is abundant experimental evidence indicating that the differentiation of these cells is regulated by interactions between the two cell lineages (Thesleff and Hurmerinta, 1981; Ruch et al., 1995). The expression of Bmp2, -4, and -7 showed apparent associations with the differentiation of odontoblasts and ameloblasts. In line with this, \textit{in vitro} experiment have shown that Bmp2, -4, and -6 can induce polarization of preodontoblasts and stimulate dentin matrix secretion (Begue-Kirn et al., 1994; Ruch et al., 1998). In addition, inductive roles of Bmps on odontoblasts differentiations have also been demonstrated in numerous transplantation
studies in which implantation of Bmps into the dental pulp induced de novo dentinogenesis (Lianja et al., 1993; Nakashima, 1994; Nakashima and Akamine, 2005).

As in odontoblast differentiation, ameloblast cytodifferentation has also been shown to be induced by Tgfβ1 and Bmp2 (Begue-Kirn et al., 1992, 1994). Our localization of Bmp transcripts show that they are present at the right time and location to act as mesenchymal signals on the differentiation of the inner enamel epithelium into ameloblasts. In addition, subsequent studies from our laboratory has shown that of the Bmps expressed by odontoblasts Bmp4 is most important (Wang et al., 2004). The Bmp receptors are also present in the ameloblasts and odontoblasts indicating that functional signaling is possible (Nadir et al., 2006).

The Bmp3 expression pattern suggests that it may be involved in the formation of cementum. However, as the dental follicle regulates bone formation around the developing tooth, it is possible that Bmp3 is involved in the regulation of osteoblast functions in the alveolar bone. Recently, Bmp3 has been shown to have effects opposite to Bmp2, -4 and Activin and to function as a Bmp inhibitor (reviewed by Li and Cao, 2006). Indeed, the Bmp3 expression at the lingual side of the bud and cap stage tooth could indicate an inhibitory function in successive tooth formation. Bmp5 apparently has no function in the regulation of morphogenesis, but is rather associated with cell differentiation. The function of the transient expression of Bmp6 at bud and cap stage remains unclear and we could not detect it in later stages.

It has become more and more evident that signals of the Tgfβ family must be tightly regulated, and therefore finely tuned antagonistic effects between Tgfβ superfamily signals and their inhibitors are critical for normal tooth development. Mice with deleted Ectodin function (Ectodin is a Bmp inhibitor) have severe cusp patterning defects which show the importance of the correct ratio between activators and inhibitors (Laurikkala et al., 2003; Kassai et al., 2005). In addition, Follistatin regulates enamel patterning in mouse incisors by asymmetrically inhibiting Bmp signaling and thus ameloblast differentiation (Wang et al., 2004).

In conclusion, our findings are in line with the concept that Bmps have several different functions during tooth development. It is conceivable that they signal between the epithelial and mesenchymal tissues during initiation and morphogenesis of tooth development, as well as during the differentiation of odontoblasts and ameloblasts. Furthermore, they are also part of the signaling networks whereby the enamel knot regulates the patterning of tooth cusps. In addition, they are involved in the regulation of the deposition of the matrices of the dental hard tissues.

The role of Runx2 during tooth development (II, III, IV)

Runx2 expression during tooth development (II)

In situ hybridisation analysis did not reveal any Runx2 expression in mouse craniofacial tissue at E11. At E12, Runx2 expression became evident in areas of future osteogenesis. In addition, Runx2 expression was detected also in the mesenchyme underlying the dental epithelium, although the signal was very weak as compared to the expression in bone (II Fig. 2A-B). At E13, the Runx2 expression continued in the preosteogenic mesenchyme and spread also to the nasal capsule. Intense
expression was observed in the mesenchyme surrounding the tip of the epithelial tooth bud at E13 (II Fig. 2C-D). At the cap stage (E14), high level of expression was evident in the dental papilla and follicle as well as in the osteogenic zones, clearly demarcating these regions from the surrounding tissues (II Fig. 2E-F). By E16, the early bell stage, Runx2 expression was markedly downregulated in cuspal regions of the dental papilla mesenchyme (II Fig. 2G-H). At the late bell stage (E18), Runx2 mRNA was downregulated throughout the dental papilla, however, intense expression remained in the dental follicle and in osteoblasts within the alveolar bone (II Fig. 2I-J). At the newborn stage (NB) and at 4 dpn Runx2 expression was intense in all osteoblasts and in the dental follicle that will give rise to cementoblasts and periodontal ligament (II Fig. 3A-B). Newly differentiated odontoblasts and dental pulp cells near the cervical loop showed weak levels of Runx2 expression while mature odontoblasts were negative (II Fig. 3B). At 7dpn, intense expression of Runx2 remained in the dental follicle. Unlike secretory ameloblasts that appeared negative, maturation stage ameloblasts appeared strongly positive for Runx2 (II Fig. 3E-F). In addition, we showed that Runx2 expression is downregulated in differentiated odontoblasts prior to the expression of dentin matrix genes (II Fig. 3G-H).

The pattern of Runx2 mRNA in the dental mesenchyme correlates with key developmental events. The inductive potential of the odontogenic epithelium shifts to the mesenchyme at E12, when Runx2 expression also begins in the presumptive tooth mesenchyme (Jernvall and Thesleff, 2000). Hence, the onset of expression in the dental papilla mesenchyme follows its acquisition of the odontogenic potential. Because Runx2 expression is downregulated at the late cap stage, it seems that it is not involved in the formation of secondary enamel knots and subsequent cuspal development. However, we do not know the Runx2 protein half life and can not predict when the protein activity is lost after the downregulation of the mRNA. Accordingly, we can not be certain that Runx2 is not involved in odontoblast differentiation based on the downregulation of the mRNA.

In addition, the developmental profiles of Runx2 expression in odontoblasts and osteoblasts appear different suggesting that the gene may be differentially regulated in these cells and that Runx2 may not have a similar function as differentiation inducer in odontoblasts as it does in osteoblasts.

Furthermore, expression pattern analysis of three Runx2 isoforms was performed in newborn mouse incisors which showed that all isoforms were expressed in both teeth and bone although with different relative levels (Chen et al., 2002). Although several different isoforms exists, it is not known if they have different specific functions or if they are redundant.

The dental phenotype of Runx2 null mutant mice (II-III)

To elucidate Runx2 function during tooth development, we examined the phenotype of teeth in Runx2 null mutant mice. These mice die at birth and we started by a histological analysis of Runx2 -/- jaws. Frontal sections of the molar region of Runx2 -/- embryos and their wild-type littermates were examined at developmental stages of E12, E13, E14, E16, and E18 (E12-13: data not shown, E14-E18: II Fig. 4 and III Fig. 1).
At E12, the wild-type and Runx2 -/- tooth germs were morphologically similar and the first difference was observed during the early bud stage, when molar tooth buds of Runx2 -/- were slightly delayed in development (data not shown). By cap stage (E14), the developmental arrest was remarkable in both upper and lower molars (III Fig. 1B-C). Although the dental mesenchymal condensate appeared normal in Runx2 -/- molars, the enamel knot was not visible as a morphologically distinct entity within the ectodermal compartment. A characteristic feature of the upper molar epithelium at E14 was the presence of an extra budding at the palatal side of the bud (III Fig. 1C). The morphogenesis of Runx2 -/- molars did not proceed during subsequent embryonic development. In addition, absence of Runx2 affected mandibular molars more severely than maxillary molars (II Fig. 4C-D, III Fig. 1E). At E18, the lower molar tooth bud of Runx2 -/- could not be distinguished from the highly proliferative dental lamina in contrast to the upper molar where the arrest at bud stage still was visible (III Fig. 1H-I).

We had predicted that Runx2 -/- mice would have numerous supernumerary teeth because of the phenotype seen in CCD patients. To our surprise, no extra teeth were found but instead, a complete arrest at bud stage was evident. Mice exhibit only one dentition which has been suggested to represent the primary dentition in humans (Kreiborg et al., 1999) and the palatal bud observed in the Runx2 -/- upper molars could represent the site of formation of successional dentition. In conclusion, it appears that Runx2 is required for the tooth morphogenesis in the transition from bud to cap stage, and that it inhibits extra epithelial bud protrusion and subsequent formation of successional dentition. Support for the latter has come from a later study of Shh involvement in the Runx2 signaling (Wang et al., 2005).

**Regulation of Runx2 expression in embryonic mesenchyme (II, IV)**

There is evidence that bone formation in the embryonic facial processes is dependent on signals from the epithelium (Hall, 1978). By culturing E11 mandibular arch mesenchyme with or without the presence of epithelium and analyzing Runx2 expression, we could conclude that epithelium was not needed for the induction or maintenance of Runx2 expression in mandibular mesenchyme (II Fig. 5A-C). However, similar cultures of tooth mesenchyme, with or without epithelium showed that epithelium is needed for the onset and maintenance of Runx2 (II Fig. 5D-N). When tooth mesenchyme from E11-14 teeth was cultured alone, no expression of Runx2 was seen (II Fig. 5J-K). When the mesenchyme was recombined with epithelium, Runx2 expression was induced in the mesenchyme adjacent to the epithelium from E13 onwards (II Fig. 5G-I). The conclusion from these cultures was that dental epithelium is capable of stimulating Runx2 in dental mesenchyme during the bud stage.

Because Fgfs and Bmps are known epithelial signals in the regulation of tooth morphogenesis, we examined whether these signals could be responsible for the epithelial induction and maintenance of Runx2 in the mesenchyme. In addition, Bmps were shown to induce Runx2 in bone development (reviewed by Otto et al., 2003). Hence, it would be conceivable that Bmps are involved in the regulation of Runx2 during tooth development. However, this was not the case. We did bead implantation experiments on E11-E14 lower molar mesenchymes using Bmp2, -4
and -7 proteins and analyzed the explants for Runx2 expression by whole mount in situ hybridisation. Our results showed, surprisingly, that Bmp2, -4, and -7 could not induce Runx2 expression in the tooth mesenchyme at any stage between E11-14 (II Fig. 6A-G). However, similar bead implantation experiments using Fgf8 protein on E11-12 dental mesenchyme and Fgf4 protein on E13-14 explants showed that Fgf4 induced the expression of Runx2 in isolated dental mesenchyme from E13 onwards (II Fig. 7A-H).

Our results show that dental epithelium regulates mesenchymal Runx2 expression and that these effects can be mimicked by the FGFs but not by the BMPs. We conclude from these results that Runx2 regulates the expression of molecules in the mesenchyme that act reciprocally on the epithelium to control its morphogenesis. In addition, the role of Runx2 in tooth development may be distinct from its role in bone development. Indeed, a recent study has shown that Runx2 has different downstream targets in the bone and tooth (James et al., 2006).

Tooth development is arrested in several mouse mutants and to gain more insights into the upstream regulation of Runx2, we analyzed its expression in the arrested tooth buds of mouse embryos lacking the function of Msx1, Lef1, and Ectodysplasin (Eda) (IV Fig. 1B-G).

In situ hybridisation analysis of serial sections of E14 Msx -/- heads indicated that Runx2 expression was downregulated in the mesenchyme around the tooth bud, although intense expression was apparent in the area of forming mandibular bone. This finding indicates that Msx1 is needed for the expression of Runx2 in the dental but not osteogenic mesenchyme (IV Fig. 1E).

In Lef1 null mutant teeth, the defect has been localized to the dental epithelium where Lef1 is required for the expression of Fgf4 and for subsequent induction of mesenchymal Fgf signals (Kratochwil et al., 1996; 2002). However, Runx2 expression was apparently normal in the dental and osteogenic mesenchyme of Lef1 mutant embryos, indicating that Lef1 is not needed for Runx2 expression. However, we cannot rule out the possibility that Wnt signals could regulate Runx2 via other transcription factors (IV Fig. 1F).

Runx2 was intensely expressed throughout dental and osteogenic mesenchyme in the E14 Eda null mutants. Since the defect in Eda mutants is in the enamel knot, Runx2 could not be a direct target, but our results indicate that Runx2 expression is not even secondarily affected by Eda-Edar signaling (IV Fig. 1G).

**Search for downstream targets of Runx2 (IV)**

To position Runx2 in the known signaling pathways regulating the bud to cap stage transition during tooth development, we examined the expression of potential downstream target genes of Runx2, by using in situ hybridisation. We compared E14 Runx2 -/- tooth germs with both E13 (bud) and E14 (cap) wild-type teeth, since remarkable changes take place in gene expressions between bud and cap stages and Runx2 -/- teeth are arrested between them.

The expression patterns of altogether 37 genes were compared between the teeth of Runx2 -/- and their wild-type or heterozygous littermates. We described the patterns of the following genes in Runx2 -/- and wild-type teeth: Fgf3, Fgf4, Fgf10,
Fgfr1, Sprouty1, -2, and -4, Bmp2 and -4, Lef1, Tgfβ1, Msx1 and -2 (data not shown), Shh, Activin βA, p21, Pax9, Edar, Twist (data not shown), Wnt5a, -10b, Runx1, Runx3, and Tenascin. In addition, we analyzed the expression of the following genes and proteins but no apparent differences between the wild-type and Runx2 -/- was found: The Notch pathway genes Hes1, Hes5, and L-fng; Bmp inhibitors Dan and Ectodin, Wnt10α, Wnt11α, Eda; the matrix metalloproteinase Mmp2; and the Mmp inhibitors Timp2 and Timp3, hairless, and the basement membrane molecule laminin1 (data not shown).

Most genes in the mesenchymal condensate were normally expressed in Runx2 -/- teeth. We did not detect any significant changes in the expression of Msx1, Bmp4, Pax9, Lef1, Tgfβ1, Wnt5a, and Tenascin in Runx2 -/- molars (IV Fig. 2A-T). However, Activin βA expression was markedly reduced in both upper and lower molars of Runx2 mutants, especially in the mesenchymal cells immediately underneath the epithelial bud (IV Fig. 2R). This suggests that Activin βA may be downstream of Runx2 in this restricted cell population.

Fgfs act as both epithelial and mesenchymal signals and regulate tooth development at all stages and we have shown that Runx2 is a target of Fgf signaling in the tooth. Therefore, we analyzed the expression patterns of several genes in the Fgf signaling pathway in Runx2 -/- teeth. Since Fgf3 and Fgf10 are coexpressed with Runx2 in the wild-type dental mesenchyme, they were candidates to be direct downstream targets. Interestingly, Fgf3 expression was virtually absent from the Runx2 mutant tooth germs and only occasionally was faint signal seen in mutant upper molar (IV Fig. 3C). No significant difference was found in expression patterns between Runx2 -/- and wild-type teeth of following genes: Fgf10, Fgfr1, and Sprouty1 (IV Fig. 3D-L). However, Sprouty2 and -4 were downregulated in the epithelium of Runx2 -/- teeth (IV Fig. 3M-R). In conclusion, Fgf3 is a possible target gene of Runx2. The specific reduction in the expression of Sprouty2 and Sprouty4 in Runx2 -/- dental epithelium suggest that Fgf signaling was inhibited there and that Fgf3 is a reciprocal signal affecting dental epithelium. In line with this, we showed that overexpression of Runx2 can induce Fgf3 expression in Runx2 -/- calvarial cells. This result further indicates that Fgf3 may be a target of Runx2 in dental mesenchyme (IV Fig. 4A-B).

Previous work has shown that the expression of Fgf3 in the dental mesenchyme is controlled by dental epithelium and that the epithelial effect can be mimicked by epithelia expressed Fgfs (Kettunen et al., 2000); Bei and Maas, 1998). In line with this we showed that Fgf4 can induce Fgf3 in the dental mesenchyme at E13 and E14 but failed to induce Fgf3 in the Runx2 -/- dental mesenchyme (IV Fig. 7A-F). In addition, Fgf4 could induce Tgfβ1 and Activin βA in Runx2 -/- molars (IV Fig. 7G-O). This result showed that Runx2 mutant mesenchyme was competent to respond to Fgf signals and therefore the lack of Fgf receptors or other mediators of Fgf signals do not explain the lack of Fgf3 induction by Fgf4. Thus, Runx2 may directly regulate Fgf3 expression in the dental mesenchyme. Furthermore, we showed that Runx2 is expressed in the dental mesenchyme, regulated by epithelial Fgf signaling, and regulating Fgf3 expression in the dental mesenchyme indicating that Fgf3 may be a direct target gene of Runx2. It has also been shown that Fgf3 is missing in Msx1 -/- teeth and that its induction by Fgfs requires Msx1 (Bei and Maas, 1998). These findings together with the downregulation of Runx2 in Msx1 -/-
teeth suggest that Runx2 can be placed between Msx1 and Fgf3 and that it is responsible for mediating Fgf signaling from the dental epithelium to the mesenchyme (Fig. 11).

Although the enamel knot is morphologically discernible only at cap stage, its induction takes place already at the late bud stage when many enamel knot marker genes are upregulated (Jernvall and Thesleff, 2000). Shh is one of the best characterized enamel knot marker genes and is required for normal tooth morphogenesis. Shh expression was absent from the Runx -/- lower molar tooth buds, which suggested that the enamel knots may not have formed in the Runx2 -/- teeth (IV Fig. 5C). However, the analysis of the expression of other enamel knot marker genes indicated that a partially functional enamel knot actually starts to form in the mutants. The genes analyzed included Wnt10b, Lef1, Fgf4, Bmp2, Edar, Msx2 and p21 (IV Fig. 5D-U). Surprisingly, most genes were expressed in the tips of mutant upper molar buds with similar intensities to those in the fully developed enamel knots of cap stage wild-types molars. Shh was weakly expressed in the upper molars of Runx2 -/- . However, in the lower molars of Runx2 mutant embryos, the enamel knot markers were either absent or reduced with the exception of Wnt10b, Lef1, and Msx2, which were expressed with similar intensity as in wild-type molars (IV Fig. 5D-I, data not shown). These observations indicated that the enamel knots start to form in Runx2 -/- tooth buds and that there are differences between the upper and lower molar. Enamel knot signaling is believed to regulate the growth of the cervical loops either directly or indirectly via mesenchyme. Despite the expression of many enamel knot marker genes, the cervical loops did not form in either lower or upper Runx -/- molars which could be due to lack of Shh signaling in both upper and lower mutant molar. However, when Shh function was conditionally deleted in developing teeth (Dassule et al., 2000), cervical loop formation was only partly inhibited, which suggest that lack off Shh signaling can not be fully responsible for the arrest of Runx2 mutant teeth at bud stage.

![Schematic representation of the genetic pathway involving Runx2 during bud to cap transition in tooth development.](image)

**Fig. 11.** Schematic representation of the genetic pathway involving Runx2 during bud to cap transition in tooth development.
Attempts to rescue Runx2 mutants tooth development (III, IV)

We performed tissue recombinations where dental epithelium and mesenchyme from wild-type and Runx2-/- mandibular E13 molars were recombined in different combinations and cultured for 6-8 days. When Runx2-/- mesenchyme was recombined with wild-type epithelium, no obvious development occurred. When Runx2-/- epithelium was recombined with wild-type mesenchyme, normal and bell-staged molar morphology was seen. Hence, the primary defect in the Runx2-/- tooth organs resides in the dental mesenchyme and cannot be rescued by wild-type epithelium.

Furthermore, we cultured Runx2-/- molar organs under the kidney capsule of nude mice to examine if their development would be rescued under long term culture in vivo. However, only cyst-like structures formed and no teeth were observed. A wild-type tooth cultured for the same time formed a well-mineralized late bell stage tooth with surrounding alveolar bone.

We also tried to rescue the Shh expression in the enamel knot by adding exogenous Fgf but no rescue was observed. Hence, our results indicate that lack of Fgf3 in the Runx2 mutant teeth is not the only reason for the downregulation of Shh expression in the enamel knot. There may be other mesenchymal signal molecules that regulate Shh expression in the enamel knot.

Since Fgf3, Activin βA, and Shh were all downregulated in Runx2 mutant teeth, we attempted to rescue the morphology by culturing them in the presence of the recombinant proteins Fgf4, Fgf10, Activin βA and Shh. None of the signal molecules rescued the morphogenesis of Runx2 mutant molars, either when introduced alone or in various combinations.

In conclusion, we observed that Runx2 has a dual role in tooth development: it is necessary for the bud stage tooth to proceed to cap stage but it is also needed to prevent extra budding from the epithelium.

Runx2 and CCD

The apparent difference between Runx2 heterozygote mouse and CCD human syndrome is the lack of supernumerary teeth in mice which is likely due to the lack of secondary dentition in mice. A correlation of genotype and phenotype have been observed in CCD patients. If a mutation in the runt domain takes place, which is necessary for DNA binding, a classical CCD occurs with a wide variety of affected structures (Zhou et al., 1999). However if the mutation occurs in the WVRPY-3´end, which is the binding site for the TLE coreceptor, a CCD phenotype with only supernumerary teeth has been reported (Quack et al., 1999). This could be a coincidence but it fits well with the idea that Runx2 is needed to repress the budding of the dental lamina and to inhibit formation of the successional teeth. Other studies have concluded that there is no correlation between the phenotype and genotype but that could be due to small number of patients and perhaps that no mutations were observed in the TLE binding site (Otto et al., 2002). Another correlation that has been observed is the height of CCD patients (SD) and the number of supernumerary teeth which is more difficult to explain (Yoshida et al., 2002). De-
tailed study of mutations of *Runx2* in CCD patients would be needed to detect further genotype/phenotype correlation regarding supernumerary teeth. A recent study showed that activation of Wnt signaling leads to multiple extra teeth which suggests that the repressor function of Runx2 could be downstream of Wnt (Järvinen et al., 2006). It has also been shown that Wnt acts through β-catenin to interact with Runx2 and Smad which integrates Smad and Wnt pathways in interaction with Runx2 (Gaur et al., 2005). Furthermore, it is also evident that Bmp regulate *Runx2* in bone tissues and Fgf in tooth development (James et al., 2006). This could indicate that Bmp and Wnt regulate the repression function of Runx2 on the extra budding and successor tooth formation and that Fgf may regulate the activation of *Runx2* that promote tooth development.
CONCLUDING REMARKS

The understanding of molecular mechanisms controlling tooth development has greatly advanced during the last years. The developing tooth has proven to be a powerful model for studying the sequential signaling events involved in organogenesis in general. Our expression analysis of six different Bmps indicated that Bmp signals are produced by both mesenchyme and epithelium and are important reciprocal regulators of tooth development. The present study also showed that Runx2 is a transcription factor that is absolutely required for tooth development. In Runx2 null mutant mice tooth development is arrested at bud stage, and our analysis of Runx2 function gained us further information about signaling pathways involved in tooth development. We have demonstrated that Runx2 is an essential transcription factor mediating Fgf signaling and epithelial-mesenchymal interactions in developing teeth during the transition from bud to cap stage. In addition, we show that Runx2 is required for the upregulation of Fgf3 gene expression. Our results also indicate that Runx2 regulates additional mesenchymal signals which are required for continued morphogenesis of teeth.

The finding that mutations in Runx2 cause in human and mice CCD, where bones as well as teeth are affected, provided an excellent opportunity to examine and compare the functions of one transcription factor in two different organs. Our studies suggested that Runx2 is differentially regulated in dental and bone mesenchyme. Interestingly, recent work has shown that Runx2 acts on different target genes and affects different signaling pathways in bones and teeth (James et al., 2006). In addition, in vitro experiments, in the same study, determined that Runx2 is part of the Fgf and Bmp signaling pathways in tooth and bone development, respectively. Hence, the available evidence suggests that Runx2 has a specific direct function on tooth formation, which is not secondary to its effect on bone.

In Runx2 null mutants, tooth development is arrested at bud stage, similarly as in Msx1, Pax9 and Lef1 mutants. However, unlike the other mouse mutants, the lower molars in Runx2 mutants were more severely affected than upper molars. In addition, in the upper molars of Runx2 mutants extra buddings occurred at the palatal side of the tooth bud. Although mice do not develop a secondary dentition, these buds provided clues for the pathogenesis of CCD syndrome which is caused by RUNX2 haploinsufficiency and characterized by multiple supernumerary teeth. We suggested that these extra buds occurred at sites where the formation of the secondary teeth is normally prevented in mice and that Runx2 acts as an inhibitor of successional tooth formation by preventing advancing development of the buds.

We also showed that several genes expressed in the enamel knot were downregulated or missing in the Runx2-/- lower molar but normal in the upper molar. In particular, Shh was absent in the lower molars, and very faintly expressed in the upper molars. In a subsequent study in our laboratory on Shh involvement in Runx2 signaling, it was shown that Shh as well as its mediators Ptc1, Ptc2, and Gli1 were downregulated in the lower molars of Runx2 null mutant whereas active Shh signaling was present in the extra buds of upper molars of Runx2 null mutants as well as of Runx2 mutant heterozygotes (Wang et al., 2005). This linked Shh expression in the enamel knot with the onset of successional tooth formation.
It was shown recently that continuous tooth generation in mouse could be induced by activated Wnt/beta-catenin signaling, and it was suggested that this unlocked the capacity for tooth renewal that was lost in rodents more than 60 millions of years ago (Järvinen et al., 2006). Interestingly, these supernumerary teeth formed successionaly from enamel knots expressing known markers including Shh. It was suggested that the mechanism of continuous tooth generation involved the iterative formation of ectopic enamel knot signaling centers where enamel knot activation and lateral inhibition is the underlying key mechanism. The results from my studies are in line with this suggestion and it is tempting to speculate that the formation of the supernumerary teeth in cleidocranial dysplasia as a result of Runx2 haploinsufficiency results from modulation of the lateral inhibition mechanism that regulates enamel knot activation. The exact function of Runx2 in this process remains to be demonstrated. Runx2 was recently linked to Wnt signaling by the demonstration that Dkk1, a secreted Wnt antagonist, is a target of Runx2 in dental mesenchyme (James et al., 2006), and the work in this thesis work linked Runx2 to Fgf signaling. Since Runx2 influences the expression of numerous genes in dental mesenchyme as shown by microarray analysis (James et al., 2006), it is possible that its role in the inhibition of successional tooth formation involves the modulation of several signaling pathways. Further studies are needed for more detailed dissection of the molecular basis for the pathogenesis of CCD.
ACKNOWLEDGEMENTS

This study was carried out at the Institute of Dentistry and at the Institute of Biotechnology under the supervision of Professor Irma Thesleff during the years 1994-2004. Financial support for this work was provided by the Academy of Finland, Sigrid Juselius Foundation, Finnish Dental Society and the National Institutes of Health DE 013368.

I am deeply grateful to my supervisor, Professor Irma Thesleff, for her never-ending enthusiasm, knowledge and support during the years. Irma has provided an excellent working environment with best possible facilities, equipment, and skilled technicians. Irma has also given me freedom to do many different projects, perhaps too many at times, but always rewarding ones. I am also grateful to Irma for having always time to discuss when needed and for the understanding and patience, thank you.

I wish to thank Professor Mart Sarma, head of the Institute of Biotechnology and Dr Kirsti Kari, for providing the excellent working facilities and resources at the Institute of Biotechnology and at the Institute of Dentistry, respectively.

Professor Satu Alaluusua and Docent Kirsi Sainio are warmly thanked for reviewing the manuscript and for the constructive criticism and valuable comments.

I wish to thank Pekka Nieminen for revising the English of the manuscript.

Anne Vaahtokari and Carin Sahlberg are warmly thanked for introducing me to the world of science by sharing their knowledge and skills and also as collaborators and co-authors. I want also to thank Marja Mikkola and Ritva Rice for the expert advice and knowledge whenever needed and as collaborators and co-authors.

I am grateful for the collaboration with Xiuping Wang, without her hard work and drive much less would have been achieved. Xiuping brought order and efficiency during the chaotic years when I tried to combine both clinical and scientific work.

I warmly thank all the people of the Developmental Biology group for the stimulating environment and fruitfull discussions. In particular, I am grateful for the present and former members of the tooth group creating a warm and friendly working atmosphere.

I am grateful for the excellent technical help from Riikka Santalahti, Merja Mäkinen, late Kaija Kettunen, Heidi Kettunen and Maire Holopainen.

I would like to thank all my collaborators and co-authors during the years for their invaluable contributions, Päivi Kettunen, Jukka Jernvall, Soile Keränen, Johanna Laurikkala, Pekka Nieminen, David Rice, Janna Waltimo-Sirén, and Takashi Yamashiro. I am also grateful for the collaboration with Rena D’Souza which started the Runx2 project.
I wish to thank Elina Waris and Raila Salminen for always providing help with all kinds of bureaucracy, when needed.

I want also to thank the Viikki Graduate School in Biosciences for organizing excellent seminars and courses.

I am grateful to Sirpa Arte, Janna Waltimo-Sirén and Tuula Ingman for introducing me the world of orthodontics by sharing their knowledge and in accepting me to the programme. I warmly thank my fellow postgraduate students for their help, support and understanding during the last year.

I wish to thank all my friends that have made it possible to forget the work when needed. I am grateful to my parents and brother and sisters for their support and babysitting hours. My deepest gratitude goes to my wife Riikka for the love, support and almost never-ending patience and for sharing the joys of life with me and our son Anton and daughter Sofia.

Helsinki, November 2006

Thomas Åberg
REFERENCES


Chuong, C.M. Molecular basis of epithelial appendage morphogenesis. 1998. R.G. Landes Company, Austin, Texas, USA.


Jarvinen E., Narhi K., Birchmeier W., Taketo M.M., Jernvall J., and Thesleff I. Continuous tooth generation in mouse is induced by activated Wnt/ß-catenin signaling. Science, in press.


Kratochwil K., Galceran J., Tontsch S., Roth W., and Grosschedl R. Lef1 expression is activated by BMP-4 and regulates inductive tissue interactions in tooth and hair development. Genes Dev. 1996; 10: 1382-1394.


Sandford, L.P., Ormsby, I., Gittenberger-de Groot, A.C., Sariola, H., Friedman, R., Boivin, G.P., Cardell, E.L. and Doetschman, T. TGFbeta2 knockout mice have multiplle developmental
defects that are non overlapping with other TGFbeta knockout phenotypes. Development 1997; 124: 2659-2670.


Zhang, H., and Bradley, A. Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 1996; 122: 2977-2986.


