Helsingin yliopisto

 

Helsingin yliopiston verkkojulkaisut

University of Helsinki, Helsinki 2006

Evaluation of the Biocompatibility of Poly (ortho ester), Copolymer of ε-caprolactone/D,L-lactide and the Composite of Copolymer of ε-caprolactone/D,L-lactide and Tricalciumphosphate as Bone Filling Material

Marja Ekholm

Doctoral dissertation, April 2006.
University of Helsinki, Faculty of Medicine, Institute of Clinical Medicine, Helsinki University Central Hospital, Department of Oral and Maxillofacial Surgery and University of Helsinki, Institute of Dentistry, Department of Oral and Maxillofacial Surgery and University of Helsinki, Institute of Dentistry, Department of Oral Pathology and University of Helsinki, Faculty of Veterinary Medicine, Department of Clinical Veterinary Sciences and Tampere University of Technology, Institute of Biomaterials and University and University Hospital of Tampere, REGEA- Institute for Regenerative Medicine and Medical School.

The purpose of this series of studies was to evaluate the biocompatibility of poly (ortho) ester (POE), copolymer of ε-caprolactone and D,L-lactide [P (ε-CL/DL-LA)] and the composite of P(ε-CL/DL-LA) and tricalciumphosphate (TCP) as bone filling material in bone defects. Tissue reactions and resorption times of two solid POE-implants (POE 140 and POE 46) with different methods of sterilization (gamma- and ethylene oxide sterilization), P(ε-CL/DL-LA)(40/60 w/w) in paste form and 50/50 w/w composite of 40/60 w/w P(ε-CL/DL-LA) and TCP and 27/73 w/w composite of 60/40 w/w P(ε-CL/DL-LA) and TCP were examined in experimental animals. The follow-up times were from one week to 52 weeks. The bone samples were evaluated histologically and the soft tissue samples histologically, immunohistochemically and electronmicroscopically.

The results showed that the resorption time of gamma sterilized POE 140 was eight weeks and ethylene oxide sterilized POE 140 13 weeks in bone. The resorption time of POE 46 was more than 24 weeks. The gamma sterilized rods started to erode from the surface faster than ethylene oxide sterilized rods for both POEs. Inflammation in bone was from slight to moderate with POE 140 and moderate with POE 46. No highly fluorescent layer of tenascin or fibronectin was found in the soft tissue. Bone healing at the sites of implantation was slower than at control sites with the copolymer in small bone defects. The resorption time for the copolymer was over one year. Inflammation in bone was mostly moderate. Bone healing at the sites of implantation was also slower than at the control sites with the composite in small and large mandibular bone defects. Bone formation had ceased at both sites by the end of follow-up in large mandibular bone defects. The ultrastructure of the connective tissue was normal during the period of observation.

It can be concluded that the method of sterilization influenced the resorption time of both POEs. Gamma sterilized POE 140 could have been suitable material for filling small bone defects, whereas the degradation times of solid EO-sterilized POE 140 and POE 46 were too slow to be considered as bone filling material. Solid material is difficult to contour, which can be considered as a disadvantage. The composites were excellent to handle, but the degradation time of the polymer and the composites were too slow. Therefore, the copolymer and the composite can not be recommended as bone filling material.

The title page of the publication

This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.

© University of Helsinki 2006

Last updated 05.04.2006

Yhteystiedot, Contact information E-thesis Helsingin yliopisto, University of Helsinki