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Abstract

Aim: To characterize the inhibition of  platelet function by paracetamol in vivo and in vitro, 
and to evaluate the possible interaction of  paracetamol and diclofenac or valdecoxib in 
vivo. To assess the analgesic effect of  the drugs in an experimental pain model.

Methods: Healthy volunteers received increasing doses of  intravenous paracetamol (15, 
22.5 and 30 mg kg-1), or the combination of  paracetamol 1 g and diclofenac 1.1 mg kg-1 
or valdecoxib 40 mg (as the pro-drug parecoxib). Inhibition of  platelet function was 
assessed with photometric aggregometry, the platelet function analyzer (PFA-100), and 
release of  thromboxane B2. Analgesia was assessed with the cold pressor test. The inhi-
bition coeffi cient of  platelet aggregation by paracetamol was determined as well as the 
nature of  interaction between paracetamol and diclofenac by an isobolographic analysis 
in vitro.

Results: Paracetamol inhibited platelet aggregation and TxB2-release dose-dependently 
in volunteers and concentration-dependently in vitro. The inhibition coeffi cient was 15.2 
mg L-1 (95% CI 11.8 – 18.6). Paracetamol augmented the platelet inhibition by diclofenac 
in vivo, and the isobole showed that this interaction is synergistic. Paracetamol showed no 
interaction with valdecoxib. PFA-100 appeared insensitive in detecting platelet dysfunc-
tion by paracetamol, and the cold-pressor test showed no analgesia.

Conclusions: Paracetamol inhibits platelet function in vivo and shows synergism when 
combined with diclofenac. This effect may increase the risk of  bleeding in surgical 
patients with an impaired haemostatic system. The combination of  paracetamol and 
valdecoxib may be useful in patients with low risk for thromboembolism. The PFA-100 
seems unsuitable for detection of  platelet dysfunction and the cold-pressor test seems 
unsuitable for detection of  analgesia by paracetamol.
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Abbreviations and defi nitions

PGDS prostaglandin D2 synthase
PGE2 prostaglandin E2

PGES prostaglandin E2 synthase
PGF2α prostaglandin F2α

PGG2 prostaglandin G2

PGH2 prostaglandin H2

PGI2 prostacyclin
PGIS prostaglandin I2 synthase
PKA  protein kinase A
PKC  protein kinase C
PLA2 phospholipase A2

PLC  phospholipase Cγ2
PRP platelet rich plasma
PPP platelet poor plasma
RNA ribonucleic acid
TF tissue factor
TP thromboxane-prostanoid 
TRAP thrombin receptor activating 

peptide
TxA2 thromboxane A2

TXAS thromboxane A2 synthase 
TxB2 thromboxane B2

TYR tyrosine
VAS visual analogue scale
VWF von Willebrand factor

AA  arachidonic acid
ADP adenosine diphosphate
ARG arginine
ASA acetylsalisylic acid
cAMP cyclic adenosine diphosphate
CI  confi dence interval
CNS central nervous system
COX cyclooxygenase 
CYP cytochrome P450
EC50 concentration causing 50% 

effect
F  (clotting)factor
γ interaction index
GLU glutamate
GP glycoprotein
IC50 concentration causing 50% 

inhibition 
ILE isoleucine
Ki inhibition coeffi cient
NNT number-needed-to-treat
NSAID non-steroidal anti-infl ammatory 

drug
OA osteoarthritis
PAR protease activated receptor
PFA-100 platelet function analyzer
PGD2 prostaglandin D2
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Introduction

cetamol is a weak inhibitor of  COX-1 
and a very weak inhibitor of  COX-2,5 the 
therapeutic effects of  paracetamol is unre-
lated to this effect. Ever since the classic 
experiment of  Flower and Vane in 1972, 
where they showed that prostaglandin 
synthesis in brain tissue is inhibitable by 
paracetamol in much lower concentrations 
than prostaglandin synthesis in peripheral 
tissue, central prostaglandin inhibition has 
been considered the main mechanism of  
action of  paracetamol.6 The discovery by 
Chandrasekharan and co-workers in 2002 
of  the COX-3 variant, expressed mainly in 
cerebral tissue, suggests a possible target 
for paracetamol.7  

Thromboxane A2, synthesized by COX-1 
and thromboxane synthase in platelets, is 
one important messenger in the complex 
event of  blood clotting.8 By inhibiting 
thromboxane formation with an NSAID 
the risk of  clinically signifi cant periopera-
tive bleeding will occur, as shown in clin-
ical studies 9 and known to the experienced 
anaesthesiologist. Paracetamol is consid-
ered safe in this respect, although platelet 
function impairment can be demon-
strated upon intravenous administration 
of  paracetamol.10 The present study was 
designed to characterize the platelet func-
tion impairment by paracetamol alone and 
in combination with NSAIDs.

Paracetamol, also known as acetami-
nophen, has been in clinical use since 
1893. Considering that few other drugs 
with this long a history are still in wide 
clinical use, it is surprising that the precise 
mechanism of  action of  paracetamol is 
still undetermined. Paracetamol is related 
to the large group of  non-steroidal anti-
infl ammatory drugs (NSAIDs), but some 
distinct differences exist. Paracetamol is 
an effective antipyretic in relatively low 
doses whereas the analgesic effi cacy seems 
somewhat lower than that of  NSAIDs.1 
Paracetamol is virtually devoid of  anti-
infl ammatory effect.2 Also, the side-effect 
spectrum of  paracetamol differs from 
that of  NSAIDs; the classic gastric and 
renal toxicity of  traditional NSAIDs is in 
the case of  paracetamol substituted by a 
signifi cant risk for hepatic toxicity associ-
ated with over-dosing.3   

The mechanism of  action of  NSAIDs is 
well known.4 By inhibiting cyclooxygenase 
(COX), the NSAIDs block the synthesis 
of  prostaglandins, an important class of  
lipid messenger molecules responsible for 
a variety of  both physiological and patho-
logical functions. Both the therapeutic and 
side effects of  the NSAIDs are related to 
COX-inhibition, COX-1 is responsible for 
most physiological syntheses of  prostag-
landins whereas COX-2 is up-regulated 
in infl ammatory states. Although para-
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brain and is involved in regulation of  sleep 
and pain responses. The haematopoi-
etic PGDS is found in peripheral tissues 
and is thought to participate in immune 
responses and female reproduction.15 

PGE2 can be synthesized by several 
different synthases (PGESs).16 The 
membrane bound mPGES-1 is upregu-
lated by infl ammatory stimuli whereas 
mPGES-2 and the cytosolic cPGES are 
constitutively expressed in many tissues. 
Besides its role in infl ammation and fever, 
PGE2 is thought to play a role in kidney func-
tion, bone metabolism and reproduction. 
The cytoprotective effect of  PGE2 in gastric 
mucosa is of  major clinical signifi cance.17 

PGF2α is synthesized by several 
different enzymes; from PGD2 by PGD2 
11-ketoreductase, from PGH2 by PGH2 
9,11-endoperoxide reductase or from 
PGE2 by PGE2 9-ketoreductase.18 Among 
other physiological effects, PGF2α causes 
constriction of  bronchial and vascular 
smooth muscle.

Prostaglandin I2 synthase (PGIS), which 
catalyzes the conversion of  PGH2 to pros-
tacyclin, is a membrane bound enzyme 
located in the endoplasmic reticulum and 
belongs to the microsomal P450 super-
family.19 Prostacyclin is mainly produced 
by vascular endothelial cells and its main 
physiological effects are vasodilation, and 
inhibition of  platelet aggregation and 
adhesion to vascular endothelium.20 It also 
inhibits the adhesion of  leukocytes to the 
endothelium and may inhibit their activa-
tion during infl ammation.

TxA2 is synthesized by thromboxane 
A2 synthase (TXAS), which, in conformity 

Biosynthesis of prostaglandins 
The fi rst step in the biosynthesis of  
prostaglandins is release of  arachidonic 
acid (AA) from phospholipids in cellular 
membranes. AA is a 20-carbon polyunsat-
urated fatty acid, containing four carbon-
carbon double bonds in positions 5,8,11 
and 14.11 In cellular membranes AA is 
bound to a glycerol backbone, from where 
it can be released through hydrolysis by 
phospholipase A2 (PLA2). This enzyme 
belongs to a large family, new members of  
which are continuously being identifi ed. 
The PLA2s are mainly classifi ed into three 
groups: (a) secretory, Ca2+-dependent, 
low molecular weight PLA2s; (b) cytosolic 
Ca2+-dependent, high molecular weight 
PLA2s; and (c) Ca2+-independent PLA2s.

12 
Although many details are still unknown, 
the cytocolic phospholipase cPLA2α 
appears to play a key role in release of  AA 
in platelets.13

Arachidonic acid released from cell 
membranes is the substrate of  the enzyme 
cyclooxygenase (COX), also referred to as 
prostaglandin H2 synthase, which catal-
yses the conversion of  arachidonic acid 
to prostaglandin H2 (PGH2) through the 
intermediate prostaglandin G2 (PGG2). 
PGH2 is further converted by specifi c 
synthases to its biologically active deriva-
tives: prostaglandin D2 (PGD2), pros-
taglandin E2 (PGE2), prostaglandin F2α 
(PGF2α), prostacyclin (PGI2) and throm-
boxane A2 (TxA2). 

Two types of  prostaglandin D2 synthase 
(PGDS) have been identifi ed.14 The lipoc-
alin-type PGDS is mainly expressed in the 
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with PGIS, is bound to endoplasmic retic-
ulum and belongs to the microsomal P450 
superfamily.21 TXAS is mainly active in 
platelets, but it has been isolated from many 
different tissues.22 The major physiological 
functions of  TxA2 are opposite to those 
of  PGI2; TxA2 is a potent vasoconstrictor 
and trigger of  platelet aggregation. 

Structure and 
function of cyclooxygenase
Three isoforms of  COX have been iden-
tifi ed so far. COX-1, the gene of  which 
was cloned in 1989,23 is considered to be 
responsible mainly for the physiological 
functions of  COX since it is constitutively 
expressed in many tissues.24  COX-2, on 
the other hand, is inducible upon infl am-

matory stimuli, and is considered respon-
sible for prostaglandin production in patho-
logic states. Although this is probably an 
oversimplifi cation, the distinction is useful 
as long as many details are still uncov-
ered. The gene of  COX-2 was cloned in 
1992.25 COX-3, the youngest member of  
the COX family, was discovered in 2002.7 
This isoform is not the product of  its 
own gene, but the result of  an alterna-
tive splicing of  the messenger RNA of  
the COX-1 gene. COX-3 mRNA is found 
throughout the rat central nervous system 
(CNS) with a high density in brain micro-
wessels, suggesting a possible association 
with vascular tissue.26 Whether the same 
is true for the human CNS remains to be 
elucidated. 

COX is a membrane-bound enzyme 
existing as a dimer of  two identical mono-

Figure 1. Structure of the cyclooxygenase-1 monomer
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mers, the crude structure of  the COX-1 
monomere is shown in fi gure 1.27 In addi-
tion to the membrane-binding domain, 
consisting of  four helices, the enzyme 
consists of  an epidermal growth factor-
like domain, commonly found in many 
proteins and thought to serve as a struc-
tural building block,28 and a catalytic 
domain containing the cyclooxygenase 
and peroxidase active sites. The cyclooxy-
genase active site resides at the end of  a 
long, hydrophobic channel which pene-
trates from the membrane binding surface 
into the core of  the catalytic domain.27 
In the channel only two polar residues 
are found, arginine 120 and glutamate 
524.28  The cyclooxygenase reaction is 
catalysed by a tyrosine residue, Tyr 385 
(COX-1 numbering), located at the top of  
the channel. The peroxidase active site is 
located on the protein surface in a shallow 
cleft, defi ned by four helices. This site 

contains a heme cofactor, being respon-
sible for the peroxidase catalytic activity. 

These two catalytic centres are spatially 
adjacent and the enzymatic reactions are 
also mechanistically connected.27 The 
chain of  reactions starts with the heme 
group of  the peroxidase active site being 
oxidized to an oxyferryl radical interme-
diate (Intermediate I or Compound I) by 
its substrate PGG2 or some other peroxide. 
Intermediate I is then reduced in two 
steps: fi rst to the oxyferryl heme Inter-
mediate II and further back to the resting 
ferric state (Fig. 2).29 The reduction of  
Intermediate I to Intermediate II oxidizes 
the adjacent Tyr 385 to a tyrosyl radical, 
which is required for initiation of  the 
cyclooxygenase reaction.30 Two different 
models for the interrelation between reac-
tions have been proposed. The branched 
chain mechanism states that one cycle 
in the peroxidase reaction may facilitate 

Figure 2. Function of cyclooxygenase
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multiple turnovers in the cyclooxygenase 
reaction, since the tyrosyl radical is regen-
erated at the end of  the cyclooxygenase 
catalytic cycle. The alternative model, the 
tightly coupled mechanism, states that the 
tyrosyl radical needs to be reoxidated by 
Compound I in every cycle, and there-
fore one cycle in the peroxidase reaction 
is needed to initiate every turnover in the 
cyclooxygenase reaction.31 The former 
mechanism appears to be the prevailing in 
the literature.

The hydrophobic structure of  the 
channel leading to the cyclooxygenase 
reaction catalytic centre is essential for 
appropriate positioning of  arachidonic 
acid. Many weak bonds are formed 
between AA and amino acid residues lining 
the channel.32 During the cyclooxygenase 
cycle two molecules of  oxygen are added 
to AA and a new bond is formed between 
carbons 8 and 12 (Fig. 3).33 The newly 
formed PGG2 molecule then diffuses to 
the peroxidase site of  the same or adja-
cent COX complexes for reduction to its 
corresponding alcohol PGH2 (Fig. 3). 

The amino acid sequence differ between 
COX-1 and COX-2, approximately 60% 
being identical. However, the sequence 
near the catalytic domain is highly 
conserved,34 and the catalytic mechanism 
is identical in the two isoforms. The amino 
acid numbering differs somewhat between 
isoforms but, for clarity, the COX-1 
numbering is used. The hydrophobic 
channel leading to the cyclooxygenase 
reaction catalytic centre is somewhat less 
narrow in COX-2. The isoleucine residue 
in position 523 in COX-1 is in COX-2 
substituted with a valine, which exposes a 
side pocket in the channel near the cata-
lytic centre.35 Some differences also occur 
at the mouth of  the channel.34

The precise structure of  COX-3 is still 
undetermined. In fact, its existence in 
humans has been questioned.36

Little is known about how the reac-
tions of  the COX complex are regulated. 
Availability of  AA is probably of  major 
signifi cance. Based on mathematical simu-
lations, a threshold switch mechanism has 
been proposed.37 In this model, a certain 
threshold concentration of  AA is required 
for propagation of  the reaction. Below 
threshold AA concentration, PGG2 is 
quickly depleted and the reaction comes 
to a halt. In this way, minimal amounts of  
prostaglandins are produced under resting 
conditions whereas rapid synthesis occurs 
upon increased liberation of  AA. Another 
factor considered signifi cant is self-inac-

Figure 3. Synthesis of prostaglandin
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tivation of  the enzyme. Some aspects of  
this suicide activity have been uncovered. 
The peroxidase reaction is thought to self-
inactivate by a mechanism where Interme-
diate II is rendered inactive through oxida-
tion to Intermediate III, which does not 
participate in the normal catalytic cycle.38 
The cyclooxygenase reaction appears 
to self-inactivate through a mechanism 
different from that of  the peroxidase reac-
tion,39 but the details are not known.

The activity of  COX is also dependent 
on the redox state of  the environment; a 
certain amount of  peroxides is needed to 
initiate the chain of  reactions. Since the 
peroxidase reaction is not very substrate-
specifi c,40 a variety of  peroxide may 
initiate the chain of  reactions. Lowering 
the peroxide tone in the environment 
with glutathione peroxidase suppresses 
the cyclooxygenase activity.41 The two 
main COX isoforms, COX-1 and COX-2, 
appear to differ with respect to their sensi-
tivity to peroxide tone.

Pharmacologic 
inhibition of COX isoforms

Non-selective inhibitors

The non-steroidal anti-infl ammatory 
drugs (NSAIDs) constitute a large group 
of  structurally different pharmacolog-
ical substances able to inhibit the action 
of  COX.4  Traditional NSAIDs, such as 
indomethacin, ibuprofen, diclofenac, 
naproxen and acetylsalicylic acid (aspirin), 
inhibit both COX-1 and COX-2.5  NSAIDs 
inhibit COX by blocking the hydrophobic 
channel leading to the cyclooxygenase 
active site.42 Aspirin differs from other 
NSAIDs through its ability to irrevers-
ibly inhibit COX by acetylating serine 530 

in the channel.43 All other NSAIDs are 
competitive inhibitors and form non-cova-
lent bonds to different amino acid residues 
in the channel. Based on X-ray crystal 
structure models, acidic NSAIDs appear 
positioned with their carboxyl group 
towards the mouth of  the channel and 
the nonpolar groups towards the catalytic 
centre.28 Arginine 120 is important, since 
its positively charged side chain binds to 
the negatively charged carboxyl group of  
acidic NSAIDs,44 although affi nity differs 
between NSAIDs.45 Diclofenac is less 
dependent on interaction with Arg 120 
than indomethacin. The carboxyl group 
of  diclofenac probably binds to tyrosine 
355 near the mouth of  the channel 46 or 
through an inversed orientation to Ser 530 
and Tyr 385 near the catalytic centre.47 

The kinetics of  the reaction between 
NSAIDs and COX is, however, more 
complex than the simple interaction 
between a receptor and an antagonist. 
Several NSAIDs, for example indometh-
acin 48 and diclofenac,49,50 exhibit a time-
dependent inhibition in addition to the 
normal concentration dependent inhibi-
tion of  COX. A two-step kinetic model 
has been proposed.51 The initial step is 
rapid and easily reversible, the second step 
is slow and poorly reversible. In the case 
of  indomethacin, a possible mechanism is 
insertion of  a methyl group of  the drug 
into a hydrophobic pocket in the side of  
the channel. 51 

COX-2 selective inhibitors

Based on the structural differences between 
COX-1 and COX-2, highly selective COX-2 
NSAIDs, coxibs, have been developed. 
Although many COX-2-selective inhibitors 
have been synthesized, fi ve coxibs have 
been assessed in clinical trials. They are 
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(in order of  increasing COX-2 selectivity): 
celecoxib, valdecoxib, etoricoxib, rofecoxib 
and lumiracoxib.52 In contrast to traditional 
NSAIDs, which are fairly linear molecules, 
coxibs have a bulkier, tricyclic structure.53 
The phenylsulphonamide/phenylsulphone 
group common to all coxibs but lumira-
coxib enters the side pocket in the cyclo-
oxygenase catalytic channel, made acces-
sible in COX-2 by valine instead of  isoleu-
cine in position 523.54,35 Changing valine 
523 to isoleucine by site-directed muta-
genesis in COX-2 reverses the selectivity 
of  inhibitors.34 The adjacent histidine 513 
in COX-1 is substituted with arginine in 
COX-2, but this does not appear to affect 
the affi nity of  coxibs.55  More detailed 
studies suggest a time-dependent kinetic 
mechanism for selective inhibition,56 
resembling that of  time-dependent non-
selective inhibitors. According to this 
model, the last, poorly reversible step in 
the reaction would represent entrance of  
the phenylsulphonamide group into the 
side pocket. In contrast to non-selective 
NSAIDs, arginine 120 does not appear 
important for binding of  coxibs to COX-2. 
Arg-120 mutations rather display increased 
sensitivity to certain inhibitors.57  

Paracetamol 

In their classic experiment in 1972, Flower 
and Vane showed that prostaglandin 
synthesis in brain tissue is inhibitable by 
paracetamol in much lower concentrations 
than prostaglandin synthesis in peripheral 
tissue.6 From this experiment it has been 
concluded that paracetamol acts by inhib-
iting COX in the CNS. The newly discovered 
COX-3 appears more sensitive to the action 
of  paracetamol than COX-1 and COX-2.7 
In peripheral tissues, COX-1 appears slightly 
more sensitive than COX-2.5 

Analgesic effect of paracetamol

Postoperative pain

Paracetamol was introduced in medicine 
in 1893, but did not gain popularity until 
in the 1950s when paracetamol was recog-
nized as the major active metabolite of  the 
nephrotoxic analgesic phenacetin.58 Para-
cetamol differs from NSAIDs through its 
weak anti-infl ammatory activity, although 
it has potent antipyretic and analgesic 
functions.2 

The effect of  oral paracetamol for 
postoperative pain has been assessed by 
Barden and co-workers in a meta-analysis 
including 4186 patients.59 The numbers-
needed-to-treat (NNTs) with 95% confi -
dence intervals (CI) for at least 50% pain 
relief  following a single dose of  para-
cetamol were: 325 mg NNT 3.8 (2.2-13.3), 
500 mg NNT 3.5 (2.7-4.8), 600/650 mg 
NNT 4.6 (3.9-5.5), 975/1000 mg NNT 
3.8 (3.4-4.4), and 1500 mg 3.7 (2.3-9.5). 
Rectal and parenteral paracetamol have 
been shown effective in a meta-analysis by 
Rømsing and co-workers.60 Parenteral para-
cetamol can be administered as the pro-
drug propacetamol, which plasma este-
rases rapidly hydrolyse into equal amounts 
of  paracetamol and diethylglycine,61 or as 
a novel intravenous paracetamol solution. 
Propacetamol 2 g is bioequivalent to intra-
venous paracetamol 1 g.62 Most reports on 
the analgesic effect of  intravenous para-
cetamol have been performed with propa-
cetamol, the conventional dose being 2 g in 
adults. Several recent randomized placebo-
controlled studies not included in the 
meta-analysis by Rømsing and co-workers 
also address this question; propacetamol 
has been shown effective for example 
after dental surgery (n=31 in the propa-
cetamol group)63 and spinal fusion surgery 
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(n=21 in the propacetamol group),64 but 
has not proved satisfactory after cardiac 
surgery (n=40 in the propacetamol group) 

65 or hepatic resection (n=40 in the propa-
cetamol group).66 In a large study (n=275 
in the propacetamol group) on a mixed 
surgical material Aubrun and co-workers 
showed a clear morphine-sparing effect of  
propacetamol, but did not fi nd any signifi -
cant reduction of  morphine-related side 
effects.67 In their recent study, Sinatra and 
co-workers defi ned the morphine sparing 
effect of  both propacetamol (29%) and 
intravenous paracetamol (33%).68 

Osteoarthritis

The analgesic effect of  paracetamol 
has also been assessed in other painful 
conditions than the postoperative one. 
The effect of  paracetamol in osteoar-
thritis (OA) is somewhat controversial. 
In a meta-analysis including 10 trials with 
a total of  1712 patients with OA in the 
knee, hip or multiple joints, paracetamol 
proved effective, although less effec-
tive than NSAIDs.69 Two recent rand-
omized, placebo-controlled studies show 
confl icting results. In their large study 
(n=405 in the paracetamol group) Miceli-
Richard and co-workers found equal effect 
of  paracetamol 4 g/day and placebo in 
OA of  the knee.70 On the other hand, in 
a crossover multicenter trial (n=239 in the 
paracetamol – placebo or placebo – para-
cetamol groups) Pincus and co-workers 
found paracetamol 4 g/day superior 
to placebo, although less effective than 
celecoxib.71 

Experimental pain models
A variety of  experimental pain models 
have been developed to study analgesics 
in healthy volunteers. Stimulation of  the 
skin has been achieved by mechanical, 
thermal, electrical, and chemical stimu-
lation. Muscle pain can be induced by 
ischemia, pressure, electrical stimulation 
or intramuscular injections of  algesic 
substances.72 To assess the degree of  pain 
achieved, either psychophysical or electro-
physical methods can be used. The visual 
analogue scale (VAS) is a widely used 
psychophysical method, electrophysiolog-
ical methods include the withdrawal refl ex 
and evoked brain potentials.

The cold pressor test has been used to 
study the effect of  several opioids such as 
morphine,73 oxycodone,74 codeine,75 and 
alfentanil,76 or NSAIDs such as ibuprofen73 
and indomethacin,77 or antidepressants 
such as imipramine 78 and venlafaxine,79 as 
well as α2-agonists such as dexmedetomi-
dine 80 and clonidine.81 The cold pressor test 
generally works well with opioids and α2-
agonists whereas no effect was detected in 
response to NSAIDs and antidepressants. 
Pain intensity in the cold pressor test has 
been shown to correlate with the need for 
analgesia after oral surgery.82 Paracetamol 
has shown an analgesic effect with several 
experimental methods: electrical stimula-
tion,83 laser induced pain 84 and the cold 
pressor test.85 

Analgesic effect of NSAIDs
The analgesic effect of  NSAIDs when 
treating postoperative pain is well docu-
mented in several meta-analyses.86,87 
Coxibs are also effective in postoperative 
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pain.88 The usefulness of  NSAIDs in oste-
oarthritis is also very well documented. 
The large meta-analysis by Bjordal and 
co-workers including 10 845 patients with 
knee osteoarthritis is one recent example.89 
Coxibs are also effective in this disorder.90

Combination of 
paracetamol and NSAIDs
Paracetamol and NSAIDs have been 
combined to improve postoperative anal-
gesia. Hyllested and co-workers assessed 
the effect of  this combination in a qualita-
tive review in 2002.86 They concluded that 
the combination seems more effective than 
either drug alone, but that data are sparse. 
Only a few studies addressing this ques-
tion have been published in recent years. 
Hiller and co-workers found no difference 
between propacetamol, diclofenac or their 
combination after tonsillectomy,91 but the 
number of  patients was small (21-25 per 
group) and no placebo group was included. 
Viitanen and co-workers found a reduced 
need for analgesia after discharge of  chil-
dren undergoing adenoidectomy in the 
group receiving a combination of  para-
cetamol and ibuprofen compared to either 
drug alone, although the opioid sparing 
effect versus placebo was equal in all 
treatment groups.92 Dahl and co-workers 
found ibuprofen comparable to a combi-
nation of  paracetamol and ibuprofen after 
orthopaedic surgery,93 but small groups and 
lack of  placebo group were potential meth-
odological problems. In a recent study, 
Hiller and co-workers evaluated the effect 
of  rectal paracetamol 60 mg kg-1, intrave-
nous ketoprofen 2 mg kg-1 or their combi-
nation in pediatric patients. 94 They found 
the combination superior to paracetamol 
but not to ketoprofen. Unfortunately, no 
placebo group was included.

Very little documentation is available 
regarding the combination of  coxibs 
and paracetamol. Issioui and co-workers 
combined celecoxib with paracetamol 
after otolaryngologic surgery and found 
the combination superior to either drug 
alone.95 On the contrary, Pickering and 
co-workers reported a negative result with 
the combination of  rofecoxib and para-
cetamol in comparison with paracetamol 
alone after tonsillectomy in children.96  

Pharmacokinetic properties 
of paracetamol, diclofenac 
and parecoxib

Paracetamol

Paracetamol can be administered through 
the rectal, oral or intravenous route. 
Absorption through the two former 
routes is infl uenced by a variety of  factors 
such as pharmaceutical formulation, fed 
or fasting state, rate of  gastric emptying, 
and position of  the patient. As a result, 
enteral dosing tend to cause highly vari-
able plasma concentrations.97, 98 The half-
life of  paracetamol in plasma is about 2 
hours, different studies displaying slightly 
varying results.99 Paracetamol is metabo-
lized in the liver, mainly through conju-
gation with glucuronic or sulfuric acid. A 
small proportion of  the drug undergoes 
oxidation through the cytochrome P450-
system (CYP) to form the highly reac-
tive intermediate N-acetyl-benzquinon-
eimine.58 This intermediate is normally 
neutralized by glutathione, but if  a large 
dose is ingested hepatic glutathione stores 
may be depleted and hepatic necrosis may 
result. 
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Diclofenac

Diclofenac can be administered by the 
oral or parenteral route. After administra-
tion through the oral route it is generally 
rapidly absorbed.100 Its half-life in plasma 
is approximately 1 hour, and metabolism 
is through CYP2C9.101

Parecoxib

Parecoxib is an injectable pro-drug of  
valdecoxib, and so far the only coxib for 
parenteral use. Parecoxib is converted to 
valdecoxib by hepatic hydrolysis within 30 
min after intravenous administration.102 
The half-life of  valdecoxib in plasma is 
relatively long, more than 7 hours, and 
metabolism is mainly through cytochrome 
P450-independent glucuronidation.103

Platelet 
function and haemostasis

The cell-based 
model of haemostasis

Injury to the vascular wall exposes extravas-
cular tissues to plasma and platelets initi-
ating the complex process of  coagulation. 
In 1964 the traditional cascade model was 
proposed, recognizing the coagulation 
process as a series of  proteolytic reac-
tions.104,105 The coagulation cascade was 
divided into the intrinsic and the extrinsic 
pathways based on measurements in vitro. 
Although the picture has changed in recent 
years, certain features of  the cascade 
model are still valid. Circulating coagula-
tion factors are inactive and activated by 
proteolytic cleavage. The active forms of  
factors VII, IX, X and II (prothrombin) are 
serine proteases that activate other coagu-
lation factors. Apart from prothrombin, all 
factors have to form a complex with their 

non-enzymatic cofactors; tissue factor 
(TF), FVIII, and FV, respectively, to be 
enzymatically active.106 The new cell based 
model of  haemostasis, proposed in 2001 
by Hoffman and Monroe, emphasizes the 
importance of  interaction between coagu-
lation factors and platelets in vivo.107

The initiation phase

TF is a membrane-bound protein expressed 
in many tissues, such as brain, lung, skin, 
and mucosal epithelium. Fibroblasts 
in blood vessel walls also express large 
amounts of  TF.108 Upon vessel wall injury, 
TF is exposed and initiates coagulation 
by binding activated factor VII (FVIIa). 
This complex then activates factors FIX 
and FX.109 Factor Xa activates FV,110 and 
together FXa and FVa can produce small 
amounts of  thrombin.111 This chain of  
events is referred to as initiation of  coagu-
lation.

In parallel with initiation of  coagulation, 
platelet activation occurs. When exposed 
to subendothelial matrix, platelets adhere 
to collagen and von Willebrand factor 
(VWF). Synthesized, stored, and secreted 
by endothelial cells, VWF is a polypeptide 
polymer to which platelets adhere through 
its glycoprotein (GP) Ib-IX-V complex.112 
The GPIb-IX-V complex is composed of  
four transmembrane subunits: GPIbα, 
GPIbβ, GPIX, and GPV. The GP Ibα and 
GPIbβ subunits are covalently linked by a 
disulfi de bond whereas the other subu-
nits are linked together by noncovalent 
binding. The VWF binding domain resides 
in the GPIbα subunit.113 Platelet adhesion 
directly to collagen is through two major 
receptors; GPIa-IIa (also referred to as 
integrin α2β1) and GP VI.114 Upon binding 
to their ligands, all three receptors interact 
in activating the platelet.   
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Many details still remain to be eluci-
dated about the intracellular signalling 
pathways activated by the receptors. In 
general, all receptors activate different 
protein kinases, such as Src and Syk, 
which in turn activate phospholipase Cγ2 
(PLC).115-117 PLC participates in intracel-
lular signal transduction in many cell types 
by catalyzing the formation of  two second 
messengers, diacylglycerol and inositol 
1,4,5-trisphosphate, from phospholipids 
in the cellular membrane.118 Inositol 1,4,5-
trisphosphate mediates the release of  Ca2+ 
from the platelet dense tubular system 
whereas diacylglycerol, together with Ca2+, 
activates protein kinase C (PKC). PKC is 
an essential step towards platelet degranu-
lation and aggregation.119 Local thrombin 
production by the FXa-FVa-complex also 
contributes to platelet activation.

The amplifi cation phase

The next phase of  the haemostatic 
process comprises amplifi cation of  the 
coagulation cascade, and platelet shape 
change, secretion, and aggregation. In 
the resting state platelets are oval discs, 
but when activated they become spherical 
and start forming fi nger-like projections, 
fi lopodia. Next, platelets fl atten and start 
spreading over the surface to which they 
adhere.120 In order to attract more plate-
lets to the site of  injury, platelets start 
secreting a variety of  substances acting in 
an autocrine and paracrine manner. Plate-
lets contain two different types of  secre-
tory granule, alpha and dense granules. 
The alpha granules contain a variety of  
large proteins such as adhesive glycopro-
teins, haemostasis factors and cofactors, 
growth factors, and protease inhibitors 
whereas the dense granules contain high 
concentrations of  small pro-aggrega-

tory molecules, serotonin and adenosine 
diphosphate (ADP).121 Another important 
pro-aggregatory molecule, not stored in 
granules but synthesized on demand, is 
TxA2. This molecule is synthesized by the 
PLA2-COX-TXAS-pathway, described in 
detail previously. COX-1 is the only active 
COX-isoform in platelets.122

ADP released during platelet degranu-
lation, TxA2 produced by the platelet, and 
thrombin produced by the coagulation 
system, all bind to their own receptors on 
the surface of  the platelet. These recep-
tors belong to the seven-transmembrane 
receptor superfamily, with a common 
architecture including seven membrane 
spanning helices and a G-protein coupled 
signal transduction system.123 Platelets 
express two ADP receptors, P2Y1 and 
P2Y12, with slightly different functions.124 
The P2Y1 receptor activates PLC through 
Gq,

125  and the P2Y12 receptor inhibits the 
synthesis of  cyclic adenosine monophos-
phate (cAMP) through Gi2, a member 
of  the Gi protein family (Fig 4).126 The 
thromboxane-prostanoid receptors (TP 
receptors), to which TxA2 binds, are 
coupled to Gq and G12/13.

127,128 The G12/13 
protein is thought to mediate platelet 
shape change, a process independent of  
Ca2+ signalling and PKC activation,129 
through phosphorylation of  myosin light 
chains by the intracellular GTPase Rho.130 
Two thrombin receptors are expressed by 
the platelet, protease activated receptor 1 
(PAR1) and PAR4.131,132 The PAR family 
differs slightly from the other members 
of  the seven-transmembrane receptor 
family, since thrombin activates the PAR 
by cleaving the receptor at its amino-
terminal extracellular end, after which the 
cleaved peptide activates the receptor.133 
Signalling through the thrombin receptors 



20

Review of  the  l iterature

are coupled to Gq and G12/13. 
134-136 In addi-

tion to the PARs, ADP-, and TP-recep-
tors, platelets also express α-adrenergic 
seven transmembrane receptors coupled 
to Gz, another member of  the Gi family 
(Fig 4).137,138 
  Platelet aggregation requires simulta-
neous signalling through several path-
ways. Concomitant signals through Gq 
and Gi, or through G12/13 and Gi cause 
Ca2+ mobilisation and aggregation.139 
Aggregation may, however, also result 
from G-protein-independent signalling. 
Stimulation of  the GPIb-IX-V complex 
with a VWF analogue may induce aggre-
gation,140 as may high concentrations of  
collagen.141 Anyhow, amplifi cation of  the 

signal through release of  ADP and TxA2 
is essential for haemostasis, since patients 
with defective receptors display chronic 
bleeding disorders.142,143 

A key event in platelet aggregation is 
activation of  the GPIIb/IIIa complex 
(also referred to as integrin αIIbβ3). This 
complex is the major platelet receptor; 
as many as 80,000 copies reside on 
the platelet surface.144 The GPIIb/IIIa 
complex have binding sites for several 
adhesive macromolecules, but most 
important are fi brinogen and VWF.145 In 
the resting state, platelets have low affi nity 
for fi brinogen and VWF, but upon acti-
vation the GPIIb/IIIa complex under-
goes both conformational changes and 

Figure 4. Platelet intracellular signalling
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receptor clustering.146,147 Intracellular Ca2+ 
is a key signal in activating the GPIIb/IIIa 
complex. Signalling through both the G-
protein coupled pathways and the GPIb-
IX-V complex induces an increase in 
intracellular Ca2+ concentration, and Ca2+ 
chelation prevents GPIIb/IIIa activation 
through both pathways.148,140 The GPIIb/
IIIa complex itself  exhibits intracellular 
signalling properties, called outside-in 
signalling, launching a positive feedback 
loop including PKC and further Ca2+ 
mobilisation 149 that leads to an oscillating 
cytosolic Ca2+ concentration, a pattern 
typical for intracellular signalling.150  The 
activated GPIIb/IIIa complex binds 
fi brinogen and VWF, which function as 
bridges between platelets and facilitate 
aggregation.151

In parallel with platelet aggregation, 
amplifi cation of  the coagulation cascade 
occurs on the platelet surface. Platelet 
α-granules contain FV in a partially acti-
vated form, rapidly activated by FXa or 
thrombin.152 Together the factors Va and 
Xa form the “prothrombinase” complex, 
responsible for thrombin production.153 
Thrombin also cleaves FVIII,154 and FVIIIa 
subsequently forms a complex with factor 
IXa, activated by the initial TF-FVIIa 
complex. Since the FIXa-FVIIIa complex, 
the “tenase” complex, catalyses the acti-
vation of  FX at a rate 50-fold compared 
to that of  the TF-FVIIa complex,155 the 
amplifi cation loop is complete.

The propagation phase

When the “tenase” and “prothrom-
binase” complexes, i.e. the  FIXa-
FVIIIa and FXa-FVa complexes, 
have assembled on the surface of  the 
platelet, large-scale thrombin produc-

tion is initiated. The thrombin now 
produced rapidly cleaves circulating, 
soluble fi brinogen that polymerizes 
and forms an insoluble web supporting 
the growing thrombus.156 Clot strength 
is further enhanced by crosslinking of  
fi brin by FXIIIa.157 

The termination phase

Without a tight regulation, the haemostatic 
process would continue until all fi brino gen 
is consumed. In order to restrict the clot-
ting to only the site of  bleeding, the coag-
ulation cascade outside the surface of  the 
platelet is rapidly terminated by physiolog-
ical inhibitors, such as activated protein C, 
protein S, antithrombin III, and the tissue 
factor pathway inhibitor.

Platelet function is inhibited by intact 
vascular endothelium by several mecha-
nisms. Most important is to constitute a 
physical barrier between the bloodstream 
and the TF-bearing cells in the suben-
dothelium. Endothelial cells also secrete 
several vasoactive substances; PGI2 and 
nitric oxide (NO) are potent inhibi-
tors of  platelet function. PGI2, synthe-
sized by the PLA2-COX-PGIS pathways 
described previously, binds to Gs-coupled 
platelet surface receptors. Gs counteracts 
the proaggregatory Gi by stimulating the 
synthesis of  intracellular cAMP, which in 
turn lowers intracellular Ca2+ concentra-
tion by activating protein kinase A (PKA, 
Fig. 4).158,159 COX-2 is responsible for PGI2 
synthesis in vascular endothelium.160 Intra-
cellular Ca2+ concentration also decreases 
in response to NO, but partly through a 
different mechanism; NO is a potent stim-
ulator of  platelet guanylyl cyclase, respon-
sible for production of  cGMP.161 cGMP 
in turn activates protein kinase G.162
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Infl uence on platelet function 
of paracetamol and NSAIDs

NSAIDs

By inhibiting COX-1, as described in 
detail previously, the NSAIDs shut down 
the production of  TxA2 in the platelet. 
The platelet-inhibiting effect of  NSAIDs 
is well documented,163,164 and low dose 
aspirin is widely used to prevent arterio-
thrombotic events.165 The COX-2 selec-
tivity of  the coxibs makes them unable to 
infl uence platelet function.166,167 

Paracetamol

Paracetamol is usually considered not to 
infl uence platelet function in vivo, based 
on studies on oral paracetamol.168,169 In 
vitro, however, paracetamol has been 
shown to inhibit platelet aggregation and 
production of  TxB2 in several studies.170, 

171, 172  Our research group has also shown 
that a high dose of  propacetamol inhibits 
platelet function in vivo.10  The effect on 
platelet aggregation of  the combination 
of  paracetamol and NSAIDs or coxibs 
has not been studied.

Platelet function tests
The effect of  drugs on platelet function 
has been evaluated with a wide variety of  
methods, focusing on different stages of  
the haemostatic process. Platelet count is a 
routine method, performed with standard 
cell counters. Although widely available, 
this method gives no information about 
platelet function. The Ivy bleeding time, 
described more than 70 years ago,173 eval-
uates haemostasis by measuring the time 
until cessation of  bleeding after a skin cut. 
This method is highly user dependent, and 

correlates poorly with clinical bleeding.174 
Obviously, this method is also infl uenced 
by other aspects of  haemostasis than 
platelet function. 

Platelet activation can be assessed 
with fl ow cytometry, using an antibody 
directed towards some marker displayed 
on the platelet surface during activation.175 
Platelet adhesion can be assessed with 
perfusion chambers, where platelets are 
fl owing over a thrombogenic surface.176 
This method allows the study of  different 
surfaces at different shear rates, but 
requires a specialized laboratory. The gold 
standard for assessment of  platelet aggre-
gation is photometric aggregometry based 
on the method of  Born.177 This method 
measures the increase in light transmis-
sion through a suspension of  platelets 
during aggregation. This method is fairly 
laborious since it requires the preparation 
of  platelet-rich plasma or washed plate-
lets, but on the other hand it offers the 
possibility to study aggregation triggered 
through many different pathways. Platelet 
secretion can be assessed by measuring the 
concentration of  the substance of  interest 
with an immunologic or some other suit-
able method.    

The platelet function analyser (PFA-
100) assesses the combination of  
platelet adhesion and aggregation under 
high shear rates.178 In this method anti-
coagulated blood is drawn under vacuum 
through a membrane coated with collagen 
and ADP or epinephrine.179 The time 
before membrane occlusion is recorded. 
PFA-100 has been used to evaluate the 
response to acetylsalicylic acid treat-
ment, and a dose-dependent increase in 
collagen/epinephrine closure time has 
been established.180 
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Aims of the study

The main goal of  this thesis was to describe the inhibition of  platelet function by para-
cetamol. The specifi c questions were as follows:

1. Does paracetamol exhibit a dose-dependent inhibition of  platelet function 
in vivo (III)?

2. Can the inhibition of  platelet function by paracetamol be characterized by 
pharmacodynamic models in vitro (II)?

3. Do diclofenac and paracetamol interact in inhibiting platelet function in vivo (I)?

4. Is the interaction between paracetamol and diclofenac synergistic, additive or 
subadditive (II)?

5. Do valdecoxib and paracetamol interact in inhibiting platelet function in vivo (IV)?
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one, Austria) containing 3.2% buffered 
citrate, and into plastic EDTA-tubes 
(5.9 mg K2EDTA, VenoSafeTM, Terumo 
Europe, Haasrode, Belgum) (III, IV). 
After the baseline sample, a dorsal vein 
of  the contralateral hand was cannulated 
with a 20-gauge cannula and the volun-
teers received the drugs studied:  In study 
I a 30-minute infusion of  either diclofenac 
(Voltaren®, Novartis, Finland) 1.1 mg kg-1, 
a combination of  diclofenac 1.1 mg kg-1

and propacetamol (Pro-Dafalgan®, 
Bristol-Myers Squibb, France) 30 mg kg1, 

or placebo (NaCl 0.9%); in study III 
a 10-minute infusion of  paracetamol 
(Perfalgan®, Bristol-Myers Squibb, New 
York, NY) 15 mg kg-1, 22.5 mg kg-1, 30 
mg kg-1 or placebo (NaCl 0.9%, Braun, 
Kronberg, Germany); and in study IV a 
slow infusion of  0.9% NaCl was started 
and parecoxib 40 mg (Dynastat®, Pfi zer, 
New York, USA) or placebo (NaCl 0.9%) 
was given as a 1-minute bolus. In study II 
a maximum of  200 ml blood was drawn 
on one or two occasions.

 The second sample was drawn 5 min 
(I), 10 min (III), or 50 min (IV) after drug 
administration. In studies I and III the 
third sample was drawn 90 min after drug 
administration. In study IV paracetamol 
1 g (Perfalgan®) or placebo (NaCl 0.9%) 
was administered as a 10-minute infu-
sion approximately half  an hour after the 
second sample, and the third sample was 
drawn 10 minutes later. In study I a fourth 
sample was drawn after 22-24 h. The 
interval between experiments in the same 
volunteer was at least one week. 

Study designs

Studies I, III and IV were double-blinded, 
randomized and placebo-controlled, 
carried out in healthy, non-smoking, male 
volunteers applying a cross-over design. 
Study II was carried out in vitro, blood was 
donated by healthy, non-smoking donors. 
All studies were approved by the Ethics 
Committee for Studies in Healthy Subjects 
and Primary Care in the Hospital District 
of  Helsinki and Uusimaa, and studies I, 
III-IV by the National Agency for Medi-
cines in Finland.

Studies comprised 10 (I), 15 (III), 
and 18 (IV) volunteers, and 22 donors 
(II), all of  whom gave written informed 
consent. In studies III and IV abnormal 
plasma alanine transaminase or aspartate 
aminotransferase activities were an exclu-
sion criterion. The use of  acetylsalicylic 
acid was forbidden for ten days and that of  
other drugs affecting platelet function for 
one week prior to each experiment (I, III, 
IV) or prior to blood donation (II). Study 
characteristics are summarized in Table 1.

Sampling and drug infusions
After 3 hours of  fasting, a venous blood 
sample (approximately 35 ml) was drawn 
from an antecubital vein through a 20-
gauge needle (PrecisionGlideTM, Becton 
Dickinsson) (I-III) or a 17-gauge cannula 
(Venfl onTM, Becton Dickinson, Franklin 
Lakes, New Jersey, USA) (IV) into poly-
propylene tubes (Vacuette®, Greiner bio-
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Cold pressor test
In studies I and II, a cold pressor test was 
performed immediately after every blood 
sample, except after 22-24 h. The volun-
teer immersed his non-dominant hand, 
halfway to the elbow, into an ice bath and 
estimated the pain intensity on a 10 cm 
VAS at 30 s and 60 s (I). Alternatively the 
times elapsed before the fi rst sensation 
of  pain, and the sensation of  strong pain, 
were recorded (III). In study I the volun-
teer was instructed to withdraw his hand 
earlier, if  the pain became unbearable. 
The interval between the cold pressor test 
and the next blood sampling was at least 
50 minutes.

Laboratory tests 

Platelet aggregation

Platelet aggregation was measured with 
a four-channel photometric aggregom-

eter (Packs-4, Helena Laboratories, USA). 
Platelet-rich plasma (PRP) and platelet-
poor plasma (PPP) were prepared by 
centrifuging at +20°C at 160 g for 9 
min and at 3000 g for 5 minutes, respec-
tively. Platelet count in PRP was adjusted 
to 300 x 109 L-1 ± 10% by diluting with 
autologous PPP. During continuous stir-
ring (1000 rpm) at 37°C, a 270 μL-sample 
of  PRP was analysed. Aggregation was 
induced by adding 30 μL of  an agonist; 
ADP to a fi nal concentration of   3 or 1.5 
μM, AA to a fi nal concentration of  1000, 
750 or 500 μM, collagen to a fi nal concen-
tration of  50 mg L-1, thrombin receptor 
activating peptide (TRAP, SFLLRN) to a 
fi nal concentration of  10 μM, or epineph-
rine to a fi nal concentration of  5 μM. 
All concentrations of  all agonists were 
not used in all the studies. The reagents 
were purchased from Sigma-Aldrich (St 
Louis, USA) and Bachem (Weil am Rhein, 
Germany). The aggregation was allowed 
to proceed for 300 s, after which plasma 

Table 1. Study characteristics.

Study Design N Drugs 

I volunteers 10 paracetamol 15 mg kg-1 (as propacetamol 
   30 mg kg-1)+ diclofenac 1.1 mg kg-1, diclofenac 
   1.1 mg kg-1 or placebo

II in vitro 22 paracetamol 10 - 80 mg L-1 and/or 
   diclofenac 0.1 - 0.8 mg L-1

III volunteers 15 paracetamol 15, 22.5 or 30 mg kg-1 or placebo

IV volunteers 18 paracetamol (1 g) + parecoxib (40 mg), 
   paracetamol (1 g) or placebo
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for thromboxane B2 (TxB2) determination 
was prepared and the area under the curve 
of  the aggregometry was recorded.
In study II, paracetamol (Perfalgan®) at a 
fi nal concentration of  10, 20, 40 or 80 mg 
L-1 (66, 132, 265 or 529 μM) or diclofenac 
(Voltaren®) at a fi nal concentration of  
0.1, 0.2, 0.3, 0.4, 0.5, 0.6 or 0.8 mg L-1 
was added to PRP, prior to aggregometry. 
Drugs were added alone or in combina-
tion. Acetylsalicylic acid (100 μM) was 
used as a positive control.

PFA-100 

In studies I and II the PFA-100 (Dade 
Behring, USA) was used to determine 
closure times of  900 μL-samples of  
citrated whole blood. After collection, all 
samples were incubated at room temper-
ature for 30 min to 2 h. In study II the 
plasma volume was calculated based on 
the haematocrit and paracetamol was 
added at a fi nal plasma concentration of  
20, 40 or 80 mg L-1 (132, 265 or 529 μM) 
prior to analysis. 100 μM of  acetylsali-
cylic acid was used as a positive control. 
Cartridges containing collagen/epine-
phrine or collagen/ADP membranes 
were used. The upper detection limit of  
the closure time is 300 s. When exceeded, 
the result was considered 300 s to allow 
statistical analysis.

Thromboxane B2 concentration

TxB2 is the stable metabolite of  TxA2, 
released during aggregation. TxB2 concen-
trations in PRP triggered with ADP 3 μM 
or AA 1000 μM were determined with 
a radioimmunoassay.181 The intra-assay 
coeffi cient of  variation was 17% (n=10).

Paracetamol concentration

Blood samples were centrifuged at 3000 g
for 10 min and plasma was stored at 
-20°C. Paracetamol concentration was 
determined using high performance liquid 
chromatography.182  The limit of  quantifi -
cation was 0.1 mg L-1, the day-to-day coef-
fi cients of  variation were 4.2% at 2.5 mg 
L-1 and 4.1% at 14.4 mg L-1 (n=4).

Schild-plot 
and isobolographic analysis
In study II the effect of  paracetamol and 
interaction of  paracetamol and diclofenac 
were analysed with a Schild-plot and an 
isobolographic analysis, respectively.

Schild-plot

After addition of  0-120 mg L-1 of  para-
cetamol to PRP, aggregation was induced 
with 100-3000 μM of  AA to achieve 
near half-maximal responses. In every 
experiment (n=7) plain PRP, 3-4 different 
concentrations of  paracetamol and 100 
μM of  acetylsalicylic acid were used. 
Aggregation in plain PRP induced with 
1000 μM of  AA was considered 100% 
aggregation and acetylsalicylic acid-treated 
plasma 0% aggregation. The concentra-
tions of  AA causing a 50% aggregation 
(EC50) were determined with non-linear 
regression based on the Hill equation,183 
and the ratio of  EC50 in paracetamol-
treated and plain PRP (agonist ratio) was 
calculated. Log (agonist ratio –1) was plotted 
versus log (paracetamol concentration). The 
apparent inhibition coeffi cients (Ki) were 
determined by linear regression with slope 
= 1. Actual slopes were calculated with 
linear regression.
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Isobolographic analysis

Paracetamol (0-120 mg L-1), diclofenac 
(0-2 mg L-1) or both were added to PRP 
and aggregation was induced with 1000 
μM of  AA. Drug concentrations causing 
50% inhibition of  aggregation (IC50) were 
determined as above and the interaction 
index (γ) was calculated: 

γ = a/A+b/B

where A and B are the IC50 of  para-
cetamol and diclofenac alone, and a and b 
are the IC50 of  the same drugs when added 
in combination.184 IC50 of  paracetamol and 
diclofenac (i.e. A and B in the formula) 
were fi rst determined independently. IC50 
of  diclofenac (i.e. b in the formula) in 
PRP containing approximately 0.25 IC50, 
0.5 IC50 or 0.75 IC50 of  paracetamol (i.e. 
a in the formula) was then determined 
(0.75 IC50 was omitted in one experiment 
because of  shortage of  PRP).

Statistics
The studies I, III and IV were designed to 
discover a difference in platelet aggrega-
tion greater than one standard deviation 
(α-error = 5%) between the groups of  
interest.185 The Bonferroni correction was 
applied when appropriate. A difference 
smaller than one standard deviation was 
considered of  minor clinical signifi cance. 
Study power was 80%, except in study IV, 
where the power was increased to 95% 
since no difference was anticipated. 

Data was tested for normality with the 
Kolmogorow-Smirnov test. Non-normally 
distributed data in three or four groups was 
analyzed with Friedman’s test (repeated 
measures ANOVA on ranks), and pair-
wise comparison was with the Wilcoxon 
matched pairs signed rank sum test (with 
Bonferroni correction when appropriate). 
In study II the Student-Newman-Keuls 
method was applied. From normally 
distributed data confi dence intervals were 
calculated using the appropriate t-distri-
bution. Statistical testing was done with 
SigmaStat for Windows Version 2.03 
(SPSS Inc. Chicago, IL, US).
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epinephrine (III, Table 2). Ten minutes 
after infusion, all doses of  paracetamol (15, 
22.5 and 30 mg kg-1) caused a signifi cant 
inhibition of  platelet aggregation triggered 
with AA. Inhibition was most pronounced 
with AA 500 μM, with AA 1000 μM the 
inhibition was minimal, although still 
statistically signifi cant. Aggregation trig-
gered with ADP or epinephrine was less 
sensitive to inhibition by paracetamol, at 
10 minutes a signifi cant inhibition was 
achieved only with paracetamol 30 mg kg-1. 
Aggregation in response to all triggers 
was recovering at 90 min after infusion. 
Plasma paracetamol concentrations were 
determined after paracetamol administra-
tion (III, Table 1).

Inhibition of platelet 
function by paracetamol (II, III)
Paracetamol in vitro showed a concen-
tration-dependent inhibition of  platelet 
aggregation triggered with AA 1000 μM 
(II, Fig. 1). Paracetamol 80 mg L-1 caused 
complete inhibition, as did acetylsalicylic 
acid 100 μM. The concentration-inhibi-
tion curve was sigmoidal when triggered 
with AA whereas a linear curve was 
displayed with ADP as a trigger (Fig. 5). 
With ADP the inhibitory effect of  both 
paracetamol and acetylsalicylic acid was 
less pronounced.

In vivo, paracetamol exhibited a similar 
dose-dependent inhibition of  platelet 
aggregation triggered with AA, ADP or 

Figure 5. Effect of paracetamol on platelet aggregation triggered with ADP (3mM). Acetylsalicylic acid 
(ASA) was used as a positive control. The box-plots show medians, 25th/75th and 5th/95th percentiles, 
n=9. P < 0.001, all concentrations; *P < 0.05 vs. baseline (no drugs added). Statistical tests are: Fried-
man’s test (all concentrations) and the Student-Newman-Keuls method (pairwise comparison).
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Paracetamol inhibited TxB2 release 
during aggregation both in vitro (II, 
Table 2) and in vivo (III, Table 3). In 
both systems aggregation triggered with 
AA released much larger amounts of  
TxB2, and paracetamol inhibited TxB2 
release in response to AA less potently 
than in response to ADP, especially in 
vitro. Although paracetamol signifi cantly 
inhibited TxB2 release, the inhibition by 
paracetamol was less strong than that by 
diclofenac. Five minutes after diclofenac, 
TxB2 release in response to ADP was only 
3.3% of  baseline release whereas it was 
24% of  baseline 10 minutes after para-
cetamol 30 mg kg-1.

The PFA-100 closure time in collagen/
epinephrine cartridges was signifi cantly 
prolonged after the addition of  acetylsali-
cylic acid (II, Table 3), but paracetamol 
caused a signifi cantly prolonged closure 
time only at high concentrations. 

A more detailed characterization of  
the inhibition of  platelet aggregation by 
paracetamol with the  Schild-plot showed 
a mean apparent Ki of  15.2 mg L-1, with 
a 95% confi dence interval of  11.8 – 18.6 
mg L-1 (II, Fig 2, n=7). Regression lines 
were very close to linearity and the slope 
close to unity in the concentration range 
used; mean actual slope was 0.98 with a 
95% confi dence interval of  0.82 – 1.15.

Interaction of paracetamol 
and diclofenac (I, II)
The anti-aggregatory effect of  diclofenac 
was augmented by paracetamol in vitro (II, 
Table 4). In vivo, diclofenac 1.1 mg kg-1 fully 
inhibited platelet aggregation immediately 
after administration, and no interaction 
was detected at this stage when diclofenac 

was combined with propacetamol 30 mg 
kg-1 (corresponding to paracetamol 15mg 
kg-1) (I, Fig. 1, Table 1). Ninety minutes 
after drug infusion the effect of  diclofenac 
had decreased, but in combination with 
propacetamol platelet aggregation was still 
almost fully inhibited (I, Fig. 1, Table 1). 
When aggregation was triggered with AA 
the difference between diclofenac and the 
combination was statistically signifi cant (I, 
Fig 1). When aggregation was triggered with 
ADP or TRAP the over-all differences were 
much smaller, and no signifi cant differences 
were detected between diclofenac and the 
combination (I, Table 1).

Release of  TxB2 during aggregation 
showed a similar pattern (I, Table 2). At 
90 minutes, release of  TxB2 was signifi -
cantly lower in the combination group 
than in the diclofenac group, when trig-
gered with both AA and ADP. On the 
contrary, the PFA-100 failed to detect any 
difference between groups at 90 minutes, 
although closure times were signifi cantly 
different from those of  placebo in both 
treatment groups 10 minutes as well as 90 
minutes after drug infusion (I, Table 3). 
On the next day, the inhibitory effect of  
both diclofenac and its combination with 
propacetamol had disappeared.  

A more detailed characterization of  the 
interaction in vitro, using an isobolographic 
analysis, showed that the interaction was 
synergistic (II, Fig. 3). Mean apparent γ 
was 0.86 with a 95% confi dence interval 
of  0.74 – 0.99 (n=5).

Interaction of paracetamol 
and parecoxib (IV)
Parecoxib showed no inhibition (P = 0.36) 
whereas paracetamol 1 g showed a clear 
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inhibition of  platelet aggregation trig-
gered with AA 500 μM (P = 0.006, IV, 
Fig 1). No statistical difference occurred 
between the combination and para-
cetamol only (P = 0.85), although aggre-
gation varied in fi ve volunteers. Mean 
plasma paracetamol concentrations were 
similar in both groups; 12.7 mg L-1 (95% 
CI  11.6 – 13.8) in the paracetamol group, 
and 12.6 mg L-1 (95% CI 11.6– 13.7) in 
the combination group. Those three 
volunteers showing more inhibition by 
the combination had plasma paracetamol 
concentrations of  11.9, 9.7, and 14.2 mg 
L-1 after the combination and 16.8, 11.5, 
and 12.8 mg L-1 after paracetamol alone, 
respectively, whereas those two showing 
a clear inhibition only by paracetamol 
alone had plasma paracetamol concentra-
tions of  14.9 and 10.9 mg L-1 after the 
combination and 14.6 and 13.8 mg L-1 
after paracetamol alone.

To further elucidate any possible 
interaction between paracetamol and 
parecoxib, AA EC50-values were deter-
mined in vitro after adding paracetamol 20 
mg L-1, before and after administration of  
parecoxib 40 mg. The selected volunteers, 
marked with closed circles in IV, fi gure 
1, included all those with varying inhibi-

tion by paracetamol and the combina-
tion. Mean EC50 was 843 μM (95% CI: 
705 – 981) before and 742 μM (95% CI: 
616 – 868) after parecoxib administration. 
Mean change after parecoxib was -10.8% 
(95% CI: -23.7 – 2.3).

When triggered with AA 750 μM or 
1000 μM, ADP (1.5 μM or 3 μM), or 
epinephrine (5 μM) platelet aggregation 
showed no differences between para-
cetamol 1 g and the combination of  para-
cetamol 1 g and parecoxib 40 mg (IV, 
Table 1). TxB2 release during aggregation 
triggered with ADP was inhibited by para-
cetamol and inhibition was the same after 
the combination (IV, Table 2). When trig-
gered with AA, no differences between 
groups were detected.  

Analgesic effect of para-
cetamol and diclofenac (I, III)
The cold pressor test showed a large inter- 
and intra-individual variation (I, Fig 2 and 
III, Fig 1). Pain threshold was not elevated 
by paracetamol, and pain ratings were 
unaffected by diclofenac 1.1 mg kg-1 and 
the combination of  diclofenac 1.1 mg kg-1 
and paracetamol 15 mg kg-1.



31

Discussion

sigmoidal concentration inhibition curve 
of  paracetamol, the linear Schild-plot, 
and the opposite effects of  concentra-
tion of  arachidonic acid in the assay and 
dose of  paracetamol given to the volun-
teers, suggest that paracetamol competes 
with arachidonic acid or an intermediate 
compound in the TxA2-synthesis pathway. 
The reason for this conclusion is derived 
from classic receptor theory, the math-
ematical considerations of  which are 
shown in detail in the appendix. When 
plotted on a semi logarithmic scale with 
agonist concentration on the abscissa and 
response (0-100%) on the ordinate, the 
response to receptor stimulation by an 
agonist is a sigmoidal curve, increasing 
from 0% to 100%, described by the Hill 
equation:

Effect = E0 + (Emax – E0) C
γ /(C50

γ + Cγ)
 
When adding a competitive inhibitor, 

the curve will move to the right, i.e. a 
100% response can be achieved, but a 
higher concentration of  agonist will be 
needed. In the present study AA was the 
agonist, paracetamol the inhibitor and 
platelet aggregation the response. Since the 
concentration of  AA was kept constant in 
study II, fi gure 1, the Hill equation can be 
applied with only minor modifi cations:

Effect = I0 – (I0 – Imax) C
γ /(C50

γ + Cγ)

The result will be the same sigmoidal 
curve, but now it will decrease from the 
maximal effect towards the minimum upon 

This thesis showed that paracetamol 
inhibits platelet aggregation and TxB2-
release dose-dependently in volunteers and 
concentration-dependently in vitro, deter-
mined the Ki value of  the inhibition; 15.2 
mg L-1 (95% CI 11.8 – 18.6), and showed 
that paracetamol displays synergism when 
inhibiting platelet aggregation together 
with diclofenac, but fails to interact with 
parecoxib. It  also assessed the PFA-100 
in detecting platelet dysfunction by para-
cetamol as well as the cold pressor test for 
measuring analgesia.

Inhibition of platelet 
function by paracetamol
Traditionally paracetamol is considered not 
to infl uence platelet function in vivo based 
on  studies on conventional doses (approxi-
mately 1 g) of  oral paracetamol.168,169 The 
results in this thesis contradict the conclu-
sion drawn from those studies. I suggest 
two main reasons for this contradiction. 
Firstly, ADP, epinephrine, and collagen 
were used to trigger aggregation in those 
previous studies. When platelet aggregation 
was triggered with ADP or epinephrine in 
the present study, only the highest dose of  
intravenous paracetamol, 30 mg kg-1 corre-
sponding to a total dose of  approximately 2 
g, caused a signifi cant inhibition. Secondly, 
a lower peak plasma paracetamol concen-
tration is achieved with oral than with intra-
venous administration.98

Arachidonic acid triggered aggre-
gation sensitive to paracetamol. The 
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an increasing concentration of  inhibitor. 
The sigmoidal shape in study II, fi gure 1, 
suggests that the modifi ed Hill equation 
above can be implied. On the contrary, 
when ADP was used as an agonist in fi gure 
5 the curve appears linear and the modi-
fi ed Hill equation above seems unsuitable. 
This is quite logical, since ADP binds to 
its own receptors, which paracetamol is 
not known to affect.

To further characterize the inhibition 
by paracetamol, the inhibition coeffi cient (Ki) 
can be determined. Since paracetamol 
itself  does not elicit any response in plate-
lets, Ki could not be determined directly. 
A possible technique for direct determina-
tion of  dissociation constants would be the 
use of  radiolabeled ligands, but since this 
technique was not available I turned to an 
old technique described by Arunlakshana 
and Schild in 1959 186 (appendix). 

The Schild-plot, used in study II, fi gure 
2, to characterize the inhibition of  platelet 
function by paracetamol, allows only a 
linear plot with unit slope, i.e. the sigmoidal 
concentration-response curve is equally 
displaced to the right by the same propor-
tional increase in inhibitor concentration. 
This is true only for competitive inhibi-
tion, when the agonist can easily displace 
the inhibitor. If  the inhibitor-receptor 
complex dissociates very slowly or the 
inhibitor binds to another site altogether, 
the agonist will not be able to displace 
the inhibitor, the concentration-response 
curve will be gradually fl attened rather 
than displaced to the right, and the Schild-
plot will be non-linear, or the slope will be 
different from unity, or both. In this case, 
the apparent Ki will have no meaning.187 
Since the Schild-plots appeared linear and 
the mean actual slope was very close to 
unity (0.98 with a 95% confi dence interval 

of  0.82 – 1.15), it can be concluded that 
paracetamol is a competitive inhibitor 
in the concentration range tested. When 
paracetamol was given intravenously, 
the inhibitory effect of  paracetamol also 
appeared fully reversible by an increased 
concentration of  arachidonic acid in the 
assay, a fact that fi ts well with a competi-
tive mechanism.  

The mechanism by which paracetamol 
inhibits COX is not fully clear, but some 
clues are found in the literature. Ouellet 
and Percival188 found that paracetamol 
acts as a reducing agent for COX and that 
paracetamol protects the enzyme from 
inactivation by H2O2, Boutaud and co-
workers189 found that the inhibitory effect 
of  paracetamol can be reversed by adding 
PGG2 to the assay, and Catella-Lawson 
and co-workers190 found that paracetamol, 
in contrast to ibuprofen, does not prevent 
the anti-aggregatory effect of  aspirin. 
Taken together these fi ndings suggest that 
paracetamol inhibits the peroxidase rather 
that the cyclooxygenase reaction of  COX 
by a competitive mechanism. 

In platelets the same mechanism would 
be expected, although a downstream 
 inhibition by TXAS cannot be excluded 
based on the current data or the litera-
ture.   

Interaction between 
paracetamol and diclofenac 
or parecoxib
The antiaggregatory effect of  analgesic 
doses of  diclofenac is well known163 and 
was confi rmed in this study. As with para-
cetamol only, aggregation triggered with 
arachidonic acid was the most sensitive 
to inhibition. Diclofenac fully inhibited 
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platelet COX immediately after the infu-
sion and at this stage no additional effect 
of  paracetamol could be detected. At 90-
min-sampling the antiaggregatory effect 
was decreasing because of  the relatively 
short half-life of  diclofenac in plasma, 
1.1 h,100 and the inhibitory effect was 
signifi cantly augmented by paracetamol. 
Based on the fi ndings in volunteers (I) 
the nature of  this interaction could not 
be established. A pharmacokinetic inter-
action through protein binding or metab-
olism would have been possible, although 
less probable. In contrast to diclofenac, 
paracetamol is not highly protein-bound 
at therapeutic concentrations, and the 
drugs have different metabolic pathways 
in the liver.58 Since the same interaction 
was observed in vitro, I conclude that the 
interaction is pharmacodynamic at the 
level of  COX inhibition. By an isobo-
lographic analysis an interaction can 
be characterised as synergistic, additive 
or subadditive.184 The γ < 1 in study II 
suggests a synergistic inhibition. This fi ts 
well with slightly different mechanisms 
of  COX-inhibition by paracetamol and 
the traditional NSAID diclofenac; the 
former inhibits the peroxidase reaction 
of  COX, the latter inhibits the cyclooxy-
genase reaction of  COX.

In contrast to diclofenac, valdecoxib 
has low affi nity for COX-1,191 and has no 
antiaggregatory properties.192 Therefore, 
platelet function was unaltered 50 minutes 
after parecoxib administration, when the 
peak valdecoxib concentration had been 
reached with high probability. Paracetamol 
1 g administered after parecoxib treatment 
caused an immediate antiaggregatory 
effect when aggregation was triggered 
with AA acid 500 μM. This effect was 
not statistically different from the effect 

of  paracetamol without prior parecoxib. 
AA 1000 μM and 750 μM, on the other 
hand, triggered aggregation insensitive to 
both paracetamol alone and the combina-
tion. Lowering the concentration of  AA 
in the assay, however, not only increases 
the sensitivity to the drugs, but also 
increases the amount of  random variation 
as the individual aggregation threshold is 
approached. A high degree of  both inter-
and intra-subject variability in aggregation 
triggered with arachidonic acid has been 
previously reported.193 Part of  the vari-
ation in the results can be explained by 
random variation in paracetamol concen-
trations between experiments; two volun-
teers with a different degree of  aggrega-
tion after paracetamol and combination 
showed a plasma paracetamol concentra-
tion more than one standard deviation 
higher in the non-aggregating sample. 
The interpretation that the variation is by 
random rather than an effect of  parecoxib 
is further supported by the lack of  differ-
ence between arachidonic acid EC50-
values before and after parecoxib admin-
istration. 

Other triggers of aggregation
In addition to arachidonic acid, platelet 
aggregation was also triggered with ADP, 
epinephrine, and TRAP in order to stim-
ulate the P2Y-, α-, and PAR-receptors, 
respectively. All these triggers showed a 
clearly lower sensitivity than AA to inhi-
bition by paracetamol. This was quite 
expected, since no other target for para-
cetamol than COX have been suggested 
in platelets. Paracetamol would therefore 
only inhibit the AA-dependent part of  
platelet aggregation triggered by ADP, 
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epinephrine and TRAP. It is known that 
aggregation in response to these trig-
gers is not dependent the AA pathway, 
although AA is released.194 Release of  
AA by ADP requires both the P2Y1 and 
the P2Y12-receptor, as well as outside-
in signalling through the GPIIb/IIIa 
complex.195 Epinephrine is a weak trigger 
of  platelet aggregation, mostly used to 
enhance aggregation by other triggers. In 
the case of  thrombin, especially the PAR4 
receptor appears important, since this 
receptor causes a long lasting Ca2+ infl ux 
that activates PLA2.

196 PAR1 has, on the 
other hand, a higher affi nity for thrombin, 
and is more important in inducing aggre-
gation.197 

Release of thromboxane B2 
from activated platelets
Another approach to evaluate COX inhi-
bition is to measure release of  the stable 
end-product of  the COX-TXAS pathway, 
TxB2. TxA2 which is synthesized by TXAS 
is unstable and rapidly decomposes into 
TxB2. The measurements of  TxB2 concen-
trations confi rmed the results of  the 
photometric aggregometry. Paracetamol 
dose-dependently inhibited TxB2 release, 
the combination of  paracetamol and 
diclofenac inhibited TxB2 release more 
than either drug alone, and inhibition of  
TxB2 release by the combination of  para-
cetamol and parecoxib was not different 
from that by paracetamol alone. 

The results of  TxB2 concentration 
measurements also confi rm the fact that 
paracetamol is a weak inhibitor of  COX.5 
Paracetamol 15 mg kg-1, 22.5 mg kg-1 and 
30 mg kg-1 caused a 35.1%, 64.9% and 
76.8% reduction in TxB2 release, respec-

tively, compared to a 96.6% reduction 
after diclofenac 1.1 mg kg-1 in response to 
3 μM of  ADP. 

PFA-100
The collagen/epinephrine closure time 
was prolonged after administration of  
both diclofenac and the combination of  
diclofenac and propacetamol, but showed 
no difference between the two groups. In 
vitro, PFA-100 was sensitive only to high 
concentrations of  paracetamol. This is in 
accordance with the relatively low sensi-
tivity to paracetamol of  aggregation trig-
gered with epinephrine. The high shear 
stress conditions in the PFA-100 probably 
also makes it less sensitive to COX-inhibi-
tion; shear-induced platelet aggregation is 
relatively independent of  TxA2.

198 

Analgesic effect of 
paracetamol, diclofenac 
and the combination
In contrast to clinical observations, the 
cold pressor test detected no analgesic 
effect of  paracetamol or diclofenac. The 
short acting pain in the cold pressor 
test may explain the lack of  an analgesic 
effect. Although the major mechanism of  
action of  NSAIDs is peripheral, there is 
evidence in favour of  a central mechanism 
involving spinal COX-2 inhibition.199 The 
site of  action of  paracetamol is considered 
to be the central nervous system, and para-
cetamol has been shown to reduce central 
hyperalgesia induced by electrical stimula-
tion.200 Both spinal COX-2 upregulation 
and central hyperalgesia would probably 
need a noxious stimulus of  longer duration 
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than the cold pressor test to evolve. Why 1 
g of  oral paracetamol showed an analgesic 
effect in this pain model in a previous 
study remains, however, unclear.85

Clinical considerations 
The plasma concentration of  paracetamol 
required for maximal analgesia is not 
known, but antipyretic properties of  
paracetamol are evident in the plasma 
concentration range of  10-20 mg L-1.201 
The 95% confi dence interval of  Ki for 
paracetamol-induced platelet aggrega-
tion (11.8 – 18.6 mg L-1) roughly equals 
the antipyretic concentration range. Twice 
the stimulus is therefore needed to elicit a 
normal platelet aggregation via the COX-
TXAS pathway in the presence of  an 
antipyretic concentration of  paracetamol. 
These in vitro observations were confi rmed 
in volunteers by signifi cant inhibition of  
platelet aggregation by antipyretic plasma 
paracetamol concentrations.

It has been suggested that analgesia may 
require higher concentrations than antipy-
resis in adults, but this topic is controver-
sial since few studies have measured both 
plasma paracetamol concentrations and 
analgesia. Beck and co-workers found that 
20 mg kg-1 of  rectal paracetamol caused 
concentrations partly below 10 mg L-1 
whereas 40 mg kg-1 caused concentrations 
in the antipyretic range in adults.202 In 
that particular study morphine consump-
tion was, however, not reduced by the 
larger dose of  paracetamol. Hahn and 
co-workers used intravenous paracetamol 
5, 10, and 20 mg kg-1, but were unable 
to detect any differences in alfentanil 
consumption after 1-3 h.203 In children 
paracetamol showed a linearly increasing 

morphine-sparing effect when adminis-
tered rectally in doses up to 60 mg kg-1.204 
In an experimental study using transcuta-
neous electrical stimulation, 2 g of  intrave-
nous paracetamol was analgesically more 
effective than 1 g.205 The same effect was 
observed after tooth extraction in a recent 
study.206 In a clinical trial 1 g of  intra venous 
paracetamol was more effective than the 
same dose given orally, suggesting that a 
high peak plasma concentration might be 
important, since the site of  action of  para-
cetamol is in the central nervous system.207 
Increasing the dose of  paracetamol may 
therefore increase the analgesic effect, but 
our results indicate that an increasing inhi-
bition of  platelet function will follow. 

What is the clinical relevance of  the 
platelet function impairment observed in 
the present study? A precise answer to this 
question would require large clinical trials, 
and therefore the clinical implications 
remain speculative. A few studies have 
estimated the correlation between platelet 
function tests and surgical blood loss with 
confl icting results. Decreased platelet 
aggregation triggered with TRAP was 
associated with excessive postoperative 
blood loss,208 and aggregation in response 
to collagen correlated inversely with post-
operative blood drainage and need for 
blood transfusions after cardiopulmo-
nary bypass.209 In another study, however, 
collagen-induced platelet aggregation was 
similar in patients experiencing normal 
and excessive blood loss undergoing non-
cardiac surgery.210 Irani and co-workers 
found no correlation between periopera-
tive blood loss during cardiopulmonary 
bypass surgery and platelet aggregation 
triggered with collagen, AA or ADP 211 
whereas Greilich and co-workers found 
that a reduction in platelet force devel-
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opment correlated inversely with blood 
drainage during 24 h after the same proce-
dure.212 PFA-100 does not seem suitable 
for predicting blood loss associated with 
cardiopulmonary bypass surgery. 213,214

In contrast to paracetamol, traditional 
NSAIDs have been shown to increase 
the risk of  perioperative haemorrhagia 
suggesting that the impairment of  platelet 
aggregation observed with photometric 
aggregometry in the present study may 
be clinically relevant. In a systemic review 
on NSAIDs and bleeding after tonsil-
lectomy, an increased risk for reopera-
tion after use of  NSAIDs was found.9 
Likewise, pre-treatment with ibuprofen 
appears to increase perioperative blood 
loss during total hip replacement 215 and 
low-dose aspirin has the same effect 
when given before transurethral prosta-
tectomy.216 Treatment with the COX-2 
selective rofecoxib, on the other hand, 
showed a smaller intraoperative blood 
loss than treatment with diclofenac.217 
Since paracetamol inhibits TxA2 synthesis 
less than traditional NSAIDs, surgical 
bleeding attributable to paracetamol seems 
unlikely in an otherwise healthy haemo-
static system. The situation may change, 
however, if  drugs are combined.

The combination of  paracetamol and 
a traditional NSAID is useful for post-
operative analgesia,86 but this combina-
tion results in a synergistic inhibition of  
platelet function. This may suggest that the 
combination increases the risk of  hemor-
rhagic events. Surgical patients today may 

receive other treatments that affect the 
haemostatic system, such as low molec-
ular weight heparin, FXa antagonists or 
oral anticoagulants, or platelet inhibitors, 
such as clopidogrel or GPIIb/IIIa inhibi-
tors. In these patients even a weak antia-
greggatory effect of  paracetamol may be 
clinically signifi cant.

The clinical implications of  reduced 
platelet aggregation could, however, also 
be advantageous. Low-dose aspirin has 
been shown to reduce the incidence of  
deep-vein thrombosis in patients under-
going surgery for hip fracture as well as 
the incidence of  death from pulmonary 
embolism.218 The high COX-2 selectivity 
of  the coxibs seems, in fact, disadvanta-
geous in certain circumstances. In contrast 
to the TxA2 formation in platelets, PGI2 in 
endothelium is synthesized from arachi-
donic acid by COX-2.160  The use of  coxibs 
therefore leads to a proaggregatory state, 
and an increased risk for thromboem-
bolic events have been associated with 
these drugs in large randomized clinical 
trials.219, 220 Patients undergoing cardiovas-
cular surgery, for instance, should not use 
coxibs,221 but valdecoxib appears safe after 
non-cardiac surgery.222 Our results indi-
cate that the combination of  parecoxib 
and paracetamol causes a mild degree of  
COX-1 inhibition. It can be speculated 
that this combination proves useful in 
patients with a low risk of  thrombotic 
events susceptible to hemorrhagic compli-
cations of  nonselective NSAIDs.
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Conclusions

1. Paracetamol exhibits a dose-dependent inhibition of  platelet aggregation in 
response to arachidonic acid and of  TxB2 release from activated platelets when 
administered intravenously. Although statistically signifi cant, the inhibition was 
weaker than that of  diclofenac. 

2. The inhibition of  platelet function by paracetamol appears to be a competitive 
inhibition of  COX based on a Schild-plot in vitro. A downstream inhibition of  
TXAS cannot be excluded, however.

3. Paracetamol augments the platelet inhibition by diclofenac in volunteers.

4. The interaction between paracetamol and diclofenac appears to be synergistic 
based on an isobolographic analysis in vitro.

5. Paracetamol does not interact with valdecoxib in inhibiting platelet function in vivo.
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Appendix. Receptor ligand interactions

Any drug (D) binding to its receptor (R) 
follows the simple law of  mass action:

             k2 k1

[D][R] fl‡ [DR]

where [D] is the drug concentration, [R] 
is the amount of  free receptors, [DR] is 
the amount of  occupied receptors, k1 is 
the rate constant for the drug binding to 
its receptor, and k2 is the rate constant for 
drug-receptor dissociation.1 The law of  
mass action can be described mathemati-
cally:

[D][R]/[DR] = k1/k2 = KD    (eq. 1)
 

where KD is known as the dissociation 
constant. If  the drug concentration in eq. 
1 is adjusted to achieve an equilibrium 
where 50 % of  receptors are occupied, 
it follows that [R] = [DR] and KD = [D], 
i.e. KD equals the drug concentration of  
a half-maximal receptor occupation. In 
general, the receptor occupancy (O) would be 
the fraction of  occupied receptors:2  

O = [DR]/([DR] + [R])   (eq. 2).

If  we rearrange eq. 1, we get:

[R] =[DR] KD/[D]   (eq. 3)

and when placed into eq. 2 it follows that:

O = [DR]/([DR] + [DR] KD/[D]) (eq. 4).

Simple rearrangment yields:

O = [D]/([D] + KD)   (eq. 5).

If  O is plotted versus [D], the result will be 
a hyperbola, asymptotically approaching 
1, and KD is the concentration where O = 
0.5, as stated above.2 If  [D] is plotted on a 
semi-logarithmic scale, the plot will be the 
familiar sigmoid curve. 

If  instead of  receptor occupation, 
biological effect of  the drug is concidered, 
the relationship is slightly more complex. 
It is described by the Hill equation:1

Effect = E0 + (Emax – E0) C
γ /(C50

γ + Cγ)   
(eq. 6)

where E0 is the baseline effect without any 
drug, Emax the maximum effect possible, 
C the drug concentration, C50 the drug 
concentration eliciting a half-maximal 
effect, and γ the Hill coeffi cient. If  one 
considers the simplifi ed case where no 
baseline effect is present, E0 = 0, and 
denotes the full effect Emax = 1, the Hill 
equation can be simplifi ed to:

Effect = Cγ /(Cγ + C50
γ)   (eq. 7).

When comparing equations 5 and 7, 
the similarity is obvious, except the expo-
nent γ in the latter. The exponent, the 
Hill coeffi cient, is γ = 1 in most cases 
where the drug itself  has no infl uence on 
receptor affi nity (for instance via a regu-
latory receptor site).2 If  γ = 1 equations 
5 and 7 will be fully congruent, and the 
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concentration-effect relationship will be 
described by the same sigmoidal curve on 
a semi-logaritmic scale.

The Schild-plot,  described by Arunlak-
shana and Schild in 1959, is derived from 
the equations above.3 According to the 
law of  mass action, an inhibitor (I) will 
bind to its receptor in accordance with 
equation 1:

[I][R]/[IR] = KDI   (eq. 8).

Equation 2, describing receptor occupancy 
of  the agonist (D), will be modifi ed to:

O = [DR]/([DR] + [R] + [IR])   (eq. 9)

taking into account that part of  the recep-
tors will be occupied by the inhibitor and 
therefore unavailable for agonist binding. 
From equation 8 it follows that:

[IR] = [I][R]/KDI   (eq. 10)

and if  equation 10 is inserted into equa-
tion 9 we get:

O = [DR]/([DR] + [R] + [I][R]/KDI)  
(eq. 11) 

into which equation 3 can be inserted and 
by rearrangement it follows that:

O = [D]/([D] + KD(1+[I]/KDI))   (eq. 12)

which in fact is a generalization of  equa-
tion 5. If  no inhibitor is added, i.e. [I] 
= 0, equation 5 will result. Graphically 
equation 12 will yeld the same sigmoidal 
curve as equation 5, but when increasing 
concentrations of  inhibitor are added, the 
curve will be displaced to the right. This 

is quite intuitive, when considering the 
defi nition of  a competitive antagonist; 
by increasing the concentration of  the 
agonist the initial receptor occupancy will 
eventually be achieved. Mathematically 
this can be expressed as an equal receptor 
occupancy:

[D]/([D] + KD) = [D]I/([D]I + KD(1+[I]/
KDI))   (eq. 13)

where [D] is the agonist concentration in 
the absence and [D]I in the presence of  
inhibitor. Now, if  we defi ne the agonist ratio 
= [D]I/[D] it follows that:

[D]I = [D]agonist ratio   (eq. 14)

and if  equation 14 is inserted into equa-
tion 13 we get:

[D]/([D] + KD) = [D]agonist ratio/
([D]agonist ratio + KD(1+[I]/KDI))   
(eq. 15)

which by rearrangement yields:

agonist ratio –1 = [I]/ KDI   (eq. 16).

If  we draw the logarithm of  both sides it 
follows that: 

log (agonist ratio –1) = log([I]) – log KDI    
(eq. 17)

which by defi nition is the same as:

log (agonist ratio –1) = log([I]) + pKDI   
(eq. 18).

Equation 18 transforms into a simple 
linear equation (y = x+b) if  plotted on a 
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logaritmic scale; log(agonist ratio –1) versus 
log([I]) yields a straight line intersecting 
the x-axis at pKDI. 

So far I have described the interplay 
between an agonist and an inhibitor rela-
tive to receptor occupancy. These equa-
tions easily transform into a description 
of  the agonist/inhibitor concentrations 
versus biological effect. As I showed 
above (equations 5 and 7), the Hill equa-
tion is a generalization of  the law of  mass 
action, introducing the Hill coeffi cient (γ). 
In the simplifi ed case, when γ = 1, the two 
equations are congruent and equation 18 
turns into:

log (agonist ratio –1) = log([I]) + pKi   
(eq. 19).

The distinction between KDI and Ki is 
important. The former is the dissocia-
tion constant of  the inhibitor-receptor 
complex, denoting the inhibitor concen-
tration at which half  the receptors are 
occupied whereas the latter is the inhibi-
tion coeffi cient, denoting the inhibitor 
concentration at which half  the biological 
effect is blocked. Often Ki is markedly 
bigger than KDI, since the cell carries a 
vast extra receptor capacity. Equation 19 
represents the Schild plot used in study II, 
Figure 2. 
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