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1. ABSTRACT

Rheumatoid arthritis (RA) is characterized by chronic inflammation in multiple joints and
concomitant destruction of cartilage and bone. Cells of the monocyte/macropahge lineage
play a crucial role in both the inflammatory process and tissue destruction. The main
interest in the present study was to evaluate the antiarthritic and anticollagenolytic proper-
ties of two bisphosphonates (BP), clodronate and etidronate, in RA patients, and to exam-
ine the relationship of structural damage and serum biochemical markers of bone metab-
olism. We also compared the effects of clodronate and pamidronate on matrix metallopro-
teinase (MMP)-9 production by activated human monocyte/macropahges in vitro.

26 patients with active RA were randomly allocated to receive either a single i.v. infusion
of 600 mg clodronate or placebo. Clinical assessments were carried out and serum and
salivary samples were collected weekly during the following three weeks. Salivary sam-
ples were studied by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE) for collagenolytic activity and by Western blotting. In a 2 year randomized trial of
etidronate including 40 patient with early RA, van der Heijde modified Sharp’s method
was used to evaluate the progression of radiographic joint damage. Radioimmunoassays
and enzyme linked immunoassays (ELISA) were used for measurement of serum mark-
ers of type I collagen metabolism and osteoprotegerin. MMP-9 expression in and secre-
tion from stimulated human monocyte/macrophages were measured using quantitative
reverse transcriptase – polymerase chain reaction (RT-PCR) and ELISA, respectively.

Single infusion of clodronate did not suppress the markers of disease activity. However,
three weeks after the drug infusion the salivary collagenase activity against soluble colla-
gen type I monomers was found to be lower in the clodronate treated patients compared
to controls. Concomitant Western blots using polyclonal antibodies specific to MMP-8,
MMP-1 and MMP-13 revealed that neutrophil-type collagenase, MMP-8, was the major
collagenase present in saliva of RA patients. Cyclical etidronate did not retard the progres-
sion of radiographic joint damage. Changes in serum aminoterminal telopeptides of type I
collagen (NTx) were significantly associated with the development of focal articular bone
erosions. Clodronate dose-dependently downregulated MMP-9 secretion by cultured hu-
man monocytes, whereas pamidronate significantly increased MMP-9 mRNA.

Significant association  between change in serum NTx and worsening of erosion score
provides biochemical evidence for the concept that osteoclast is the principal cell type
responsible for the local bone resorption in RA, and suggests that monitoring changes in
serum NTx may be useful to predict efficacy of  treatment on progression. Lack of
suppressive effects of  BP treatment on synovial inflammation may be related to the low
circulating levels achieved with doses used in the treatment of osteoporosis. Radiographic
scores continued to deteriorate in the 2 year study irrespective of treatment which may be
due to the fact that the least potent BP, i.e. etidronate, was used as an active drug. Clodr-
onate is more potent and, unlike etidronate, can be administered continuously. Downreg-
ulation of leukocyte-derived MMPs, as suggested in this study, could represent an addi-
tional antiarthritic mechanism of clodronate. Upregulation of MMP-9 expression in acti-
vated human monocytes by pamidronate could, at least in part, explain why this drug did
not demonstrate suppressive effects on focal bone erosions in a previous RA trial. Our
group has now started a long term trial to evaluate the ability of clodronate to prevent
structural damage in RA.
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2. INTRODUCTION

Rheumatoid arthritis (RA) is chronic inflammatory disorder with systemic features and
joint involvement, resulting in an erosive synovitis, cartilage degradation, and joint de-
struction. Structural damage to joint is a predictor of long-term outcome and it contrib-
utes over time to functional decline, disability and need for major surgical procedures
(Scott et al., 2000). Protecting bone and articular cartilage from damage, consequently,
has major potential both therapeutically and economically.

Studies of tissue sections from sites of bone erosions in RA have identified multinucleated
cells with the phenotype of osteoclasts in bone resorbing lacunae, suggesting that osteo-
clasts mediate this pathologic bone loss. Osteoclast is derived from monocyte/macro-
phage precursors and is uniquely adapted to its resorbing activity through expression of
distinct integrins as well as enzymes such as matrix metalloproteinases (MMPs) and cathe-
psin K (Goldring and Gravallese, 2000). Among them, cathepsin K is considered to be the
most important enzyme in bone resorption because of its collagenolytic activity within a
broad range pH optimum and selective expression in osteoclasts (Okada, 2001).

MMPs are overexpressed in tissues derived from rheumatoid joints (Konttinen et al.,
1999) and the correlation of radiographic joint damage with a marker for MMP-mediated
collagen degradation, i.e. the assay for cross-linked carboxy-terminal telopeptide of type I
collagen (ICTP), suggests a role for MMPs in joint destruction (Hakala et al.,1993; Sassi
et al., 2000). However, the clinical trials of broad spectrum MMP inhibitors in patients
with joint disease have so far been unsuccessful (Catterall and Gavston, 2003). This
underlines the need to identify the relevant  MMPs in the joint destructive process and the
development of selective inhibitors.

Bisphosphonates (BP) are carbon-substituted pyrophosphate analogues that have become
the treatment of choice for a variety of bone diseases in which excessive osteoclast activ-
ity is an important pathological feature, including osteoporosis, Paget’s disease and malig-
nant bone disease (Fleisch, 2003). BPs may directly inhibit many MMPs in vitro (Teronen
et al., 1999) and they preserve the joint architecture and decrease the inflammatory reac-
tion in many types of experimental arthritis (Fleisch et al., 2002). However, in RA the anti-
inflammatory properties of BPs and their potential efficacy in ameliorating structural dam-
age remain to be elucidated.
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3. REWIEV OF LITERATURE

3.1. Bone

3.1.1. General

Bone is a specialized form of connective tissue that regulates its mass and architecture to
meet two critical, competitive and dynamically changing functions, structural and meta-
bolic. Like other connective tissues bone consists of  cells and extracellular matrix. The
feature that distinguishes bone from other connective tissues is the unique ability of the
bone matrix to become calcified. This produces an extremely hard tissue providing sup-
port and protection. Secondly, bone serves as a mineral reservoir and has an important
role in the homeostatic regulation of blood calcium levels. The balance between structural
and metabolic functions is achieved via complex and tightly regulated processes of forma-
tion and resorption of bone tissue.

3.1.2. Cellular basis of bone remodeling

The four cell types of bone tissue are osteoprogenitor cell (preosteoblast), osteoblast,
osteocyte and osteoclast. With the exception of osteoclast, these cells can be regarded as
differentiated forms of the same local mesenchymal stem cell. A mature osteblast is de-
rived from preosteoblast and has histological characteristics that reflect its high cellular
activity. It secretes both the bone collagen and the ground substance that constitute the
initial unmineralized bone or osteoid. Osteoblast is also responsible for the calcification of
the matrix. During the process of  bone formation, the osteoblast may be engulfed in
calcifying osteoid matrix produced by itself, thereby becoming the osteocyte. The osteo-
cytes are connected to each other via cytoplasmic extensions that pass through a network
of small canals known as canaliculi. The exchange of nutrients, mineral, and chemical
and physical stimuli through this network is essential for the homeostatic control of
skeleton. Monocyte-macrophage lineage derived osteoclasts are large multinucleated cells
responsible for bone resorption (Rubin and Rubin, 2001).

3.1.3. Composition of bone matrix

3.1.3.1. Bone mineral

Bone is composed of ~70 % mineral and 30 % organic matter. The mineral, primarily in
the form of hydroxyapatite [Ca

10
(PO4)

6
(OH)

2
] crystals, is embedded in and aligned with

the collagen fibrils, which together with noncollagenous proteins play an important role in
crystal formation (Seibel et al., 1995).

3.1.3.2. Type I collagen

Type I collagen is the predominant organic component of bone, accounting approximately
85–90 % of unmineralized matrix. This protein is also the most abundant collagen in soft
tissues e.g. skin and tendon. The bone collagen fibers are highly insoluble because of their
many covalent intra- and intermolecular cross-links, the type and pattern of which differ
from those in soft connective tissue collagen (Eyre et al., 1988). Type I collagen is com-
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posed of two identical α1(I) chains and a structurally very similar but still genetically
different α2(I) chain, which are wrapped around each other into a triple helix. Each triple
helical collagen monomer, approximately 300 nm long, is aligned parallel to the next in a
quarter-stagger array, which produces a collagen fibril. Within the collagen fibrils, gaps
called hole zones exist between the end of the molecule and the beginning of the next. It is
thought that noncollagenous proteins reside in these spaces, attract calcium and initiate
the mineralization process (Rubin and Rubin, 2001).

3.1.3.3. Noncollagenous proteins

Although 90 % of the unmineralized matrix is collagen, the noncollagenous components
that constitute the remaining 10 % are important in providing bone with some of its
physical and chemical properties. The proteoglycan of bone is of lower molecular weight
and is more compact than that in cartilage. Noncollagenous proteins include a calcium-
binding, γ-carboxyglutamic acid-containing protein, osteocalcin and osteonectin, which is
highly phosphorylated glycoprotein that binds collagen and calcium. Osteopontin and bone
sialoprotein are highly acidic, have a high affinity for calcium and have binding sites for
integrin receptors. All these proteins are probably important in regulating mineralization,
and their distribution may account for the delay between matrix deposition and mineraliza-
tion. These proteins may also be involved in bone resorption. Osteocalcin is chemotactic
for osteoclasts and their precursors and osteopontin, as well as other proteins, may be
involved in the adhesion of osteoclasts to mineralized matrix (Raisz, 2001).

3.1.4. Bone resorbing cells

The major and possibly the sole bone resorbing cell is the osteoclast. Osteoclasts are
localized on endosteal bone surfaces, in Haversian systems and occasionally on periosteal
surfaces. They are not commonly seen on resting bone surfaces but are found frequently
at actively remodeling bones such as the metaphyses of growing bones or in pathological
bone, such as adjacent to collections of tumor cells (Mundy, 1993).

The osteoclast is a polykaryocyte formed by fusion of mononuclear cells derived from
hematopoietic bone marrow. The process of osteoclast differentiation requires the pres-
ence of receptor activator of nuclear factor kappa B ligand (RANKL) and the permissive
factor macrophage colony stimulating factor (M-CSF) secreted by local osteoblasts and
other stromal cells (Lacey et al., 1998). Together, RANKL and M-CSF induce expression
of genes that typify the osteoclast lineage, including those encoding tartrate-resistant acid-
ic phosphatase (TRAP), cathepsin K, calcitonin receptor and vitronectin receptor (α

v
β

3
)

(Lee et al., 1995; Faust et al., 1999).

Once activated the osteoclast attaches itself to the bone surface with the help of surface
integrin αvβ3 receptor and forms a “seal” (clear zone) that demarcates the limits of the
bone area being resorbed (Ross et al., 1993). Towards the center of the cell the mem-
brane becomes deeply folded, creating a characteristic ruffled border. Via the ruffeled
border hydroclorid acid is secreted by the H+ATPase to decalcify the bone, followed by
the release of cathepsins which degrade bone matrix proteins. Degradation products (col-
lagen fragments, solubilized calcium and phosphate) are internalized, transported across
the cell and released at the basolateral domain (Salo et al., 1997). Once bone has been
resorbed, the osteoclast disengages, leaving a resorption pit that is subsequently filled with
new bone by osteoblasts (Väänänen and Horton, 1995).
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3.1.5. Regulation of bone remodeling

Bone remodeling is a tightly coupled process regulating bone structure and function dur-
ing adult life, with the key participants being the osteoclast and the osteoblast. In the
normal adult skeleton bone formation occurs only where bone resorption has previously
occurred. In young, healthy adult bone formation equals bone resorption, so that there is
no net bone loss. However, with aging and in some diseases bone resorption exceeds bone
formation resulting in generalized osteopenia osteoporosis and/or localized bone loss. Bone
metabolism is in addition to physical forces and direct cell-to-cell contacts regulated by
polypeptide, steroid and thyroid hormones as well as by local growth factors that play
direct and important roles in bone remodeling (Canalis, 2003).

Parathyroid hormone (PTH) and 1,25 hydroxyvitamin D are both potent stimulators of
osteoclastic bone resorption. This effect, however, is not direct, but requires the presence
of osteoblasts or osteoblast-derived factors. Consistent with the tight coupling of the
catabolic and anabolic phases of bone remodeling, the two major bone resorbing hor-
mones (PTH and 1,25 hydroxyvitamin D) are also able to stimulate bone formation. This
anabolic effect is mediated at least in part by the local insulin-like growth factor (IGF) I
(Miyakoshi et al, 2001).

Calcitonin is a polypeptide hormone that is an inhibitor of osteoclastic bone resorption.
The response to calcitonin is transitory, however, as osteoclasts escape from its inhibitory
effects following continued exposure (Mundy, 1993).

Polypeptide growth factors, such as transforming growth factor (TFG)-β and IGF are
secretory osteoblast products that can stimulate osteoblast cell growth in an autocrine or
paracrine fashion. The active TFG-β and IGFs released from bone matrix via bone re-
sorption could be instrumental in suppressing further bone degradation and initiating the
bone forming phase of the remodeling cycle. Glucocorticoids inhibit skeletal IGF I syn-
thesis, which may in part explain the inhibitory effect of glucocorticoids on bone forma-
tion (Canalis and Delany, 2002).

The recent identification and characterization of RANKL, an essential cytokine for various
osteoclast functions, its receptor, receptor activator of nuclear factor kappa-B (RANK),
and its decoy receptor, osteoprotegerin (OPG), have created new molecular and cellular
concepts of osteoclast biology, bone resorption and homeostasis (Teitelbaum, 2000).

RANKL produced by osteoblasts, fibroblasts and activated T-lymphocytes is an essential
factor for osteoclast formation, its fusion, activation and survival, thus resulting in bone
resorption and bone loss (Figure 1). RANKL activates its specific receptor RANK located
on preosteoclast, osteoclast and dendritic cell. RANK signal transduction involves many
tumor necrosis factor receptor-associated factors including nuclear factor kappa-B
(NF-κB) and activating protein-1 (AP-1), which consists of c-fos and c-jun (Boyle et al.,
2003). The effects of RANKL are inhibited by OPG which acts as a soluble neutralizing
receptor. RANKL and OPG act as key effector molecules onto which growth factors,
cytokines, and peptide and steroid hormones known to effect bone metabolism converge
(Hofbauer and Heudfelder, 2001).
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3.2. Rheumatoid arthritis

3.2.1. General

Rheumatoid arthritis (RA) is a symmetric polyarticular arthritis that primarily affects the
small diarthroidal joints of the hands and feet. RA is the most common inflammatory
arthritis affecting about 1 % of the population worldwide and is a major cause of disability.
Although the etiology of RA remains a mystery, a variety of studies, including twin con-
cordance data, suggest that both environmental and genetic factors are responsible.

In the area of pathogenesis substantial progress has been made in recent years: The role of
chemokines, adhesion molecules, cytokines, growth factors, and MMPs has been care-
fully defined. These products attract and activate immigrant cells in the peripheral blood
and resident cells in tissues. The proteases can lead to behavior similar to that of localized
tumor, resulting in invasion  and destruction of articular cartilage, subchondral bone,
tendons, and ligaments (Firestein, 2001).

3.2.2. Synovial abnormality in RA

The synovium is normally a relatively acellular structure with a delicate intimal lining. In
RA, CD4+ T cells, B cells, plasma cells and macrophages infiltrate the synovium and
sometimes organize into discrete lymphoid aggregates with germinal centers. Two major
cell types are found in the lining: a macrophage-like cell or type A synoviocyte and fibrob-
last-like cell or type B synoviocyte. The numbers of type A and B synoviocytes are rela-

Bone-lining cell

Figure 1. Osteoclast differentiation and activity is regulated by RANKL, RANK and OPG. OPG
is a soluble decoy receptor that inhibits osteoclast differentiation and  activation by binding to
the cell surface RANKL and soluble RANKL, which are required for osteoclastogenesis.

S.R. Glodring. Pathogenesis of bone and cartilage destruction in rheumatoid arthritis. Rheu-
matology 2003; 42(Suppl.2): ii11- ii16, by permission of Oxford University press.
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tively equal in normal synovium. There is an absolute increase in the numbers of both cell
types in RA, although the percentage increase in macrophage-like cells is greater (Mulher-
in et al., 1996).

Overall, within the synovium, T cells predominate over B cells. T cells constitute ≥ 50 %
of cells in most RA synovia, whereas only ≤ 5 % of cells are B lymphocytes. However,
only small amounts of T cell cytokines, e.g., interleukin (IL) -2 and interferon-γ, are
found in inflamed joint, whereas cytokines and effectors produced by macrophages and
fibroblasts abound. This finding has led to a concept that the chronic inflammatory proc-
ess in RA might achieve a certain degree of autonomy that permits inflammation to persist
after a T cell response has already been down-regulated (Firestein, 2001).

Synovial macrophages are believed to play a crucial role in the perpetuation phase of
RA and their numbers correlate with articular destruction (Mulherin et al., 1996). They
release numerous cytokines, principally tumor necrosis factor (TNF) -α and IL -1β,
which stimulate synovial fibroblast proliferation and secretion of IL-6, M-CSF and chem-
okines as well as effector molecules like MMPs and prostaglandins. The important role of
innate immunity in RA is supported by clinical improvement observed after specific inhi-
bition of macrophage-derived cytokines such as TNF-α and IL –1. However, continuous
anti-cytokine treatment is required for long-term control and the disease flares when ther-
apy is discontinued. Thus, a relatively simple view of autonomous cytokine networks
cannot explain perpetuation of RA. More likely, the chronic synovial inflammation is de-
pendent on components of the adaptive immune system as a driving force (Firestein,
2003). Recent observation that depletion of B cells in RA patients results in a significant
therapeutic effect provides evidence for a pathogenic role for B cells in RA (Edwards et
al., 2004).

3.2.3. Cartilage destruction

Unlike bone, which is constantly remodeled throughout life, cartilage turnover (remode-
ling) is relatively limited and this tissue has restricted capacity to repair its matrix once it is
damaged. In RA cartilage is destroyed by both enzymatic and mechanical processes. Early
in synovitis, proteoglycans are depleted  from cartilage, which looses its ability to rebound
from a deforming load  and thereby becomes susceptible to mechanical fragmentation and
fibrillation and eventually looses its functional integrity concurrent with the degradation of
fibrillar type II cartilage collagen by collagenolytic enzymes (Firestein, 2001).

3.2.4. Pathogenesis of bone destruction in RA

The presence of juxta-articular osteoporosis, focal bone erosions at joint margins and
bone cysts in the subchondral bone has been considered as the radiographic hallmarks of
RA (Goldring and Gravallese, 2002). There is mounting evidence that osteoclast plays a
pivotal role in RA associated local and generalized bone loss. Histologic sections of rheu-
matoid joints obtained from patients at the time of joint replacement  surgery demonstrate
multinucleated cells with osteoclastic phenotype along the surface of resorption lacunae in
subchondral bone (Hummel et al., 1998; Gravallese et al., 1998). The phenotypic mark-
ers that are associated with the fully differentiated osteoclast include cathepsin K, TRAP
and calcitonin receptor. Expression of calcitonin receptor coincides with the terminal
differentiation of the osteoclast into a fully competent bone resorbing cell, which makes it
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a useful marker for the identification of the mature functional osteoclasts and helps to
distinguish this cell from its monocyte/macrophage-lineage precursors (Gravallese et al.,
1998).

The origin of the osteoclast like cells found at the sites of focal bone erosions at the
pannus-bone interface remains unclear. Rheumatoid synovium is rich in macrophages.
The cells share the same origin as osteoclasts and can be induced in vitro to differentiate
into mature active osteoclasts fully capable of resorbing bone (Fujikawa et al.,1996). It is
conceivable that the multinucleated cells at the pannus-bone junction are derived from
synovial macrophages in rheumatoid joints, but this has not been proven.

Several lines of evidence indicate a role for RANKL in the pathogenesis of focal bone loss
in RA (Gravallese et al., 2000; Horwood et al., 1999; Kotake et al., 2001). RANKL is
expressed in osteoblasts, synovial fibroblasts and T-cells, all of which have been shown to
have the capacity to induce osteoclastogenesis in vitro (Horwood et al., 1999; Kotake
et al., 2001). IL-1 and TNF-α have dual effects on osteoclastogenesis. Both factors up-
regulate RANKL expression in bone lining and bone marrow stromal cells. In addition,
TNF-α and RANKL act in synergy to enhance osteoclast differentiation, whereas IL-1
acts primarily to directly activate osteoclasts and delays osteoclast apoptosis (Romas et
al., 2002). Both IL-1 and TNF-α contribute further to bone loss in RA by impairing bone
formation via induction of osteoblast apoptosis (Tsuboi et al., 1999). Consequently the
beneficial effects of targeting IL-1 and TNF-α for retarding the progression of bone
erosions in RA may not only reflect the suppression of synovial inflammation, but could
relate to the ability of these therapies to interfere directly with osteoclastogenesis, as well.
Recent observations in the rat adjuvant arthritis model demonstrating blockade of focal
bone loss in animals treated with OPG provide further evidence that  RANKL plays a
critical role in the pathogenesis of the osteoclastic bone resorption in inflammatory arthri-
tis, and that the osteoclast is the principal cell type responsible for the development of
erosions at the pannus-bone interface (Kong et al., 1999).

3.2.5. Evaluation of radiographic joint damage

Joint damage visualized by radiographs is considered to be the hallmark of RA. Although
the course of RA varies among individual patients, there are broadly identifiable patterns
and these can be defined using plain X-rays (Plant et al.,1998). With increasing duration
of disease there is an increasing relationship between joint damage visualized on plain films
and several aspects of outcome, such as functional status and work disability (Scott
et al., 2000). Therefore it is important to assess the progression of structural damage
in individual patients in clinical practice and if, necessary, to adjust therapy accordingly.
The extent of damage caused by RA varies in different joints. However, damage to the
hands and feet provides a good indication of overall changes in time. Therefore, the use of
the hands and feet as surrogate measure for overall joint damage is favored (van der Heijde
et al., 1999a).

To be able to use radiographs as an outcome measure, valid methods are needed to score
progression of radiologic changes in RA. The earliest systems developed by Steinbocker
et al. (1949) and Kellgren and Bier (1956) gave global assessments of the extent of dam-
age, which allowed individual patients to be classified into groups. These groups are
useful in epidemiological studies but have limited relevance when assessing the progres-
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sion of damage in trials. Subsequent systems assessed changes in individual joints. The
dominant methods are the Sharp score (Sharp et al., 1971), the Larsen score (Larsen
et al., 1977), and their many variants. The key modification is the van der Heijde modifi-
catied Sharp score, which involves assessing 16 joint in each hand and wrist and each
foot on ordinal scales for erosion (0–5 in hands and 1–10 in feet) or joint space narrowing
(0–4) (van der Heijde, 1999b). The Larsen method is based on a set of standard films.
It differentiates six stages from 0 (normal) to 5, reflecting gradual, progressive deteriora-
tion, and provides an overall measure of joint damage. Of these two scoring systems
the Sharp/van der Heijde method was reported to be more sensitive to detect change
(Bruynesteyn et al., 2002).

X-rays can be scored in random order, in pairs without knowledge of the chronological
sequence, or in known sequence. Scoring in chronological order may introduce a bias
because it is expected  that damage will progress over time. However, chronological order
is more sensitive to change than the other approaches, and this difference is particularly
pronounced with longer follow up (van der Heijde et al., 1999c).

3.3. Joint destruction and proteinases

3.3.1. General

Degradation of extracellular matrix components is an integral feature of normal growth
and development, and biologic processes such as reproduction, bone remodeling and
wound healing. Under physiologic conditions proteolytic degradation is transient, local,
and controlled by endogenous inhibitors. In many pathologic situations, excessive extra-
cellular matrix degadation by proteinases causes tissue destruction. Joint destruction in
RA is attributed mainly to elevated proteinase activities without sufficient endogenous
inhibitors (Okada, 2001). The four main classes of proteinases are classified according to
the chemical group that participates in the hydrolysis of peptide bonds. Cysteine and
aspartate proteinases are predominantly active at acid pH and act intracellularly; the serine
and metalloproteinases, active at neutral pH, act extracellularly. The proteinases produced
by chondrocytes play a major role in osteoarthritis (OA), while in rheumatoid joint protei-
nases produced by chondrocytes, synovial cells and inflammatory cells all contribute to
matrix loss (Catterall and Cawston, 2003).

3.3.2. Metalloproteinases

Based on the substrate specificity the family of MMPs is subdivided to subgroups such as
collagenases (MMP-1, -8, -13), gelatinases (MMP-2, -9), stromelysins (MMP-3 and -10)
and membrane-type MMPs (MMP-14, -15,-16, -17). MMPs share a structurally similar
domain structure, in particular the zinc dependent catalytic domain and the activation
peptide (propeptide) thought to be responsible for the latency of proMMP species (Kont-
tinen et al., 1999).
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3.3.2.1. Collagenases

Collagenases are characterized by their ability to degrade triple helix of interstitial collagen
types I, II and III at a specific single site following a glycine residue, located about three
fourths distance from the N terminus. This cleavage generates fragments approximately
three fourths and one fourth of the size of the original molecule. Fibroblast type colla-
genase, later renamed MMP-1, was the first MMP detected in the rheumatoid synovial
membrane (Evanson et al., 1967). Neutrophil collagenase or MMP-8 is synthesized
during the differentiation of neutrophils and stored in the secondary or specific granules
until the neutrophil is activated to exocytosis (Okada, 2001). A newly described colla-
genase, MMP-13, is highly expressed in chondrocytes in both OA and RA cartilage.
In addition, MMP-13 is produced in RA synovium in amount considerably higher than OA
(Lindy et al., 1997). The importance of MMP-13 in cartilage destruction is suggested by
its substrate specificity favoring degradation of type II collagen over type I and III colla-
gens (Knäuper et al.,1996).

3.3.2.2. Gelatinases

Among the MMPs  MMP-2 (gelatinase A ) and MMP-9 (gelatinase B) may be especially
important in collagen degradation through digestion of denatured collagen (gelatin) gener-
ated by thermal denaturation of the 3/4 and 1/4 collagen fragments at body temperature
after specific cleavage of the triple helical region of the fibrillar collagen molecules by
collagenases (Okada, 2001). MMP-2 is expressed mainly by mesenchymal cells, i.e.,
rheumatoid synovial fibroblasts and chondrocytes, whereas MMP-9 is produced by neu-
trophils and various other hematopoietic cells, for instance, monocytes and macrophages
(Opdenakker et al., 2001). Gelatinases cleave type IV collagen, the main component of
basement membrane (BM), and MMP-9 from macrophages and neutrophils is thought to
play a key role in the migration of these cells in inflammatory diseases such as RA (Jo-
vanovic et al., 2000).

3.3.2.3. Stromelysins

The closely related stromelysins, MMP-3 and MMP-10, hydrolyze a number of ECM
macromolecules including fibronectin, laminin, collagen IV and  aggregan, the major pro-
teoglycan species in cartilage. Stromelysins can activate other MMPs, thus playing an
important role in the intermolecular activation cascade of MMPs (Okada, 2001).

3.3.3. Cysteine proteinases

ECM degrading cysteine proteinases include lysosomal cathepsins B, L, S and K. Cathep-
sins B and L digest the telopeptide regions of fibrillar collagen and aggregan at acidic pH.
Cathepsin S has a similar spectrum of substrates within a broad range of pH. Cathepsin K
is a collagenolytic cathepsin that effectively cleaves type I collagen at several sites of the
triple helical region at pH values between 4.5 and 7.6. Cathepsin K also degrades gelatin
and osteonectin (Okada, 2001). Cathepsin K is highly expressed in osteoclasts and its
critical involvement in bone remodeling is supported by the finding that cathepsin K defi-
ciency causes bone sclerosing disorder pycnodysostosis that on the molecular level is
characterized by insufficient degradation of type I collagen during bone remodeling (Gelb
et al., 1996; Hou et al.,1999).
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3.3.4. Regulation of proteinase activity

3.3.4.1.Regulation of metalloproteinase production

Although most MMPs are not expressed in normal cells under physiologic conditions,
MMP-8 and MMP-9 are synthesized during the differentiation of neutrophils and stored in
the granules of differentiated cells (Okada, 2001). The expression of MMPs by connec-
tive tissue cells is regulated by a number of cytokines (particularly IL-1 and TNF-α),
growth factors, and hormones. Many of these factors are products of monocyte/macro-
phages and their production in inflammatory situations is a key step in the initiation tissue
degradation (Reynolds, 1996).These regulatory signals work almost exclusively at the
level of gene transcription and involve multiple mechanisms such as activation of AP-1
and NF-κB transcription factors (Liacini et al., 2002). MMP-2 is unique in that factors
capable of enhancing the production of other MMPs are inactive, whereas TGF-β, sup-
pressor for most MMPs, stimulates its production (Okada, 2001).

3.3.4.2. Activation mechanisms of the zymogens of MMPs

MMPs are synthesized as latent proenzymes. The latency of proMMPs is maintained by
interaction of the cysteine sulfhydryl group in the pro-domain, with the zinc atom at the
active site. This prevents the formation of a water-zinc complex that is required for the
enzyme catalyzed reaction. The extracellular activation is initiated through the disruption
of the cysteine-zinc interaction by treatment with nonproteolytic agents or proteinases. It
is likely that in vivo activation proceeds most frequently by proteolysis. Proteinases initial-
ly cleave the pro-peptide so that the cysteine is no longer held in a tight apposition to the
zinc atom. Autolysis ensues to produce the cleaved, permanently active form of enzyme.
Many serine proteinases such as plasmin may play a major role in the activation of  pro-
MMP-3 and proMMP-10 in vivo. Activation of proMMP-1, -8 and -9 by active MMP-3
and MMP-10 may then be the next steps in this intermolecular activation cascade. Pro-
MMP-9 may be activated by MMP-13 as well. ProMMP-2 which is resistant to extracel-
lular activation by most endopeptidases can be activated by membrane-type MMPs, MMP-
14, -15 and -16 on the cell membranes (Okada, 2001).

3.3.4.3. Endogenous proteinase inhibitors

Most of the proteinase inhibitory activity in serum is due to α
2
-macroglobulin (α

2
M).

Because of its large molecular weight, it is not present in non-inflammatory synovial fluid.
During synovial inflammation, α

2
-macroglobulin penetrates into the joint cavity. Rheuma-

toid synovial fluid, for example, has about the same concentration of the inhibitor as
plasma. Tissue inhibitors of metalloproteinases (TIMP), of which there are four to date,
block the enzyme activity by binding to MMPs in a 1:1 molar ratio to form tight, noncov-
alent complexes (Okada, 2001). Normally, a tight balance exists between MMPs and their
tissue inhibitors. However, in pathological situations, such as RA, a MMP/TIMP imbal-
ance is present, which leads to an excess of activated MMPs, and ultimately, to structural
damage in joints (Firestein, 2001).

3.3.5. Cartilage destruction by proteinases in RA

Although several proteinases are known to attack and degrade the proteoglycan compo-
nent of cartilage, degradation of fibrillar collagen is thought to be mediated only by the
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collagenase enzymes. Recent evidence suggests, however, that cathepsin K expressed in
synovial fibroblasts in RA may contribute to this event as well (Hou W-S et al., 2001).
Probably all the three collagenases are involved. Chondrocytes, stimulated by the
cytokines derived from inflamed synovium, produce MMP-13, which of the three colla-
genases most effectively cleaves type II collagen (Knäuper et al.,1996). Immunolocaliza-
tion of MMP-1 and phagosytosis of collagen fibrils by pannus cells at sites of pannus-
cartilage junction suggests a role for MMP-1 in cartilage destruction (Okada, 2001). Rheu-
matoid synovial effusions typically contain large numbers of neutrophils (PMN). MMP-8
degranulated from PMNs interacting with immunoglobulins adherent to cartilage and ac-
tivated by hypochlorous acid  released as part of the PMN activation, is likely to contribute
to cartilage destruction, because collagenase released contiguous to the cartilage matrix
might escape the circulating protease inhibitors (Chatham et al.,1990).

3.3.6. Proteinases in bone resorption

Pannus-like granulation tissue invades the cartilage and subchondral bone at the bare
zone, and bone resorption occurs through the action of osteoclasts. Osteoclastic bone
matrix  degradation is carried out in the subosteoclastic compartments, which have acidic
(pH 4-5) and hypercalcemic conditions. After solubilization of the mineral phase, the
organic matrix is degraded. Both in vitro and in vivo studies suggest that this process is
mainly carried out by lysosomal cysteine proteinases and MMPs (Everts et al., 1992;
Everts et al., 1998). Data that cathepsin K is the major proteinase in the degradation of
bone matrix in the resorption lacunae are now very convincing. The enzyme has telopepti-
dase activity like other cysteine proteinases, and it shares with bacterial proteinases the
ability to cleave collagen at multiple sites. Thus, cathepsin K can both depolymerize colla-
gen fibers and cleave triple helices (Garnero et al., 1998). Moreover, the pH for optimal
activity of cathepsin K is within the range of pH values measured in the resorption zone of
osteoclasts.

MMP-9 is the best established MMP in osteoclast and it is highly expressed by these cells.
It has telopeptidase activity against soluble and insoluble type I collagen and strong gelat-
inolytic activity. ProMMP-9 is activated by acid exposure followed by neutralization, and
once activated, it is proteolytically active under acidic and hypercalcemic conditions (Okada,
2001). MMP-9 has strong proteolytic activity against type IV collagen and it is likely that
osteoclasts and/or preosteoclasts require this enzyme for migration (Inui et al., 1999).

A line of evidence suggests that also MMPs of non-osteoclastic origin contribute to the
collagenolysis in bone (Garnero et al., 2003). Particularly MMP-13, produced by osteob-
last-lineage cells, may be involved in degradation of organic components of bone matrix,
acting in concert with cathepsin K and MMP-9 produced by osteoclasts (Nakamura et al.,
2004). Moreover, the relative importance of MMPs and cathepsin K in bone resorption
may depend on the given physiological situation. Thus, MMPs are more important for
resorption of calvarie compared with long bones (Delaissé et al., 2000). Cathepsin K is
the prevailing collagenolytic enzyme in normal physiological bone remodeling, whereas
MMPs become more important in osteolysis related to pathologic situations, including
metastatic bone disease and multiple myeloma (Garnero et al., 2003).
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3.3.7. MMPs as regulators of inflammatory response

In order to clarify the role of gelatinases in arthritis, Itoh et al. (2002) investigated the
development of antibody-induced arthritis in MMP-2 or MMP-9 knockout mice. Surpris-
ingly, the MMP-2 knockout mice exhibited a more severe clinical and histologic arthritis
than wild-type mice, whereas MMP-9 knockout mice displayed milder artrhitis. These
results indicate a suppressive role of MMP-2 and an enhancing role of MMP-9 in the
development of inflammatory joint disease. As these enzymes have very similar substrate
specificities for matrix proteins (Woessner, 1991), their opposite roles may be caused by
differences in non-matrix substrates (Itoh et al., 2002).

For example, MMP-2 cleaves and inactivates monocyte chemoattractant protein-3 (MCP-
3) (McQuibban et al., 2000) and can contribute to the dissipation of proinflammatory
activities. MCP-3 is not cleaved by MMP-9, whereas the major neutrophilic chemoat-
tractant IL-8 is amino-terminally truncated and potentiated into a chemokine with at least
tenfold greater activity (van der Steen et al., 2000). Moreover, MMP-9 very effectively
processes IL-1β precursor, yielding stable bioactive products (Schönbeck et al., 1998).

Taken together, MMPs can be seen both as effectors and regulators of inflammatory
response and they can act both as enhancers and suppressors in the progression of RA.
This points out the difficulty of using non-selective MMP inhibitors for the treatment of
RA. The development of selective inhibitors, especially highly specific for MMP-9, would
be essential.

Recent findings suggest an important role for neutrophil-derived MMPs, MMP-8 and
MMP-9, in the induction of immunopathology of various autoimmune diseases (Opde-
nakker et al., 2001; van den Steen et al, 2002). In the joint, activated neutrophils degran-
ulate MMP-8 and MMP-9, but produce neither MMP-2 nor TIMPs. MMP-8 cleaves car-
tilage type II collagen at a single site and generates the typical 3/4 and 1/4 fragments
which leads to unwinding of the triple-helix. Further cleavage by MMP-9 and the resulting
release of auto-immunodominant epitopes could contribute to the establishment and per-
petuation of RA (van den Steen et al., 2002).

3.4. Biochemical markers of bone metabolism

3.4.1.  Markers of bone formation

Metabolism of bone mineral being difficult to assess reliably, analysis of type I collagen
has been developed for quantification of metabolic turnover in skeleton. During the syn-
thesis of type I collagen, by osteoblasts in bone and by fibroblasts in other connective
tissues, the aminoterminal (PINP) and carboxyterminal (PICP) extension propeptides are
cleaved off (Risteli and Risteli, 1999). PINP, in particular, has been found to be a sensitive
and dynamic marker of bone formation (Scariano et al., 1997; Melkko et al., 1996). In
women with nonmetastatic breast cancer treated with clodronate, changes in PINP levels
significantly  predicted changes in BMD (Saarto et al., 1998). Furthermore, the percent-
age decrease in PINP significantly predicted the decreased risk of vertebral fractures
observed in subjects treated with raloxifene (Reginster et al., 2004). PINP is elevated in
patients with RA compared to controls, but PINP levels do not correlate with disease
activity (Cortet et al, 1998; Hakala et al., 1995).
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Osteocalcin, a major noncollagenous matrix protein of bone, is produced exclusively by
osteoblasts. It is a marker of bone formation that correlates with histomorphometric bone
measurements (Delmas et al., 1985). In most conditions, bone resorption and formation
are tightly coupled, and therefore osteocalcin, PINP and PICP levels reflect bone turnover.

3.4.2. Degradation products of type I collagen

The most promising clinical markers of bone resorption are based on collagen degradation
products, in particular cross-linking amino acids and cross-linked telopeptides. Pyridino-
lines are trifunctional cross-links present in collagens of all major connective tissue. They
covalently link collagen molecules between two telopeptides and a triple helical sequence
at two intermolecular sites, N-telopeptide – to – helix and C-telopeptide – to – helix (Apone
et al., 1997). The newly developed immunoassays quantify, in serum and/or in urine,
different degradation products originating from both the N- and C-telopeptides (Hanson et
al., 1992; Risteli et al., 1993, Bonde et al., 1994).

3.4.2.1. NTx assay

The cross-linked α2(I) N-telopeptide in urine and serum, referred to as NTx, has proven
to be a sensitive marker of bone resorption measured by microtiter plate ELISA using
monoclonal antibody, mAb 1H11 (Hanson et al., 1992; Clemens et al., 1997). MAb 1H11
binds to an α2(I) N-telopeptide epitope, but only when this domain is  cross-linked through
its lysine- residue and cleaved proteolytically to the eight-amino acid sequence shown in
Figure 2 (Hanson and Eyre, 1996). In vitro, recombinant human cathepsin K can release

Figure 2. Structure and mo-
lecular origin of  the antigenic
epitope in the aminoterminal
(NTx) telopeptide region of
human  type I collagen mole-
cule. The required feature of
the epitope recognized by
monoclonal antibody 1H11 is
the a2(I) N-telopeptide se-
quence, JUDGKGVG, where K
is embodied in trivalent cross-
links.

Reprinted from BONE, Vol
26, Atley LM, Mort JS, La-
lumiere M, Eyre DR, Proteol-
ysis of human bone collagen
by cathepsin K: characteri-
zation of the cleavage sites
generating by cross-linked
N-telopeptide neoepitope,
Pages 241-7, Copyright
2000, with permission from
Elsevier.
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all the latent NTx epitope from either soluble, denatured bone collagen or from insoluble,
demineralized bone matrix (Atley et al, 2000). Given the restricted distribution of cathep-
sin K to osteoclasts, these findings provide a molecular explanation for the specificity and
sensitivity of NTx as a systemic marker of osteoclastic bone resorption (Atley et al.,
2000). Urinary and serum levels of NTx are elevated when bone resorption is accelerated,
for example, in women after menopause and lowered by therapies known to inhibit bone
resorption (Garnero et al., 1994; Clemens et al, 1997; Scariano et al., 1998). Increased
urinary excretion of NTx has been reported in active RA (Al-Awadhi et al., 1999), but to
date there are no published studies applying  the newly developed enzyme linked immuno-
sorbent assay (ELISA) for serum NTx (Clemens et al., 1997) in arthritic conditions.

3.4.2.2. CTx  and ICTP assays

Two different circulating C-terminal fragments of type I collagen, known as ICTP and
carboxyterminal cross-linked peptide of type I collagen (CTx) have been used as markers
of bone degradation in vivo. The original CrossLaps assay was developed for an eight
amino acid long synthetic peptide involving the cross-link site of the carboxyterminal
telopeptide of the α1(I) chain as an unmodified lysine (Bonde et al., 1994). Serum and
urinary CTx levels are markedly increased in postmenopausal women compared with
premenopausal controls, and their values decrease markedly and shortly after initiation of
antiresorptive treatment, including bisphosphonates, in postmenopausal women with os-
teoporosis (Garnero et al., 1994). Test tube assays show the ability of cathepsin K, but
not MMPs, to generate CTx from insoluble bone collagen. However, bone resorption-
related MMPs can contribute to CTx immunoreactivity in native tissue by further degrad-
ing some of the larger type I collagen fragments generated by cathepsin K (Garnero et al.,
1998; Garnero et al., 2003).

The ICTP antigen is a trivalently cross-linked structure that was originally isolated from
human femoral bone after digestion with trypsin or bacterial collagenase and shown to
contain the carboxyterminal telopeptides of two α1(I) chains and material from the helical
part of a third chain (Risteli et al.,1993). MMPs -2, -9, -13 and -14 are capable of releas-
ing ICTP from bone collagen (Garnero et al., 2003; Parikka et al., 2001), whereas cathe-
psin K destroys the ICTP epitope (Sassi et al., 2000). Thus, among known collagenolytic
proteinases relevant in bone resorption, only MMPs can generate ICTP. ICTP will, how-
ever, underestimate MMP driven collagenolysis in all situations where ICTP is exposed to
active cathepsin K (Garnero et al., 2003).

These observations provide a mechanistic explanation, why ICTP is relatively insensitive
to changes in osteoclast-mediated normal turnover of bone collagen. However, pathologic
increases in bone degradation, such as those occurring in myeloma (Elomaa et al., 1992)
or metastatic bone disease (Blomqvist et al., 1996) are well detected by this assay sug-
gesting that other pathways, possibly resembling the extracellular degradative pathway of
collagen, must also exist (Risteli and Risteli, 1999). Serum ICTP is elevated in RA patients
and correlates with disease activity and radiologic damage score (Hakala et al.,1993).

In pycnodysostotic patients lacking cathepsin K, serum concentrations of ICTP are in-
creased concomitantly with decreased urinary excretion of NTx and CTx (Nishi et al.,
1999). Plausible explanation for these findings is that MMPs from periosteoclastic cells
compensate for inactive cathepsin K by degrading collagen that was demineralized by the
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osteoclasts, and thereby generate ICTP (Garnero et al., 2003). Absence of cathepsin K
mediated cleavage of ICTP fragments, however, could also contribute to the increase in
serum ICTP (Parikka et al., 2001).

3.4.3. Osteprotegerin

OPG is soluble secreted receptor for RANKL that prevents it from binding to and activat-
ing RANKL on the ostaclast surface. OPG is produced by a variety of tissues including the
cardiovascular system, lung, kidneys and bones. While abnormalities in the RANKL/OPG
system have been implicated in the pathogenesis of osteoporosis and other metabolic bone
diseases, including RA (Hofbauer and Heufelder, 2001), clinical and preclinical data sug-
gest that OPG could have application as a potent antiresorptive drug  (Bekker et al., 2001;
Kong et al., 1999). The role of serum OPG measurement, however, as a biochemical
marker for disease activity assessment and drug monitoring has not yet been fully eluci-
dated (Hofbauer and Schoppet, 2001).

3.5. Bisphosphonates

3.5.1. General

In the early 1960s Fleisch and Bisaz (1962) showed that inorganic pyrophosphate, a
known by-product of  many biosynthetic reactions in the body, was present in serum and
urine and prevented ectopic calcification by binding to newly forming crystals of hy-
droxyapatite. Due to its rapid hyrdolysis, however, pyrophosphate found therapeutic use
only in scintigraphy and in toothpaste, added to prevent dental calculus. This prompted
the search for analogs, which would display similar physicochemical properties, but resist
enzymatic hydrolysis and metabolism. The bisphosphonates (BPs) fulfilled these prereq-
uisites (Fleisch et al., 2002). The finding that BPs inhibited the dissolution of hydroxyap-
atite crystals (Fleisch et al., 1969) led to studies to determine whether they might also
inhibit bone resorption. Since then, BPs have become established as an effective and safe
treatment of bone loss, especially in osteoporosis.

3.5.2. Structure-activity relationship for bone resorption

Bisphosphonates differ from pyrophosphate in that a carbon rather than oxygen atom
bridges the two phosphate residues (Figure 3), which renders BPs stable and able to
withstand incubation in acids or with hydrolytic enzymes The P-C-P structure of  BPs is
required for the chelation of Ca2+ ions by these compounds and hence for their tissue
selective targeting to bone mineral. The affinity for calcium can be increased further if one
of side chains (R1) is a hydroxyl (-OH)

 
group, because this allows the formation of a

tridentate conformation that is able to bind Ca2+ more effectively (Russel and Rogers,
1999). With the exception of clodronate, all clinically used BPs to date contain – H or
– OH in the R1 position. Etidronate, which has a hydroxyl group at the R1 position, was,
however, found to be less potent than clodronate in inhibition of bone resorption both in
vitro and in vivo. This discrepancy between antiresorptive potency and affinity for Ca2+

led to the suggestion that BPs may inhibit bone resorption by cellular effects on bone
resorbing cells rather than by acting as crystal poisons that prevent hydroxyapatite crystal
dissolution by a physiochemical mechanism (Russel and Rogers, 1999).
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Following the successful clinical use of clodronate and etidronate in the 1970s and 1980s,
more potent antiresorptive BPs were developed, which had different R2 side chains, but in
which R1 was unaltered. Extensive modifications of the side chain showed that basic
primary nitrogen group attached to an alkyl chain, such as in pamidronate and alendronate
(Table 1), produced 10 - 1000 - fold more potent antiresorptive agents. When the nitrogen
atom was combined as a tertiary amine in the R2 side chain, such as in ibandronate, the
BPs were even more potent. However, the most potent BPs to date are those containing a
tertiary nitrogen within a ring structure, including risedronate and zolendronate, which are
up to 10.000 – fold more potent than etidronate in vivo in rodent models of bone resorp-
tion (Fleisch et al., 2002).

Figure 3. Structure of pyrophosphate and generic bisphosphonate (Arthritis Res 5: 12-24,
2003).

R1 enhances binding to hydroxyapatite

-C- enhances chemical stability

R2   determines anti-resorptive potency
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3.5.3. Targeting of BPs in bone

The clinicil pharmacology of BPs is characterized by low intestinal absorption as a conse-
quence of their poor lipophilicity, but highly selective localization to and retention in bone.
The circulating levels of BPs are extremely low due to their affinity to bone mineral,
suggesting that the circulating levels are not relevant to function. Their distribution in
bones is not homogenous as BPs bind preferentially to bones which have high turnover
rates. Following IV administration of 14C- alendronate to rats the joint (mainly juxta-artic-
ular trabecular bone) of the tibia and femur had two- to threefold higher drug concentra-
tions than the middle portions (cortical bone) Using a light microscopy autoradiography
technique, Sato et al. (1991) showed that only the exposed hydroxyapatite at the resorp-
tion site is accessible to the circulating BPs, and this would partly explain the nonuniform
distribution of BPs in bone. However, other factors, such as blood supply and ratio of
bone surface to volume, may also contribute to this uneven distribution. The blood supply
to trabecular bone is greater than to cortical bone, and its surface to volume ratio is
approximately 4- fold compared to cortical bone both of which may lead to the higher
drug concentrations observed in juxta-articular bone (Lin, 1996).

The ability of BPs to chelate Ca2+ is reduced at low pH due to the protonation of the
phosphonate groups. Hence, in the acidic environment of the osteoclast resorption lacuna,
BPs are released  from bone surfaces, giving rise to locally high concentrations of BPs in
solution or as calcium salt. For instance, it has been estimated that pharmacological doses

Table 1.  Structure of the R1 and R2 sidechains (see Fig. 2) of some of the bisphospho-
nates investigated in humans. The bisphosphonates are grouped according to their poten-
cy for inhibiting bone resorption in rats.

Bisphosphonate R1 R2

Potency x1
      Etidronate OH CH

3

Potency 10 x
      Clodronate Cl Cl
      Tiludronate H CH

2
 -S-phenyl- Cl

Potency 100 x
      Pamidronate OH CH

2
 CH

2
 NH

2

Potency 100-1000 x
      Alendronate OH (CH

2
)

3
 NH

2

Potency 1000-10 000 x
      Ibandronate OH CH

2
 CH

2
 N(CH

3
) (pentyl)

      Risedronate OH CH
2
-3-pyridine

Potency >10 000 x
      Zoledronate OH CH

2
-imidazole
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of alendronate that inhibit bone resorption in vivo could give rise to local concentrations
as high a 1 mM alendronate in resorption space beneath an osteoclast (Sato et al., 1991).

3.5.4. Mechanism of action

The tissue specific targeting of BPs to bone mineral, especially to sites of osteoclast
activity, suggests that BPs inhibit bone resorption by direct effects on osteoclasts or other
bone cells in the immediate microenvironment of osteoclasts. BPs affect osteoclast-medi-
ated bone-resorption in a variety of ways, which include effects on osteoclast recruit-
ment, differentiation and resorption activity. Cellular uptake of BPs leads to the loss of the
ruffled border between the osteoclast and the bone surface, to the disruption of cytosk-
leleton and loss of function (Russel and Rogers, 1999).

Recent mechanistic studies show that bisphosphonates can be classified into at least two
groups with different modes of action: those that are metabolized within the cell to form
toxic analogs of ATP (e.g., clodronate, etidronate and tilundronate) and those that inhibit
farnesyl diphosphate synthase (e.g., pamidronate, alendronate, ibandronate, risedronate
and zolendronate).The properties that segregate BPs into these two classes appear to be a
function of the moieties attached to the geminal carbon at R2, which can vary in size and
complexity. The prevailing determinant for mechanism of action of the BPs used in the
clinics relates to the presence or absence of a nitrogen atom located three or five positions
away from the geminal  carbon of the P-C-P backbone in the in the R2 group (Fleisch
et al., 2002).

The potent nitrogen containing BPs (N-BPs), such as alendronate and pamidronate, inhibit
bone resorption by preventing protein prenylation in osteoclasts, owing to inhibition of
farnesyl diphosphate synthase, an enzyme in the mevalonate pathway. The posttranscrip-
tional modification with lipids (prenylation) of small GTPases such as Ras, Rho and Rac
is essential for the correct function of these enzymes. These small GTPases control the
osteoclast cytoskeletal arrangement, membrane ruffling, the trafficking of vesicles, and
apoptosis. Therefore it is believed that inhibition of the prenylation of these small GTPases
by N-BPs accounts for the majority, if not all, of the various effects on osteoclasts (Rus-
sel and Rogers, 1999).

The non-N-BPs that have a structure similar to pyrophosphate (e.g. clodronate and etidr-
onate) do not inhibit protein prenylation but can be incorporated into nonhydrolysable
analogues of ATP, via the cytoplasmic amino-acyl tRNA enzymes. ATP analogues accu-
mulate within the cytoplasm, where they interfere with numerous biological processes,
eventually causing both osteoclast and macrophage apoptosis (Frith et al.,2001).

3.5.5. Bisphosphonates as MMP inhibitors

BPs have been shown to inhibit the catalytic activities of several genetically distinct, but
structurally related MMP family members in vitro. The IC

50
s range from  50 to 150 µM

(Teronen et al., 1999). Because MMPs are zinc-dependant endopeptidases, it has been
suggested that the bone hook of BPs (the P-C-P structure) inhibits the proteolytic activity
of MMPs through chelation of divalent cations. In line with this postulation, all of the BPs
used in clinics are equipotent in inhibiting MMP proteolytic activity despite the structural
differences in their bioactive moiety (i.e. the R2 chain) (Boissier et al., 2000).
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Tilundronate had no effect on either messenger ribonucleic acid (mRNA) or protein levels
for MMP-1 and MMP-3 in periodontal ligament cells (Nakaya et al., 2001). In contrast,
alendronate at concentrations higher than 10 µM markedly stimulated MMP-13 mRNA
and immunoreactive protein in osteoblasts. The increase in the MMP-13 synthesis was
mediated by an increase in the stability of collagenase transcripts (Varghese and Canalis,
2000).

3.5.6. Clinical use of bisphosphonates

BPs have become accepted as the most potent inhibitors of bone resorption clinically
available and as a mainstay in the treatment of osteoporosis. Although many BPs have
been investigated in human osteoporosis, most of the studies have been carried out with
alendronete, etidronate and risedronate. Many well controlled studies have confirmed the
efficacy of BPs in preventing the decrease in bone mineral density (BMD), as assessed by
dual X-ray absorptiometry first in menopausal osteoporosis and then in other types of
osteoporosis. BPs induce a marked decrease in bone turnover, when given in doses effec-
tive on BMD. Both bone formation and resorption are decreased (Fleisch, 2003). Alend-
ronate (Black et al., 2000; Pols et al., 1999) and risedronate (Harris et al., 1999) have
both been found to reduce vertebral and nonvertebral fractures. Intermittent cyclic thera-
py with etidronate has also been shown to reduce vertebral fracture risk (Cranney et al.,
2001). The effect on fractures is  probably both due to an increase in BMD and a decrease
in bone turnover (Fleisch, 2003).

BPs are the treatment of choice for a variety of bone diseases in which excessive osteo-
clast activity is an important pathological feature, including Paget’s disease and malignant
bone disease. In humans, BPs inhibit tumor-induced bone resorption, correct hypercal-
cemia, reduce pain, prevent the development of new osteolytic lesions, prevent fractures
and, consequently, improve the quality of life for the patients (Catterall and Cawston,
2003). Recently, in patients with operable breast cancer, clodronate has been reported to
reduce the incidence of bone metastases (Diel et al., 1998; Powles et al., 2002).

3.5.7. BPs in inflammatory joint disease

3.5.7.1. General

As there is now compelling evidence that joint erosion in RA is crucially dependent on
osteoclast  activity, the rationale that BPs might be effective, not only for the management
of systemic osteoporosis, but also as an useful adjunct in preventing local structural dam-
age is well motivated. Indeed, in the rat adjuvant arthritis model both N-BPs and non-N-
BPs were able to prevent bone erosions and to significantly reduce the inflammatory
response (Frances et al., 1989; Österman et al., 1994). The fact that not only the bone
resorption is decreased, but also the inflammatory reaction in the joint and paw itself
diminished, suggests that mechanisms other than those acting on bone are at work, pos-
sibly involving the mononuclear phagocyte system (Fleisch et al., 2002).

With respect to collagen induced arthritis, clodronate modestly decreased clinical and
histological signs of arthritis (Österman et al., 1995; Nakamura et al., 1996), whereas
alendronate exacerbated the arthritis reaction (Nakamura et al.,1996). Sustained joint
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swelling was reported after intra-articular administration of ibandronate in rat antigen-
induced arthritis model (Richards et al., 1999). Consistent with these in vivo pro-inflam-
matory effects, N-BPs have been shown in vitro to augment the release of TNF-α and IL
–1β from LPS-stimulated monocyte/macrophage lineage cells (Richards et al., 1999;
Makkonen et al., 1999). In a recent study, in which a collagen induced arthritis model was
used, the potent third-generation bisphosphonate, zoledronic acid, reduced focal bone
erosions, although a dose-dependent increase in paw swelling was observed. Thus, the
most potent N-BPs, exerting greatest inhibitory effects on osteoclast mediated bone re-
sorption, might prevent structural joint damage despite eventual exacerbation of clinical
arthritis after N-BP administration (Sims et al., 2004; Goldring and Gravallese, 2004).

3.5.7.2. Clinical trials in RA

The few controlled studies of BPs in RA, most of them with pamidronate, have shown
variable results. In the study by Ralston et al. (1989) 40 patients were randomized to
either 30 mg of pamidronate by monthly  intravenous infusion or placebo for 48 weeks.
No significant effects on disease activity or radiological progression was evident despite
significantly reduced markers of bone resorption. In contrast, another study that exam-
ined the effects of a single intravenous infusion of placebo or 20 mg or 40 mg of pamid-
ronate in 30 patients with active RA, showed significant clinical improvement and decline
in erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) after the 40 mg
dose (Eggelmaijer et al, 1994). This same group then examined 105 patients randomized
to either 300 mg oral pamidronate daily or placebo for three years. No significant treat-
ment group difference in disease activity or radiologic scores was evident (Eggelmeijer et
al., 1996).

3.5.7.3. Liposomal clodronate

If BPs are encapsulated in a lipososme, they are no longer sequestered by the skeleton;
instead they are taken up by active phagocytic cells such as macrophages (Buiting et al.,
1996). In animal models of arthritis, encapsulated clodronate was found to decrease the
numbers of macrophages and to reduce inflammation (Camillieri et al., 1995; Kinne et al.,
1995; van Lent et al., 1993). Promising results were recently obtained when clodronate
liposomes were injected locally into human RA joint. The procedure was well tolerated
and led to macrophage depletion and decreased expression of adhesion molecules in the
synovial lining (Barrera et al., 2000a).
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4. THE AIMS OF THE STUDY

1. To evaluate the eventual anti-inflammatory effects of  a single infusion of clodro-
nate in patients with active RA.

2. To study the effects of clodronate infusion on salivary collagenase activity in RA
patients.

3. To assess the effect of cyclic etridonate therapy on the progression of radiographic
joint damage in RA patients in a two year study.

4. To examine the relationship of structural damage and markers of type I collagen
metabolism and OPG in RA patients, and to evaluate the response of these bone
biochemical markers on BP therapy.

5. To compare the effects of clodronate and pamidronate on MMP-9 production by
activated human monocytes in vitro.

In more general terms, these aims could perhaps provide hints on the eventual value of BP
treatment as an adjunct in anti-arthritic therapy.
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5. PATIENTS AND METHODS

5.1. Patients and treatments

5.1.1. Patients and treatments in publications I and II

Twenty-six patients with RA according to the 1987 American College of Rheumatology
(ACR; formerly, the American Rheumatism Association) criteria (Arnett et al., 1988) with
the mean age of 51.8 years (range 36 to 61) were enrolled in a randomized, double-blind,
placebo-controlled study at Department of Medicine, Helsinki University Central Hospital
in year 1996. The study was approved by the Helsinki University Central Hospital ethics
committee. All patients had active disease as defined by the presence of at least 3 of the
following 4 criteria: (a) number of tender joints > 10 (maximum count 68); (b) number of
swollen joints > 5 (maximum count 66); (c) duration of morning stiffness in joints ≥30
minutes; (d) ESR ≥28 mm/h or CRP ≥19 mg/l. Concomitant therapy with anti-rheumatic
drugs and/or low-dose oral steroids (up to 10 mg/day prednisone or equivalent) was to be
maintained unchanged one month prior to and during the study. Intra-articular or systemic
glucocorticoid injections were not allowed within 2 weeks prior to or during the study.
Patients with impaired renal function or serum calcium values outside the reference limits
were excluded. Eligible patients were after their informed consent randomly allocated to
receive a single iv. infusion of either clodronate 600 mg in 500 ml 0.9 % NaCl (n=14) or
saline as placebo (n=12) over 5 h.

5.1.2. Patients and treatments in publications III and IV

Forty RA patients were enrolled in a randomized, parallel-group, controlled, open label and
evaluator blinded (radiology, bone biochemistry) study between October 1998 and March
1999 at Helsinki University Central Hospital. Patients were eligible to the study if they met
the 1987 ACR criteria for the classification of RA (Arnett et al.,1988), were 18 years of
age or older, had a disease duration less than 5 years, had a minimum of 4 swollen joints
(maximum count 66) at baseline and had elevated CRP (≥10 mg/l) or ESR (≥28 mm/h)
either at baseline or within the previous 12 months. Patients previously treated with
BPs and those who at baseline were judged to require BP treatment due to osteoporosis
were excluded. Other exclusion criteria were pregnancy/breastfeeding, physical incapac-
ity (Steinbrocker class IV) (Steinbrocker et al., 1949) and impaired renal function (serum
creatinine > 115 µmol/l). The protocol and consent form  were approved by the Helsinki
University Central Hospital ethics committee. Informed consent was obtained from all
patients.

After baseline assessment patients were randomly allocated to one of two treatment groups.
Etidronate group (n=20) received intermittent cyclical oral etidronate disodium (a gift
from Roche, Espoo, Finland) 400 mg daily for 2 weeks every 12–14 weeks (eight cycles
total) in conjunction with antirheumatic therapy. Control group (n=20) received only
antirheumatic therapy. Changes to the concomitant therapy with disease modifying antirheu-
matic drugs (DMARDs) and/or oral steroids could be made whenever considered appro-
priate throughout the study period in both groups.



31

5.2. Methods

5.2.1. Clinical evaluations (I, III, IV)

In the clodronate study disease activity was assessed at baseline and weekly during the
following three weeks by number of swollen joints (maximum count 66), number of
tender joints (maximum count 68), duration of morning stiffness (minutes), patient over-
all assessment of current disease activity on visual analogue scale (VAS) of 0–100 mm and
doctor’s estimation of patients condition on VAS.

In the etidronate study patients were assessed by the same clinician at baseline and 24
months. The following disease variables were measured: number of tender and swollen
joints (28-joint count), patient overall assessment of current disease activity on VAS of
0–100 mm and the modified disease activity score (DAS28) using 28 joint counts (van
Gestel et al., 1998).

5.2.2. Radiographic evaluation (III, IV)

Radiographs of hands and feet were taken at the entry to the etidronate study and at 24
months and were scored in a chronological order according to van der Heijde’s modifica-
tion of Sharp’s method (van der Heijde, 1999b) by one experienced reader who was
unaware of the treatment assignments. The Sharp/ van der Heijde method includes 16
areas for erosion and 15 for joint space narrowing in each hand. The erosion score can
range from 0 till 5. Joint space narrowing is combined with a score for (sub)luxation  and
scored with a range from 0 to 4. In feet 10 metatarsophalangeal joints and the two inter-
phalangeal joints of the big toes are included. The maximum erosion score per joint in feet
is 10, i.e. 5 at each side of the joint. The maximum erosion score of all joints in both hand
is 160 and in both feet 120; the maximum score for joint space narrowing in all joints of
both hands is 120 and in both feet 48. Summation of erosions and joint space narrowing
gives the so called “total score” of hands and/or feet (van der Heijde, 1999b).

5.2.3. Blood chemistries and bone markers (I, II, III, IV)

In the etidronate study serum samples for bone biochemistry were collected at baseline
and at 24 months and stored at –20 °C. In the clodronate study laboratory assessments
were performed at baseline and weekly during the following three weeks.

5.2.4. Salivary samples (II)

As repeated joint aspirations would be impractical, we chose to collect serial salivary
samples to assay collagenase activity in vivo. Samples were collected at baseline, after
termination of the drug infusion (within 30 minutes), and then weekly during the follow-
ing three weeks. Subjects first rinsed their mouth thoroughly with water and then chewed
paraffin. Stimulated saliva was collected over five minutes. Immediately after the collec-
tion of the saliva the samples were centrifuged at 1000 g for five minutes and the super-
natants were frozen at –20 °C until analyzed.
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5.2.5. Clodronate concentration in saliva (II)

Disodium clodronate concentrations in saliva samples was analyzed by capillary chroma-
tography with mass-selective detection (HP 5970). A stabile isotope -labeled analog of
clodronate was used  for the internal standard during the analytical process. The quantifi-
cation limit for disodium clodronate in saliva was 10 ng/ml. Samples that had been collect-
ed in the clodronate group (n =14) immediately after drug infusion and at three weeks
were analyzed.

5.2.6. Measurement of collagenolytic activity (II)

Collagenolytic activity was measured against soluble native triple helical collagen type
I monomers. Native type I collagen was extracted from human skin and further purified
by selective salt precipitations at acidic and neutral pH. Salivary samples were assayed for
collagenase activity by the quantitative sodium dodecyl sulphate polyacrylamide gel elec-
trophoresis (SDS-PAGE) laser densitometric method originally described by Turto et al.
(1977). The salivary samples were incubated with soluble native 1.5 µM type I collagen at
22 °C for 48 hours. Incubation was stopped by addition of a modified Laemmli’s buffer
followed by immediate heating at 100 ºC for 5 minutes. Subsequently, the degradation
products were separated by SDS-PAGE in 10 % cross-linked gels. The gels were stained
with Coomassie brilliant blue and destained in 10 % acetic acid. The destained gels were
quantified by densitometric scanning using the LKB ultrascan laser densitometric model
2202. The value representing 3/4 × (αA)-chains was multiplied by 4/3, and its proportion
of the total collagen in the sample was used to measure collagenase activity. Collagenase
activity was expressed as molar amounts of collagen degraded per hour (Suomalainen
et al., 1992).

5.2.7. Western blotting (II)

Polyclonal rabbit anti-human MMP-8 was characterized  and kindly donated by Dr Jürgen
Michaelis, Department of Pathology, Christchurch Medical School, New Zealand (Michaelis
et al., 1990). The polyclonal rabbit anti-human MMP-1 was characterized and kindly
donated by Dr. Henning Birkedal-Hansen, Department of Oral Biology, School of Dentist-
ry, University of Alabama at Birmingham, AL, USA. The immunization procedure for
preparation of the polyclonal rabbit anti-human MMP-13 was carried out as described
elsewhere (Freije et al.,1994). The saliva samples were analyzed using Western blotting
according to Towbin et al. (1979) and Burnette (1981), with slight modifications. Briefly,
the saliva samples were mixed with Laemmli’s buffer and boiled for 5 minutes before
application to 8–10 % polyacrylamide gels. Proteins separated in the gels by electrophore-
sis were electrophoretically transferred to nitrocellulose membrane (Bio-Rad Laborato-
ries). The nonspecific binding sites on the membranes were blocked with 3 % gelatin in
10 mM Tris-HCl, pH 8.0, 0.05 % Triton X-100, 22 mM NaCl (TTBS). The membranes
were incubated in the primary antibodies (1:500–1:750 dilution in TTBS) overnight and
then with secondary antibodies for one hour. The secondary antibody was alkaline phos-
phatase conjugated goat anti-rabbit IgG. The proteins were visualized with nitro blue tetra-
zolium and 5-bromo-4-chloro-3 indolyl phosphate solution. All antibody incubations were
performed at +20 °C and the membranes were washed 4 × 15 minutes in TTBS between
each step.
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5.2.8. Isolation and culture of human monocyte/macrophages (V)

Human mononuclear cells were isolated from buffy coat cells from healthy volunteers
over Ficoll-Paque (Pharmacia Biotech, Uppsala, Sweden) at 700 g for 20 minutes at room
temperature. The mixed mononuclear cell band was removed by aspiration and the cells
were washed with Ca2+/Mg2+ free 0.1 M phosphate buffered 150 mM saline, pH 7.4
(PBS), and centrifuged at 400 g for 5 minutes for 3 times. The mononuclear cells were
resuspended to 50 ml serum-free macrophage medium (SFM, GIBCO) with 1 % penicil-
lin/ streptomycin and seeded at 4–5 × 106 cells per well in 24-well plates. Monocyte/
macrophages were allowed to adhere for 1 h at +37 °C in a 5 % CO

2
 incubator. Nonadher-

ent cells were washed away with PBS. Fresh medium was added and the monocyte/
macrophages were treated for 20–24 hours with clodronate (3,10,30,100,300 and 1000
µM) (Leiras Pharmaceutical Co., Tampere, Finland), pamidronate (1,3,10,30,100 and 300
µM) (Novartis Pharma AG, Basel, Switzerland) or vehicle. After incubation the cells were
washed free of drugs and SFM supplemented with 10 mg/ml lipopolysaccharide (LPS)
(E.Coli, serotype 0127:B8, Sigma) was added to the wells. The cells were incubated for
an additional 24 hours and the cell supernatants were collected and stored at –80 °C until
quantified by ELISA. For mRNA measurements larger wells and higher cell numbers (10-
15 × 106 cells/well) were used. The drugs were not washed away and the cells were
harvested after a 4 hour LPS-induction.

Cell viability was evaluated with trypan blue dye exclusion test  (Phillips,1973) from sam-
ples subjected to 20 hour exposure to BPs followed by a subsequent LPS-induction for an
additional 24 hours.

5.2.9. MMP-9 ELISA (V)

Microtiter plates (Flow Laboratories, Irvine, Scotland) were coated with 100 µl of 5 µg/
ml human MMP-9 specific mouse monoclonal antibody (TNO-S22.2) (Hanemaaijer et al.,
1998) in PBS overnight at 4 °C. After three washes in PBS containing 0.05% (v/v) Tween
20 (PBS-T), 100 µl of purified MMP-9 (Hanemaaijer et al., 1998) or cell supernatant was
added. After overnight incubation at 4 °C, the plates were washed and incubated for 1
hour at 37 °C with 100 µl of biotin-labeled anti-MMP-9 polyclonal antibody (TNO-B21)
(Hanemaaijer et al., 1998) diluted in PBS-T/EDTA containing 0.1% (w/v) casein (PBS-T/
EDTA/C) (0.8 µg/ml). After washing, bound polyclonal antibody was assessed by incuba-
tion with 100 µl of avidin/HRP (Pierce, Rockford, Ill, USA) at 1:10.000 in PBS-T/EDTA/
C. Non-bound conjugate was washed away after 1 hour at 37 °C, and the chromogen
3,3’5,5’-tetramethyl benzidine together with H

2
O

2  
was added. The reaction was stopped

after 20 minutes with 2M H
2
SO

4
, and the absorption was measured at 450 nm in a Titertek

Multiskan spectrophotometer (Flow Laboratories).

5.2.10. Quantitative reverse transcriptase-polymerase chain reaction
(RT-PCR) (V)

Total RNA was isolated by using TRIzol reagent (Gibco). mRNA was isolated from total
RNA using magnetic (dT)

25
-polystyrene beads (Dynal, Oslo, Norway). 100 ng mRNA

was used to prepare primary cDNA using (dT)
12–18

 primers and SuperScript enzyme,
followed by RNase H treatment (GibcoBRL). Quantitative PCR was run on 10 ng of first
strand cDNA using 0.5 mM primers in LightCyclerTM SYBR Green I PCR mix by LightCy-
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clerTM PCR machine (Roche Molecular Biochemicals, Mannheim, Germany). The identity
of the product was verified by a melting curve analysis. Serial dilutions of cloned human
MMP-9 PCR fragment in plasmid DNA were used to determine the copy number of the
amplicon per 1000 ß-actin mRNA copies. Each individual sample was amplified at least
two times.

5.2.11. Electrophoretic mobility shift assay (EMSA) (V)

Human monocytes were plated to 6-well plates (10 × 106 cells/well) and treated with 30
µM clodronate or pamidronate for 20 hours, whereafter 10 µg/ml of LPS was added
without removing the drugs. The cells were then incubated for an additional 4 hours. After
the drug and LPS treatment the cells were washed with PBS and scraped to 1 ml PBS.
The cell pellets were frozen and stored at –70 °C for analysis. Nuclear protein isolation
and EMSA assay were performed as described earlier in detail (Helenius et al., 1996).
Briefly, nuclear proteins were isolated according to the modified protocol of Dignam et al.
(1983). Protein-DNA binding assays were performed with 5 µg of nuclear protein. Dou-
ble-stranded consensus and mutated oligonucleotides for NF-κB binding site were ob-
tained from Promega and labeled with T4 polynucleotide kinase (Promega). Unspecific
binding was blocked by the use of 2 µg of poly(dI-dC):poly(dI-dC) (Roche Applied Sci-
ence) in 20 µl assay volume. After binding bound and unbound probes were separated in
a native 4 % polyacrylamide gel. Signals were visualized with Storm 860 PhosphorImager
(Molecular Dynamics) and pixel volumes of specific bands were calculated with Image-
QuaNT 4.2a software (Molecular Dynamics).

5.3. Statistical analysis

In study I changes in continuous variables over time within and between the groups were
analyzed by analysis of variance (ANOVA) for repeated measurements (SAS® 608, SAS
Institute). Baseline comparisons for continuous variables were done by one-way analysis
of variance. If assumptions of parametric methods were not met, the Kruskal-Wallis and
Mantel-Haenszel tests were used.

In studies II–V statistical analyses were done using SPSS – 9.0 software. In study II
comparisons between treatment groups were done by Student’s t-test. In studies III and
IV changes in response variables from baseline to 24 months were compared between
treatment groups using ANOVA for repeated measurements, or Mann-Whitney U-test,
where appropriate. Categorical data were compared by chi-square test. The relation be-
tween variables was measured by estimating the Pearson product moment correlation
coefficient or by using Spearman’s rank correlation coefficient (III, IV). In study V Mann-
Whitney U-test was used for statistical analyses. The data was presented as mean ± SD if
not otherwise stated. The significance level was set at P < 0.05.
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6. RESULTS AND DISCUSSION

6.1. Effect of a single infusion of clodronate on clinical disease
activity and bone biochemical markers (I)

All 26 enrolled participants completed the study. At baseline there were no significant
group differences in disease variables (Table 2) between the active and placebo groups.
Single infusion of clodronate (600 mg) had no effect, during the three week observation
period, on indices of disease activity, including number of swollen joints, number of ten-
der joints, patient’s self -estimation of her condition, CRP and ESR (Table 2). The results
suggest that clodronate does not have short-term anti-inflammatory effects in RA. One
possible explanation to this negative result could be the poor lipophilicity of the drug. As a
consequence, the concentration reached in the synovium is not sufficiently high to affect
lining macrophages (Barrera et al., 2000a). The negative result may also be related to the
type of administration, i.e. only single infusion was given to the patients.

Table 2.  Efficacy variables (mean ± SD) in the placebo-treated (n =12) and clodronate-
treated (n = 14)  rheumatoid arthritis patients

Study Week

Variable Week 0 Week 1 Week 2 Week 3

Swollen joint count
    Placebo 7.8 ± 3.0 7.9 ± 4.1 7.7 ± 5.0* 8.5 ± 6.6
    Clodronate 10.7 ± 5.0 10.6 ± 4.2 10.8 ± 4.4 10.1 ± 4.6

Tender joint count
    Placebo 14.0 ± 10.2 12.8 ± 8.8 12.0 ± 10.4* 12.8 ± 10.9
    Clodronate 13.6 ± 8.9 13.6 ± 9.0 13.8 ± 9.5 13.1 ± 11.0

Patients self-estimation
of condition (VAS)
    Placebo 40.7 ± 20.9 49.8 ± 24.8 38.9 ± 23.9* 48.9 ± 30.8
    Clodronate 37.5 ± 17.6 41.6 ± 19.8 43.2 ± 19.4 43.7 ± 20.8

CRP (mg/l)
    Placebo 41.8 ± 28.5 46.3 ± 32.5 43.8 ± 35.2* 47.6 ± 39.2
    Clodronate 41.6 ± 36.9 45.1 ± 41.5 50.9 ± 41.7 49.5 ± 39.7

ESR (mm/h)
    Placebo 36.9 ± 18.7 37.8 ± 19.5 36.5 ± 16.9* 40.6 ± 23.6
    Clodronate 44.6 ± 25.5 48.4 ± 25.6 53.9 ± 29.5 45.8 ± 26.5

* Usable data were available for 11 patients
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Clodronate treatment induced a statistically significant, jet only marginal decline in PICP
and osteocalcin (Table 3). This modest effect, despite the high intravenous dose adminis-
tered, probably relates to the choice of bone biochemical markers: due to the strong
coupling of bone formation and degradation PICP and osteocalcin are expected to react to
diminished bone resorption. However, if the indices of bone formation are used as surro-
gate markers, the drug effect cannot be detected in full only three weeks after infusion
(Delmas, 1990). Assays to measure serum NTx and CTx were not available at the time of
the study. Measurement of markers of collagen degradation including ICTP would prob-
ably have added to the information from this trial.

Table 3. Markers of bone metabolism in the placebo-treated (n =12) and clodronate-
treated (n = 14) rheumatoid arthritis patients. Median (interquartile range)

                                 Study week

Variable Week 0  Week 1 Week 2 Week 3

S-osteolcalcin (µg/l)
    Placebo 3.8 (3.4–4.8) 3.7 (3.2–4.9) 4.0 (2.8–5.1)* 3.8 (2.9–4.6)
    Clodronate 3.8 (3.0–4.7) 3.5 (2.7–4.5) 3.4 (2.9–4.6) 3.5 (2.6–4.2)a, b

S-PICP (µg/l)
    Placebo 112.5 (90.0–125.0)   98.0 (90.5–124.5) 115.5 (101.0–145.0)* 118.5 (100.0–164.5)
    Clodronate 107.5 (81.0–138.0) 108.0 (87.0–125.0) 104.5 (92.0–123.0) 102.5 (85.5–127.5)a

* Usable data were available for 11 patients
a p < 0.05 compared to placebo
b p < 0.05 compared to baseline

6.2. In vivo inhibition of human neutrophil collagenase activity
(MMP-8) by clodronate (II)

Quantitative  SDS-PAGE electrophoresis scanning of the analyzed saliva of the patients
showed a decline of collagenase activity in clodronate treated patients when compared to
controls. The between group difference was statistically significant at three weeks. How-
ever, the collagenase activity was slightly lower in the clodronate group already at baseline
(Table 4). Concomitant Western blots using polyclonal antibodies specific to MMP-8,
MMP-1, and MMP-13 revealed that MMP-8 (75 kDa) was the major collagenase present

Table 4.  Salivary collagenase activity  in treatment and placebo groups during three
weeks

Mean (SEM) collagenase activity (pmol/h)

baseline 5 hours day 07 day 14 day 21

Treatment group 271.0 (48.7) 223.7 (24.3) 265.7 (39.5) 208.1 (24.0) 195.0 (14.7)

Placebo group 309.7 (42.0) 301.5 (35.5) 292.0 (68.0) 258.0 (38.3) 267.2 (29.7)

P-value* 0.57 0.08 0.74 0.27 0.04

* Two-sample t-test
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in saliva of RA patients (Figure 4, one representative blot of five samples). The mean
(±SEM) clodronate concentration in saliva was 0.42 (± 0.11) µM after termination of the
drug infusion and 0.13 (± 0.03) µM at three weeks.

As clodronate concentrations measured in saliva were low, not exceeding the nanomolar
range, the direct enzyme inhibition by the drug is not a plausible explanation for the de-
creased collagenolytic activity (Teronen et al., 1999). The life cycle of PMNs consists of
maturation in the bone marrow (approximately 7–14 days) followed  by the transit in
blood for hours before migration into tissues, where their life span continues for 1–2 days
(Bainton, 1975). Neutrophil collagenase MMP-8 is synthesized during the myelocyte stage
of neutrophil development to be stored in the secondary or specific granules, and no de
novo synthesis takes place during the later stages of maturation. Thus, downregulation of
MMP-8 synthesis at myelocyte stage within bone marrow could offer an explanation for

Figure 4. Western blot of saliva from rheumatoid arthritis patients. First lane contains molecular
weight markers. Second lane demonstrates a lane blotted for MMP-8 (collagenase-2 or neu-
trophil collagenase) with an apparent molecular weight of 75 kD. Two minor bands with apparent
molecular weights of 72 kD and 70 kD are also seen. The third lane demonstrates MMP-13
(collagenase-3; 60 kD for the major band) and the fourth lane MMP-1 (collagenase-1 or fibrob-
last collagenase; 57 kD for the major band). In general, MMP-8 gave strongest band of the three
collagenases blotted, which suggests that this type of collagenase is the major collagenase in
saliva from rheumatoid arthritis patients.
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the decreased salivary collagenase activity measured three weeks after clodronate infu-
sion. This novel mode of action of clodronate-mediated collagenase inhibition has to be
considered hypothetical, however, and needs to be assessed further.

Both MMP-8 and -9 are found in high concentrations in the synovial fluid of RA patients
(Tchetverikov et al., 2004; Yoshihara et al., 2000). The major cellular source of MMP-8
is PMN (Chatman et al., 1990) whereas in rheumatoid joints MMP-9 has been immunolo-
calized to various cells including macrophages, chondrocytes and PMNs (Okada, 2001).
However, the strong direct correlation between MMP-8 and MMP-9 in RA synovial fluid
suggests that both MMPs are derived mainly from PMNs infiltrated into the synovial
cavity (Yoshihara et al., 2000). Furthermore, collagen degradation product hydroxypro-
line has been found to correlate with MMP-8 and MMP-9 in RA synovial fluid, implying
that these proteases are likely to play part in the degradation of collagenous network in the
joints (Tchetverikov et al., 2004). Taken together, these findings suggest that inhibition of
collagenase activity in saliva by clodronate may have relevance when considering its use
as an adjunctive therapy in the treatment of  RA.

6.3. Cyclical intermittent etidronate therapy in RA (III, IV)

6.3.1.General

All 40 enrolled participants completed the study except for one patient in the etidronate
group who died of pneumonia during the second year of the study and was not included
in the analyses except for the baseline correlation assessments. Baseline serum sample for
bone biochemistry was not obtained from one patient in the etidronate group and she was
excluded from the evaluations where these values were needed. Etidronate treatment was
well tolerated. One patient stopped taking etidronate during the first cycle because of
gastrointestinal complaints. She started taking etidronate again at the beginning of the
second year and continued the medication to the end of the study. There were no statisti-
cally significant group differences among baseline patient characteristics (Table 5).
DMARDs used by patients during the trial included hydroxychloroquine, sulfasalazine,
methotrexate, gold, cyclosporin A, azathioprine, podophyllotoxin and leflunomide. At baseline
16 (84 %) patients in the etidronate group and 18 patients (90 %) in the control group
received at least one DMARD. A combination of two or more DMARDs was received in
the etidronate group by 8 (42 %) patients and in the control group by 10 (50 %) patients.
At the end of the study the corresponding figures in the etidronate group were 18 (95 %)
and 10 (55 %), and in the control group: 17 (85 %) and 11 (55 %). The mean prednisone
doses at baseline and at 24 months were 3.3 mg/day and 2.4 mg/day, respectively, in the
etidronate group and 2.8 mg/day and 3.0 mg/day, respectively, in the control group. The
where no statistically significant differences between the groups in prednisone usage.

6.3.2. Effect of therapy on radiographic progression and clinical disease
activity

In both treatment groups, there was a significant increase in all 3 mean radiologic scores.
This progression was slightly less extensive in the etidronate treated patients, but the
difference between the groups was not significant There were no differences among the
treatment groups in the change between baseline and 24 months in variables of disease
activity (Table 6).
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Table 5. Patient characteristics at baseline (mean ± SEM if not otherwise stated).

Etidronate group Control group
(n = 19) (n = 20)

Age, years 48.5 ± 2.4 52.6 ± 3.5
(range)  (22–66) (26–78)
Males/females 2/17 2/18
Menopausal status (yes/no) 12/5 11/7
HRT/postmenopausal women 6/12 6/11
Disease duration, months 34.9 ± 3.5 36.2 ± 3.1
DAS28 4.0 ± 0.3 3.6 ± 0.3
CRP (mg/l) 26.1 ± 9.0 25.1 ± 4.5
ESR (mm/h) 29.2 ± 5.9 18.8 ± 3.9
Total radiographic score 18.0 ± 5.2 16.5 ± 3.3
Glucocorticoid therapy (%) 9 (47) 12 (60)

HRT = hormone replacement therapy; DAS28 = modified disease activity score;
CRP = C-reactive protein; ESR = erythrocyte sedimentation rate.

Table 6.  Radiographic scores and variables of disease activity in the etidronate group
(n=19) and the control group (n=20) during a 2 year study. Mean ± SEM.

Variable Baseline 24 months P

Total radiographic score 0.61
   Etidronate 18.0 ± 5.2 23.7 ± 6.4
   Control 16.5 ± 3.3 23.4 ± 4.4
Erosion score 0.64
   Etidronate 14.8 ± 3.7 18.7 ± 4.3
   Control 12.9 ± 2.3 17.5 ± 3.1
JSN-score† 0.79
   Etidronate 3.2 ± 1.7 4.9 ± 2.3
   Control 3.7 ± 1.5 5.9 ± 1.8
DAS 28 0.52
   Etidronate 4.0 ± 0.3 3.3 ± 0.3
   Control 3.6 ± 0.3 3.2 ± 0.2
CRP† ( mg/l) 0.57
   Etidronate 26.1 ± 9.0 7.5 ± 1.8
   Control 25.1 ± 4.5 9.0 ± 1.4
ESR† (mm/h) 0.67
   Etidronate 29.2 ± 5.9 21.6 ± 3.5
   Control 18.8 ± 3.9 17.1 ± 3.5

† =  Mann-Whitney test was applied for the analysis; JSN-score = joint space narrowing score;
CRP = C-reactive protein; ESR = erythrocyte sedimentation rate.
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As joint counts and serum acute-phase response measurements were performed only
at baseline and at 24 months, information concerning the clinical disease activity between
these time points is limited. However, the significant decline in CRP suggests that disease
activity diminished over the 2-year course of the study in both treatment groups
(Table 6).

The dissociation between clinical synovitis, acute-phase responses and radiologic pro-
gression, suggested in the present as well as previous clinical studies (Paimela et al.,
1994; Mulherin et al., 1996), is evident also in the more recent trials of TNF inhibitors
which show that TNF inhibitors have a positive influence on radiographic progression
even in those patients that do not have improvement of joint counts or CRP (Lipsky et al.,
2000; St Clair et al., 2004; Klareskog et al., 2004).

In the present study cyclical intermittent etidronate failed to retard the progression of
radiographic damage in RA patients. It may well be that although the cyclic regimen is able
to decrease the accelerated physiological bone remodeling associated with postmenopau-
sal osteoporosis, continuous therapy is needed to halt the pathologic bone remodeling
leading to local bone erosions in RA. Our group has now started a trial with continuous
oral clodronate to assess this question.

6.3.3. Response of bone biochemical markers to therapy and relation to
radiographic progression (III, IV)

6.3.3.1. Markers of type I collagen metabolism

The levels of PINP and ICTP declined in the etidronate group, but increased in the control
group (Table 7). The differences between the groups in serum PINP and in serum ICTP
level changes were significant. Also serum NTx slightly decreased in the etidronate group
and slightly increased in the control group. The difference between the groups in serum
NTx change was not significant.

Correlation coefficients between the changes observed in the bone collagen markers from
baseline to 24 months and changes in radiologic scores are shown in Table 8. The change
in serum NTx correlated significantly with the change in the total radiographic score and
with the change in the erosion score, whereas the radiological progression was not related
to changes in the other bone collagen markers. Changes in the levels of NTx, PINP and
ICTP correlated significantly with each other. The changes in the bone collagen markers
did not correlate with the changes in any of the disease activity measures (ESR, CRP and
DAS28). In the control group, but not in the etidronate group, the change in serum NTx
correlated with the change in the erosion score (r = 0.48, P = 0.034).

At baseline no significant correlations were found in the total study population (n = 39)
between the markers of bone collagen metabolism and baseline disease characteristics or
with the future radiographic progression of the joint damage. At study termination serum
NTx, but not the other markers of  bone collagen metabolism, correlated with the erosion
score (r

  
= 0.42, P = 0.008) and with the total radiologic score (r = 0.38, P = 0.018) in the

total study population (n =39). In the control group (n=20) NTx correlated with erosion
score (r = 0.63, P = 0.003) and with total radiologic score (r = 0.56, P = 0.01).
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NTx reflects directly osteoclastic cathepsin K-dependent matrix degradation but it can not
be generated by MMPs (Atley et al., 2000; Sassi et al., 2000). Thus, the significant
correlation between change in serum NTx and increase in erosion score provides bio-
chemical evidence for the concept that osteoclast is the principal cell type and cathepsin
K the main protease responsible for the focal bone resorption in inflammatory arthritis.
Similar conclusions were made from a recent cross-sectional study of RA, in which
serum cathepsin K levels significantly correlated with radiological destruction but not with
serum CRP levels (Skoumal et al., 2005). In the present study the lack of significant
correlation between NTx and cartilage damage (joint space narrowing) was perhaps an-
ticipated since in cartilage collagen type II predominates and cartilage collagen degrada-
tion is thought to be mediated mainly by MMPs (Okada, 2001; Tchetverikov et al., 2004).

The significant decrease in serum PINP in the etidronate treated patients is in line with
previous observations which indicate that changes in PINP significantly predict efficacy
of antiresorptive therapy in postmenopausal women (Saarto et al., 1998; Reginster et al.,
2004). The reason for the marked increase in serum PINP in the control group is unclear,
but may be related both to the small sample size and to the fact that a great proportion of
patients in this study were postmenopausal women and, thus, in risk of loosing bone
rapidly.

Although PINP was not related with the local bone resorption in joints, the strong corre-
lation between a marker of bone formation (PINP) and markers of bone collagen degrada-
tion (ICTP, NTx) indicates that coupling of general bone resorption and bone formation is
conserved in patients with rheumatoid arthritis.

Table 7. Biochemical serum indices of bone metabolism at baseline and changes at 24
months in the etidronate group (n=18) and the control group (n=20).

Variable Baseline Change at 24 months P

PINP (µg/L) 0.001
   Etidronate 36.3 ±  4.5 –9.0 ±  3.2
   Control 35.1 ±  3.4 15.4 ±  6.1

ICTP (µg/L) 0.04
   Etidronate 3.3 ±  0.4 –0.5 ±  0.2
   Control 3.3 ±  0.4 0.6 ±  0.6

NTx (nmol BCE/l) 0.18
   Etidronate 15.2 ±  1.0 –0.7 ±  0.6
   Control 15.9 ±  1.4 1.5 ±  1.4

OPG (pg/ml) 0.91
   Etidronate 74.3 ±  5.3 3.7 ±  3.7
   Control 75.9 ±  4.6 2.3 ±  3.1

PINP = N-propeptide of type I procollagen (reference range men: 20–76 µg/L; women: 19–84 µg/L);
ICTP = crosslinked C-telopeptide of type I collagen (reference range: 1.6–4.6 µg/ml); OPG =
osteoprotegerin. NTx = N-telopeptides of type I collagen (reference range men: 8.1 – 24.8 nmol
BCE/l; women: 7.7–19.3 nmol BCE/l); BCE = bone collagen equivalent.
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6.3.3.2. OPG

At baseline and at study termination (Figure 5) serum OPG correlated significantly with
age (r = 0.45, P = 0.003 and r = 0.56, P = 0.0002, respectively), but not with markers of
type I collagen metabolism, indices of disease activity or radiological scores. Etidronate
had no effect on circulating OPG levels (Table 7). The change in serum OPG was not
related to changes in markers of type I collagen metabolism or progression of radiologic
joint damage during the two year study (Table 8). At baseline serum OPG (mean ± SEM)
was higher in patients receiving 5–10 mg/day prednisone (82.8 ± 4.0 pg/ml, n = 16)
compared to those receiving < 5mg/day or with no prednisone (69.7 ± 4.7 pg/ml, n = 23)
(P = 0.05). At baseline serum OPG correlated positively with prednisone dose (Spear-
man’s r = 0.36, P = 0.02).

The results suggest that serum OPG measurement, perhaps because of the complexity of
the regulation of the OPG, may be difficult to utilize in the evaluation of antiresorptive
therapy. However, the study had some potential limitations. The number of patients was
small and the study did not include serial BMD measurements. Determination of RANKL
serum levels might have added to the information from this trial. The RANKL-to-OPG
ratio might show greater utility for the assessment of the efficacy of antiresorptive thera-
py than serum OPG alone.
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Figure 5. Correlation between serum levels of OPG and age in 39 RA patients.
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Age was the only parameter that was significantly related to serum OPG in our cohort of
RA patients (Figure 5). Age-related increase of OPG, found in most previous studies,
possibly represents a compensatory mechanism against age-dependent bone loss. De-
creased clearance of OPG with age, however, has been proposed as an alternative expla-
nation to this finding (Khosla et al., 2002).

Glucocorticoids inhibit OPG production in human osteoblastic lineage cells (Hofbauer et
al.,1999). Sasaki et al. (2002) reported that high-dose systemic glucocorticoid therapy
with the mean initial dose of  43.8 mg/day led to decreased OPG serum levels. OPG levels
remained suppressed after six months of therapy when the mean daily prednisone dose
had been tapered to 16.5 mg. These findings are in contrast to our results with lower dose
prednisone and the observation that serum OPG is elevated in patients with Cushing’s
syndrome (Ueland et al., 2001). Possibly higher prednisone doses than 10 mg/day are
needed to inhibit OPG production in vivo. At lower doses other mechanisms lead to a
negative balance between bone formation and resorption (Dempster, 1989) and the elevat-
ed OPG levels may represent an insufficient counter-regulatory mechanism to prevent
bone loss.

Table 8. Correlation matrix showing relationships among changes in levels of markers of
bone  metabolism and  radiologic scores during a 2 year study in total study population
(n = 38). Pearson product moment correlation coefficient (r) was calculated for normally
distributed parameters and Spearmans’s rank order correlation (r

s
) for non-normally dis-

tributed data (ICTP, JSN).

ICTP PINP NTx OPG

Total  SHS r
s 
 = 0.25 r = 0.22 r = 0.35 r = 0.02

P = 0.13 P = 0.19 P = 0.03 P = 0.90

Erosion score r
s 
 = 0.17 r = 0.25 r = 0.41 r = 0.03

P = 0.31 P = 0.13 P = 0.01 P = 0.85

JSN-score r
s
 =  0.27 r

s
 = 0.23 r

s
 = 0.30 r

s
 = 0.01

P = 0.11 P = 0.17 P = 0.066 P = 0.93

ICTP — r
s
 = 0.48 r

s
 = 0.56 r

s
 = 0.004

P =  0.002 P = 0.0002 P = 0.98

PINP — r = 0.67 r = - 0.08
P < 0.0001 P = 0.64

NTx — r = - 0.06
P = 0.72

See Table 7 for abbreviations.
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6.4. Regulation of MMP-9 in activated human monocyte/
macrophages by BPs (V)

MMP-9 concentrations in unstimulated (negative control) and LPS-stimulated monocyte
culture supernatants (n=4) were at 24 hours 13.6 ± 10.2 ng/ml and 51.3 ± 43.7 ng/ml,
respectively. Pretreatment for 20–24 hours with clodronate induced an inhibition of the
LPS-stimulated MMP-9 protein levels in a concentration-dependent manner (Figure 6).
This effect was significant at 30–1000 µM concentrations. High concentrations (100 and
300 µM) of pamidronate also inhibited cellular secretion of MMP-9. In contrast, low
concentrations of pamidronate enhanced MMP-9 secretion (Figure 6). The effect of the
drugs on MMP-9 secretion from cells not stimulted with LPS was studied in one experi-
ment that was not repeated. Pamidronate at 3–100 µM, but not clodronate, induced a
many-fold increase on MMP-9 secretion. This effect was strongest at a concentration of
30 µM of pamidronate.

MMP-9 mRNA levels were relatively stable in the presence of clodronate. In contrast,
pamidronate at 30 mM to 300 mM caused a 5- to10-fold increase in MMP-9 mRNA
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Figure 6. The effect of pamidronate (black columns) and clodronate (white columns) on MMP-
9 secretion from LPS-stimulated adherent human monocytes. 1–1.5 × 106 cells were preincubated
with drugs or vehicle. After an overnight incubation, the cells were washed free of drugs and,
thereafter, incubated for additional 24 h with LPS (10 µg/ml) in serum-free macrophage medium.
The LPS-stimulated cells not pretreated with bisphosphonates (control) produced 51.3 ± 43.7
ng/ml MMP-9. Bars represent the mean ± SD from four independent experiments. *, P < 0.05
versus control.
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(Figure 7). The mRNA increase was significant in pamidronate treated cells (n = 12)
compared to clodronate (n = 12) (422 ± 443 % vs. 94 ± 46 %, P < 0.001). LPS did not
increase MMP-9 mRNA at 4 hours although it caused a significant increase in DNA bind-
ing of NF-kB in the EMSA-assay ( Figure 8). On the other hand pamidronate, at concen-
trations that caused a many-fold increase in MMP-9 mRNA, did not increase the amount
of  NF-kB available for DNA binding (Figure 8).

Figure 7. The effect of  pamidro-
nate (triangles) and clodronate
(squares) on MMP-9 mRNA ex-
pression in adherent human
monocytes. 2–3 × 106 cells were
preincubated with drugs or vehi-
cle for 20–24 h and, thereafter, for
4 h with LPS (10 µg/ml) in serum-
free macrophage medium. Data are
mean ± SEM from two independ-
ent experiments performed in du-
plicates. The average MMP-9
mRNA expression in LPS-stimu-
lated cells not pretreated with bi-
sphosphonates (control) was 151
copies per 1000 ß-actin mRNA
copies.
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Figure 8.  The effect of clodronate and
pamidronate on the DNA binding activi-
ty of NF-κB in LPS-stimulated adherent
human monocytes. 10 × 106 cells were
preincubated with drugs or vehicle for
20–24 h and, thereafter, for 4 h with LPS
(10 mg/ml) in serum-free macrophage
medium. Lanes 1 and 2, untreated control
cells; lanes 3 and 4, LPS-induced cells
(not pretreated with BPs); lanes 5 and 6,
clodronate 30 µM; lanes 7 and 8, pamidr-
onate 30 µM. The same results were ob-
tained from two parallel studies. The in-
tensity of  the bands was determined with
Storm 860 PhosphorImager and values
show the pixel volumes (× 103) of specific
bands calculated with ImageQuaNT 4.2a
software.
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Trypan blue dye exclusion test disclosed that the viability of the  monocytes was not
reduced by the drugs except that the highest concentration of clodronate (1000 mM) was
somewhat toxic with the cell viability being approximately 70% of that of the controls.

BPs may directly inhibit the proteolytic acitivty of MMPs through chelation of divalent
cations (Teronen et al., 1999). In the present work the drugs were washed away prior to
the MMP induction. Furthermore, the mono- and polyclonal antibodies used in ELISA
recognize both active and latent MMP-9 as well as MMP-9 complexed to TIMPs (Hanemaa-
ijer et al., 1999). Thus, the observed decline in MMP-9 concentration in culture superna-
tants was probably due to diminished monocyte-mediated MMP-9 production.

Recently alendronate at 10–100 µM was shown to up-regulate MMP-13 in osteoblasts by
prolonging the half-lifes of collagenase transcripts (Varghese and Canalis, 2000). Accord-
ingly, increased mRNA stability could explain the elevated MMP-9 mRNA levels in pamid-
ronate treated monocyte/macrophages. Since MMP-9 is a NF-κB regulated gene (Farina,
1999), the finding that pamidronate did not increase the NF-κB binding of DNA is in
accordance with the suggestion that posttranscriptional mechanisms lead to an increase in
MMP-9 mRNA in pamidronate treated cells. Despite elevated message levels pamidronate,
however, did reduce MMP-9 secretion at 100 to 300 µM. It is suggested that upon expo-
sure to N-BP, two simultaneous and antagonizing events take place in monocyte/macro-
phages. The drug elevates MMP message levels, probably by increasing MMP mRNA
stability. Secondly, it inhibits protein prenylation (Russel and Rogers,1999) and thereby a
variety of cellular functions leading to diminished enzyme protein secretion at higher drug
concentrations.

In the present study LPS had not increased MMP-9 mRNA at 4 hours despite a significant
increase in the DNA binding of NF-κB. It could be that MMP-9 mRNA increase does not
take place so early after LPS-stimulation and that it also seems to require endogenous
TNF-α (Watari et al., 2000). Similarly, chemokine-induced MMP-9 production in periph-
eral blood monocytes occurs at 6–8 hours after stimulation, which is a late response
compared with the stimulation of migration. This late response may be because leuko-
cytes must first migrate through the endothelial cell layer. Only after migration into the
sub-endothelial layer do they need MMP to degrade BM proteins (Robinson et al., 2002).
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7. GENERAL DISCUSSION

7.1. Anti-inflammatory effects of BPs

Evidence accumulated in recent years strongly suggests that synovial macrophages play a
major role in the initiation and maintenance of arthritis (Burmester, 1997). Macrophages
are the major producers of TNF-α and other pro-inflammatory mediators in RA and the
success of recent clinical trials with anti-TNF treatment (Lipsky et al., 2000; Klareskog et
al., 2004) further suggests that synovial macrophages are important targets for therapy of
RA. Previously pamidronate and clodronate have been demonstrated to have inhibitory
effects in vitro on the secretion of proinflammatory cytokines from activated mouse
macrophages (Pennanen et al., 1995). Free pamidronate was approximately ten times
more potent than clodronate in inhibiting TNF-α release but when encapsulated in nega-
tively charged unilamellar liposomes the drugs were almost equipotent. Pamidronate is
less water soluble than clodronate which property may contribute to its better diffusion
into cells. Low lipid solubility could thus explain why intravenous clodronate, unlike pa-
midronate in the study by Eggelmeijer et al. (1994), did not suppress the disease activity
in patients with RA.

Encapsulation to liposomes (van Lent et al., 1998) or incorporation into albumin micro-
spheres (D’Souza et al., 1999) have been proposed as effective means to enhance the
potency of clodronate as a macrophage suppressor in chronic inflammatory diseases.
Recently the first human study on clodronate liposomes was published (Barrera et al.,
2000a). Ten RA patients scheduled for knee joint replacement received a single intra-
articular dose of clodronate (mean dose 160 mg) encapsulated in liposomes. The proce-
dure was well tolerated and resulted in a selective depletion of lining macrophages and a
decline in the expression of adhesion molecules in the synovial lining layer. The down-
regulation of adhesion molecules probably reflected a decrease in the local production of
pro-inflammatory cytokines as judged by similar results obtained with TNF blocking treat-
ment in patients with RA (Tak et al., 1996). Intra-articular injection of free clodronate did
not yield any changes in histological scores, which further underlines the fact that when
administered as a free drug clodronate has little effect on other than bone tissue (Barrera
et al., 2000b).

7.2. Anticollagenolytic effects of BPs

Our finding that clodronate, and pamidronate at higher concentrations, inhibit cellular
secretion of MMP-9 by human monocytes is in contrast to the report by Nakaya et al.
(2000) that tilundronate does not affect  MMP-1 and MMP-3 production by human peri-
odontal ligament cells. BPs have been shown to have antiapoptotic effects on cells of the
mesenchymal lineage, while promoting apoptosis of macrophages and osteoclasts (Plot-
kin et al., 1999; Frith et al., 2001). The different effects on MMP secretion by BPs in the
two experiments could thus be related to the contrasting effects of BPs on these two
different cell types. Naturally, MMP-9 compared to MMP-1 and MMP-3 may be differ-
ently regulated at the transcriptional and posttranscriptional levels.
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The biphasic effect of pamidronate on MMP-9 secretion, demonstrated in this study,
could explain some previous observations. Accordingly, low concentrations of N-BPs
were shown paradoxically to enhance osteoclastic resoption in vitro (Sato et al., 1990;
van der Pluijm et al., 1991). In animal models of metastasis, administration of  N-BP was
occasionally followed by enhanced soft organ metastases despite simultaneous inhibition
of bone metastases (lower drug concentrations are reached in soft tissues compared to
bone) (Sasaki et al., 1995; Stearns and Wang, 1996; Cruz et al., 1998). This effect could
be related to N-BP induced MMP-9 expression, since MMP-9, produced by non-neoplas-
tic inflammatory cells in the tumor vicinity, plays an important role in tumor invasion and
metastasis (Nelson et al., 2000).

Clinical studies with broad-spectrum MMP inhibitors have demonstrated limited effect on
joint destruction, and a range of side effects, indicating the need for development of
selective inhibitors (Catterall and Cawston, 2003). Experimental evidence suggests an
opposite role for MMP-2 and MMP-9 in the development of inflammatory arthritis. As the
two enzymes have very similar specificities for matrix proteins, these opposite roles may
be caused by differences in their non-matrix substrates. Indeed, several tissue-derived
MMPs, MMP-2 in particular, cleave and inactivate MCP-3 (McQuibban et al., 2000) thus
acting as chemokine antagonists, dissipating proinflammatory activities. In addition, at the
sites of acute and chronic inflammation MMP-3 degrades active form of IL-1, leading to
its inactivation (Schönbeck et al., 1998). In contrast, MMPs expressed by bone marrow
derived leukocytes enhance the progression of RA (Itoh et al., 2002; van den Steen et al.,
2002). MMP-9, in particular, can be seen as a tuner and amplifier of immune functions
(Opdenakker et al., 2001), and as a target for inhibition in inflammatory arthritis.

MMP inhibition by BPs per se has not shown specificity for individual enzymes. However,
clodronate might, as suggested in this study, preferentially down regulate leukocyte-derived
MMPs in vivo. This specificity, which is anticipated because of the high uptake of the drug
in marrow bone, could be advantageous in the treatment of inflammatory arthritis.

7.3. Response of bone biochemical markers to therapy and relation
structural damage

7.3.1. Markers of type I collagen degradation

In contrast to our results, previous studies that have examined ICTP levels in RA, have
demonstrated a correlation  between ICTP levels and the radiologic damage scores (Haka-
la et al., 1993; Paimela et al.,1994, Kotaniemi et al., 1994). These studies also showed a
strong correlation between ICTP levels and CRP, ESR and joint swelling score, and the
patients had higher overall disease activity compared to our study. Thus, the suppressed
state of disease activity could explain the lack of correlation between ICTP and radio-
graphic scores in our RA patient cohort. However, the radiographic damage worsened
significantly during the follow-up, and this change was positively related to increase in
serum NTx.

The observation that radiologic progression may occur during persistent remission has led
to the hypothesis that synovitis and joint destruction are two different and independent
processes and that a general cartilage thinning is a response to persistent synovitis, where-
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as erosions are primarily caused by pannus (which may contribute little to joint swelling)
(Molenaar et al., 2004; Kirwan, 2004). All the above mentioned studies examining ICTP in
RA used a scoring system (Larsen method) that combines erosions and joint space loss
into a single overall score and that was in this respect dissimilar to the system we used.
Thus, the difference in the radiographic scoring systems could contribute to the divergent
outcomes.

Taken together, one can hypothesize that in RA ICTP is primarily a marker of  collagen
breakdown that is associated with active synovitis, may be extracellular in nature and
involves collagen type I degradation by MMPs (Risteli and Risteli, 1999). Changes in
NTx, on the other hand, reflect local bone loss that may proceed during minimal or absent
synovitis, and resembles cathepsin K-mediated osteoclastic bone resorption. Our results
suggest that serum NTx could serve as a marker for progression of erosions even during
periods of low disease activity.

7.3.2. OPG

In a study from Japan (Yano et al., 1999) conducted in 186 postmenopausal women,
OPG serum levels correlated positively with biochemical markers of bone turnover and
negatively with bone mineral density (BMD). Although these findings were not confirmed
by Szulc et al. (2001) in a cohort of 252 healthy men, a generally accepted hypothesis is
that OPG levels may increase with increases in bone turnover, possibly as a compensatory
mechanism (Khosla et al., 2002). Consequently, etidronate with its demonstrated efficacy
in the treatment of postmenopausal (Storm et al., 1990) as well as in steroid-induced
(Adachi et al.,1997) osteoporosis could have been expected to decrease serum OPG. In
contrast to this expectation, serum OPG slightly increased in the etidronate treated pa-
tients, despite the probable inhibition of bone resorption in this group as indirectly sug-
gested by a significant decline in serum PINP (Saarto et al., 1998). However, in vitro BPs
increase OPG expression in human osteoblasts (Viereck et al., 2002), and therefore, a
direct effect of etidronate on OPG production in bone tissue can not be excluded.

Recently Ziolkowska et al. (2002) reported normalization of elevated serum OPG levels in
RA patients after treatment with anti- TNF-α therapy, but, similar to our results, they did
not find any significant correlation between clinical disease activity (DAS28) and serum
OPG. Here we also describe a lack of correlation between serum OPG and radiographic
disease progression.

7.4. Inhibition of structural damage in RA by BPs

Thus far the largest study to evaluate the effect of BP treatment on structural damage in
RA examined 105 patients randomized to either 300 mg oral pamidronate or placebo for
three years (Eggelmeijer et al., 1996). Pamidronate significantly increased BMD of the
femoral neck, forearm and lumbar spine, but did not retard the progression of radiograph-
ic joint damage. There is now strong evidence available to support the concept that normal
osteclastic bone resoprtion is mainly cathepsin K dependent, whereas MMPs may become
important in clinical states involving enhanced pathological bone breakdown such as ar-
thritis (Garnero et al., 2003; Hakala et al., 1993). Thus, the finding that N-BPs increase
MMP expression (Varghese et al., 2000; present study) may, together with the inflamma-
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tory responses associated with N-BP treatment (Goldring and Gravallese, 2004), explain
why pamidronate did not prevent the progression of local bone erosions although it had
beneficial effect on systemic osteoporosis (Eggelmeijer et al., 1996).

It remains to be seen, whether the most potent N-BPs that exert strongest inhibitory
effects on osteoclast mediated bone resorption, might prevent structural joint damage,
even in instances they exacerbate clinical arthritis (Sims et al., 2004; Goldring and
Gravallese, 2004).
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8. CONCLUDING REMARKS

Significant association  between an increase in serum NTx and worsening of erosion
score provides biochemical evidence for the concept that osteoclast is the principal cell
type responsible for the local bone resorption in RA, and suggests that monitoring chang-
es in serum NTx may be useful to predict efficacy of  treatment on progression. Serum
OPG, on the other hand, probably due to the complexity of its regulation, did not emerge
as a feasible surrogate marker for structural damage in RA.

The lack of  suppressive effects of  BP treatment on synovial inflammation in the present
study may be related to the low circulating levels achieved with doses and regimes typical-
ly used for the treatment of osteoporosis. In RA, the presence of subchondral bone mar-
row inflammation and high rate of local bone turnover facilitates concentration of the BP
drugs in subchondral bone to levels that could be anticipated to inhibit formation of focal
bone erosions. The negative outcome in this respect may be due to the fact that the least
potent and cyclically administered BP, i.e. etidronate, was used. Clodronate is more potent
and, unlike etidronate, can be administered continuously. Downregulation of leukocyte-
derived MMPs, as suggested in this study, could represent an additional anti-arthritic
mechanism of clodronate.

Our group has now started a long term trial to evaluate the ability of clodronate to prevent
structural damage in RA. As significant correlations are found between synovial fluid and
serum MMP-9 and MMP-8 levels in RA (Tchetverikov et al., 2004), analysis of systemic
levels of these MMPs in the ongoing study might add evidence for a chondroprotective
effect of clodronate in RA. An enzyme immunoassay for cathepsin K is now available
(Skoumal et al., 2005), and it would be of interest to evaluate the effects of antiresorptive
therapy on this parameter as well.

The present study had some potential limitations. In the long-term trial with etidronate the
number of patients was small considering that radiological progression was the primary
outcome measure. As BMD measurements were not performed, conclusions about the
effects on general bone loss were indirect, based on biochemical serum markers. In the in
vitro study the use of human monocytes from healthy volunteers (instead of a cell-line)
was associated with substantial variability between experiments affecting the evaluation
of the effects of drugs on MMP-9 production.

The finding that the N-BP pamidronate upregulates MMP-9 expression in activated human
monocytes may, together with the inflammatory responses associated with N-BP treat-
ment, explain why pamidronate in a previous RA trial did not suppress formation of focal
bone erosions. Recent preclinical studies suggest, however, that the most potent N-BPs,
exerting greatest inhibitory effects on osteoclast mediated bone resorption, might prevent
structural joint damage, even in instances they exacerbate clinical arthritis (Sims et al.,
2004; Goldring and Gravallese, 2004). Alternative therapeutic approaches for inhibiting
osteoclast mediated bone resorption that could potentially have therapeutic applications to
rheumatoid arthritis include cathepsin K inhibitors (Wang et al., 2004), Fc-OPG fusion
protein (Bekker et al., 2001; Kong et al., 1999) and a specific fully human monoclonal
antibody to RANKL, which prevents RANKL binding to RANK (Bekker et al., 2004).
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