Helsingin yliopisto

 

Helsingin yliopiston verkkojulkaisut

University of Helsinki, Helsinki 2006

Sources and concentrations of volatile organic compounds

Heidi Hellén

Doctoral dissertation, July 2006.
University of Helsinki, Faculty of Science, Department of Chemistry, Laboratory of Analytical Chemistry and Finnish Meteorological Institute.

Volatile organic compounds (VOCs) have a great influence on tropospheric chemistry; they affect ozone formation and they or their reaction products are able to take part in secondary organic aerosol formation; some of the VOCs are themselves toxic. Knowing the concentrations and sources of different reactive volatile organic compounds is essential for the development of ozone control strategies and for studies of secondary organic aerosol formation.

The objective of this work was to study volatile organic compounds in urban air, develop and validate determination methods for them, characterize their concentrations and estimate the contributions of different VOC sources.

Of the different compound groups detected in the urban air of Helsinki, alkanes were found to have the highest concentrations, but when the concentrations were scaled against the reactivity with hydroxyl radicals (OH), aromatic hydrocarbons and alkenes were found to have the greatest effect on local chemistry. Comparisons with rural sites showed that concentrations at Utö and Hyytiälä were generally lower than those in Helsinki, especially for the alkenes and aromatic hydrocarbons, but concentrations of halogenated hydrocarbons at Utö and carbonyls at Hyytiälä were at the same level as in Helsinki. Most halogenated hydrocarbons do not have any significant sources in Helsinki, and carbonyls are formed in the atmosphere in the reactions of other VOCs, and are therefore also produced in other than urban areas. At Hyytiälä carbonyls were found to have an important role in the local chemistry. The contribution of carbonyls as an OH sink was higher than that of the monoterpenes and aromatic hydrocarbons.

Based on the emission profile and concentration measurements, the contributions of different sources were estimated at urban (Helsinki) and residential (Järvenpää) sites using a chemical mass balance (CMB) receptor model. It was shown that it is possible to apply CMB in the case of a large number of different compounds with different properties. According to the CMB analysis, the major sources for these VOCs in Helsinki were traffic and distant sources. At the residential site in Järvenpää, the contribution due to traffic was minor, while distant sources, liquid gasoline and wood combustion made higher contributions. It was also shown that wood combustion can be an important source at some locations of VOCs usually considered as traffic-related compounds (e.g., benzene).

The title page of the publication

This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.

© University of Helsinki 2006

Last updated 02.06.2006

Yhteystiedot, Contact information E-thesis Helsingin yliopisto, University of Helsinki