
University of Helsinki, Helsinki 2006 Finitary Abstract Elementary ClassesMeeri KesäläDoctoral dissertation, December 2006. The research in model theory has extended from the study of elementary classes to nonelementary classes, i.e. to classes which are not completely axiomatizable in elementary logic. The main theme has been the attempt to generalize tools from elementary stability theory to cover more applications arising in other branches of mathematics. In this doctoral thesis we introduce finitary abstract elementary classes, a nonelementary framework of model theory. These classes are a special case of abstract elementary classes (AEC), introduced by Saharon Shelah in the 1980's. We have collected a set of properties for classes of structures, which enable us to develop a 'geometric' approach to stability theory, including an independence calculus, in a very general framework. The thesis studies AEC's with amalgamation, joint embedding, arbitrarily large models, countable LöwenheimSkolem number and finite character. The novel idea is the property of finite character, which enables the use of a notion of a weak type instead of the usual Galois type. Notions of simplicity, superstability, Lascar strong type, primary model and Urank are inroduced for finitary classes. A categoricity transfer result is proved for simple, tame finitary classes: categoricity in any uncountable cardinal transfers upwards and to all cardinals above the Hanf number. Unlike the previous categoricity transfer results of equal generality the theorem does not assume the categoricity cardinal being a successor. The thesis consists of three independent papers. All three papers are joint work with Tapani Hyttinen. The title page of the publication
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited. © University of Helsinki 2006 Last updated 27.11.2006 