Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "PIN3"

Sort by: Order: Results:

  • Tirkkonen, Paulina (2022)
    Gravity has a modifying effect on plant architecture. The phytohormone auxin is known to transmit the signal of gravity perception from gravity-sensing cells to responsive tissues and cause an asymmetric growth response in the receiving organs. Intercellular auxin flux is mediated by many different transporter proteins, of which PIN-FORMED 3 (PIN3) is known to function as an auxin efflux carrier in gravitropic responses. The expression of PIN3 is known to locate in one cell layer of the shoot endodermis in herbaceous plant species and Populus hybrids. The objective of this study was to determine the location of PIN3 ortholog expression using silver birch (Betula pendula) as a model plant of a woody plant species. Agrobacterium tumefaciens C58 strain GV3101 (pMP90), harbouring binary vector pBpPIN3-erVEN-nosT2 containing erVenus (erVEN-YFP) as a marker gene under the BpPIN3 promoter and terminator nosT2, was used in the study to detect the gene expression. The expression vector was constructed by the Gateway® cloning method and transformed into in vitro shoot explants of silver birch by Agrobacterium-mediated transformation (AMT). In the study, transgenic lines were generated successfully, from which the fluorescence of erVEN was observed in the cross-section of the shoot with a fluorescence stereo microscope. The transgenicity of putative transgenic lines was confirmed by PCR of erVEN. BpPIN3 was likely to be expressed to endodermal tissue in the shoots of silver birch. This study can be considered as a screening step for the localization of BpPIN3 expression. The study facilitates the discovery of factors related to the regulation of PIN3 in tropic responses in woody plant species. This information can in the future be utilized in plant breeding to optimize plant architecture.
  • Tirkkonen, Paulina (2022)
    Gravity has a modifying effect on plant architecture. The phytohormone auxin is known to transmit the signal of gravity perception from gravity-sensing cells to responsive tissues and cause an asymmetric growth response in the receiving organs. Intercellular auxin flux is mediated by many different transporter proteins, of which PIN-FORMED 3 (PIN3) is known to function as an auxin efflux carrier in gravitropic responses. The expression of PIN3 is known to locate in one cell layer of the shoot endodermis in herbaceous plant species and Populus hybrids. The objective of this study was to determine the location of PIN3 ortholog expression using silver birch (Betula pendula) as a model plant of a woody plant species. Agrobacterium tumefaciens C58 strain GV3101 (pMP90), harbouring binary vector pBpPIN3-erVEN-nosT2 containing erVenus (erVEN-YFP) as a marker gene under the BpPIN3 promoter and terminator nosT2, was used in the study to detect the gene expression. The expression vector was constructed by the Gateway® cloning method and transformed into in vitro shoot explants of silver birch by Agrobacterium-mediated transformation (AMT). In the study, transgenic lines were generated successfully, from which the fluorescence of erVEN was observed in the cross-section of the shoot with a fluorescence stereo microscope. The transgenicity of putative transgenic lines was confirmed by PCR of erVEN. BpPIN3 was likely to be expressed to endodermal tissue in the shoots of silver birch. This study can be considered as a screening step for the localization of BpPIN3 expression. The study facilitates the discovery of factors related to the regulation of PIN3 in tropic responses in woody plant species. This information can in the future be utilized in plant breeding to optimize plant architecture.