Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "dialyysi"

Sort by: Order: Results:

  • Piipponen, Anu (2016)
    Pharmaceutical nanocrystals are under one micrometer sized crystals composed of pure active pharmaceutical ingredient (API) and stabilizer. Their apparent dissolution rate is improved compared to conventionally sized crystals. Rapid dissolution is mainly due to increased intrinsic surface area of API powder. Solubility increase is significant only with very small, under 100 nm crystals. Nanocrystal formulations with improved dissolution rates can be utilized to increase bioavailability of fairly insoluble BCS class II APIs. Few nanocrystal based products are already on market. Common methods for dissolution study of nanocrystals arecompendial dissolution apparatus 1 or 2, which usually rely on sampling and separation of undissolved fraction. The reliability of these methods is dependent of the separation efficiency. Unfortunately separation becomes more tedious with diminishing crystal size. Thus it would be desirable to replace the methods that require sampling and separation with methods that do not require separation of undissolved fraction (in situ methods), preferably with continuous detection. With the dialysis method the separation is easily achieved. However, the rate limiting step is not dissolution but diffusion through the dialysis membrane. Electrochemical in situ detection methods can only be applied to electroactive APIs. Utilization of in situ UV probes for monitoring nanocrystal dissolution is limited by the UV absorbance of the nanocrystals themselves. To date, light scattering methods have mainly been applied to solubility studies, with few attempts on dissolution studies. In this study the light scattering, dialysis and compendial paddle methods were compared for their ability to monitor the dissolution of indometacin nanosuspensions (NS). Light scattering experiments were performed with Zetasizer equipment. Three poloxamer 188 stabilized NSs, with average diameters (Dz) of 300 nm, 600 nm, and 900 nm, were evaluated. Dissolution studies were executed in sink conditions (under 30% of saturated concentration) and in slightly higher concentration (intermediate conc., 30-50% of saturated concentration) at pH 5.5. The compendial paddle method was performed on the same suspensions with the same medium at intermediate concentration. In the dialysis method the studied NS had a Dz value of 350 nm. The pH of the dissolution medium was 7.4, and the membrane was made of regenerated cellulose. Experimental results were fitted to exponential equation and the dissolution time DT, i.e. time to reach 99% dissolution, was determined based on the equation. In sink conditions the dissolution of all of the NSs was so rapid that reliable estimations of dissolution times could not be made with the light scattering method. In intermediate concentration the dissolution time (51±12 s) of the 300 nm NS was significantly lower than those of 600 nm (340±80 s) and 900 nm (230±50 s) NSs with a confidence level of 5%. The slowest dissolution of the 600 nm NS could be attributed to its broad crystal size distribution. With the compendial paddle method no significant differences in dissolution times could be detected. Compendial dissolution times, about 600-700 s, were markedly longer than those from light scattering experiments. The dialysis method was unable to discriminate between 350 nm NS and indometacin solution, which can be explained by rapid dissolution of the nanocrystals, followed by slow diffusion across the dialysis membrane. Of the studied methods, light scattering was the only one to discriminate between dissolution times of various NSs. It was most applicable to narrow crystal size distributions. It is a fairly small scale method requiring only 1 mL of dissolution medium and about 10 µg of nanocrystals. The method was not dependent on chemical analysis. Theost important limitation was the fact that due to the operational method of the Zetasizer, the first data point was not acquired until about 20 s after the measurement started.