Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "flavonoid"

Sort by: Order: Results:

  • Niemelä, Akseli (2022)
    Lecithin:cholesterol acyltransferase (LCAT), a key enzyme in maturating high-density lipoprotein (HDL) particles, has been targeted to promote the efficiency of reverse cholesterol transport by small molecular positive allosteric modulators (PAM) of Daiichi Sankyo. For a set of these compounds their Vmax and EC50 values and binding site in the membrane-binding domain (MBD) of LCAT have been determined. Through molecular dynamics (MD) simulations we previously found a metric that qualitatively described which compounds were active, so in this study we aimed to improve it by finding a quantitative metric. This led to the discovery of the Cα distance between CYS50 and ASN65, which correlates with this set’s Vmax values and which can be utilized to predict the Vmax values of novel compounds. Additional simulations were performed to discover whether this metric is changed by a lipid interface present, and to reveal a likely entry pathway PAMs take. As LCAT activation is likely a benign and potentially overlooked effect, we performed a virtual screen of FDA-approved compounds and secondary metabolites associated with LCAT. From secondary metabolites, a key finding was that flavonoids were overwhelmingly associated with LCAT and had a high binding potential to the MBD in docking simulations. The best binding compounds were subjected to MD simulations to discover their Vmax values using the discovered metric. This provided us with a set of compounds, which can be used to validate our in silico model in vitro. Should this model be validated, it can be used in optimising and discovering novel PAMs of LCAT, and it would bring evidence to the benefit of MD in drug discovery processes in general. Furthermore, if our discovered compounds can activate LCAT in vitro, they may be used as precursors for novel PAMs or as therapies by themselves not only for LCAT deficiencies, but perhaps for atherosclerotic cardiovascular diseases as well.
  • Niemelä, Akseli (2022)
    Lecithin:cholesterol acyltransferase (LCAT), a key enzyme in maturating high-density lipoprotein (HDL) particles, has been targeted to promote the efficiency of reverse cholesterol transport by small molecular positive allosteric modulators (PAM) of Daiichi Sankyo. For a set of these compounds their Vmax and EC50 values and binding site in the membrane-binding domain (MBD) of LCAT have been determined. Through molecular dynamics (MD) simulations we previously found a metric that qualitatively described which compounds were active, so in this study we aimed to improve it by finding a quantitative metric. This led to the discovery of the Cα distance between CYS50 and ASN65, which correlates with this set’s Vmax values and which can be utilized to predict the Vmax values of novel compounds. Additional simulations were performed to discover whether this metric is changed by a lipid interface present, and to reveal a likely entry pathway PAMs take. As LCAT activation is likely a benign and potentially overlooked effect, we performed a virtual screen of FDA-approved compounds and secondary metabolites associated with LCAT. From secondary metabolites, a key finding was that flavonoids were overwhelmingly associated with LCAT and had a high binding potential to the MBD in docking simulations. The best binding compounds were subjected to MD simulations to discover their Vmax values using the discovered metric. This provided us with a set of compounds, which can be used to validate our in silico model in vitro. Should this model be validated, it can be used in optimising and discovering novel PAMs of LCAT, and it would bring evidence to the benefit of MD in drug discovery processes in general. Furthermore, if our discovered compounds can activate LCAT in vitro, they may be used as precursors for novel PAMs or as therapies by themselves not only for LCAT deficiencies, but perhaps for atherosclerotic cardiovascular diseases as well.
  • Xiang, Jiale (2014)
    Flavonoids are a group of secondary metabolites, which are not only important for plants’ survival, but also have been found to have medicinal properties for human health. Several enzymes are involved in the flavonoid biosynthesis. It is thought that these enzymes work together and may form enzymatic complexes. But the way of these enzymes interact with each other is still not clear. In arabidopsis, the number of gene family members that encode these enzymes is less than in other model plants, which makes it as a suitable model to investigate the interactions of enzymes involved in the flavonoid biosynthetic pathway. In this study, ten full-length flavonoid pathway genes were successfully amplified from cDNA of the arabidopsis flower. They are PAL1, C4H, CHS, CHI, F3H, F3’H, DFR, FLS1, ANS and GT. These genes were cloned into different prey vectors (pPR3-N and pPR3-SUC) and bait vectors (pDHB1 and pBT3-SUC). After that, the constructs were transformed separately into yeast. The protein-protein interactions were analyzed via yeast two-hybrid system.
  • Xiang, Jiale (2014)
    Flavonoids are a group of secondary metabolites, which are not only important for plants’ survival, but also have been found to have medicinal properties for human health. Several enzymes are involved in the flavonoid biosynthesis. It is thought that these enzymes work together and may form enzymatic complexes. But the way of these enzymes interact with each other is still not clear. In arabidopsis, the number of gene family members that encode these enzymes is less than in other model plants, which makes it as a suitable model to investigate the interactions of enzymes involved in the flavonoid biosynthetic pathway. In this study, ten full-length flavonoid pathway genes were successfully amplified from cDNA of the arabidopsis flower. They are PAL1, C4H, CHS, CHI, F3H, F3’H, DFR, FLS1, ANS and GT. These genes were cloned into different prey vectors (pPR3-N and pPR3-SUC) and bait vectors (pDHB1 and pBT3-SUC). After that, the constructs were transformed separately into yeast. The protein-protein interactions were analyzed via yeast two-hybrid system.