Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "hapetus-pelkistysreaktio"

Sort by: Order: Results:

  • Manka, Veera (2022)
    Eight active farms participated in the OSMO-project between years 2015 and 2018. Each farm had unique soil health related challenges. The aim of this work was to identify factors related to soil manganese concentration and mobility and develop tools and materials to help farmers better to understand manganese related soil health issues. Manganese cycling and mobility in soils was analysed through soil structure, electric conductivity (EC), SOM, pH and soil iron concentration. Soil manganese concentration was evaluated with three indicators: pH-corrected acid ammonium acetate + EDTA extractable manganese, acid ammonium acetate + EDTA extractable manganese and the amount of manganese available to plants based on the volume of soil available for root growth. Foliar fluorescence measurement to evaluate manganese deficiency in plant tissues is shortly discussed. Soil manganese concentrations and mobility in soil profiles varied because of soil chemical and biological properties but also because of farming practices and changes in physical soil properties. To improve manganese availability in arable farming, soil health analysis through multiple indicators together with consistent soil health improvement and crop rotation is recommended for all active farms. When using fluorescence measurements to evaluate the need for foliar manganese fertilisation, the use of control solution is necessary for reliable results. More research is needed on manganese efficient crops and crop rotation and its effects on manganese cycle and availability in soils. To improve scientific understanding on soil processes, more research is needed about soil redox-reactions, electric conductivity, pH and how the dynamic change in soil Eh-pH environment relates to soil health.
  • Manka, Veera (2022)
    Eight active farms participated in the OSMO-project between years 2015 and 2018. Each farm had unique soil health related challenges. The aim of this work was to identify factors related to soil manganese concentration and mobility and develop tools and materials to help farmers better to understand manganese related soil health issues. Manganese cycling and mobility in soils was analysed through soil structure, electric conductivity (EC), SOM, pH and soil iron concentration. Soil manganese concentration was evaluated with three indicators: pH-corrected acid ammonium acetate + EDTA extractable manganese, acid ammonium acetate + EDTA extractable manganese and the amount of manganese available to plants based on the volume of soil available for root growth. Foliar fluorescence measurement to evaluate manganese deficiency in plant tissues is shortly discussed. Soil manganese concentrations and mobility in soil profiles varied because of soil chemical and biological properties but also because of farming practices and changes in physical soil properties. To improve manganese availability in arable farming, soil health analysis through multiple indicators together with consistent soil health improvement and crop rotation is recommended for all active farms. When using fluorescence measurements to evaluate the need for foliar manganese fertilisation, the use of control solution is necessary for reliable results. More research is needed on manganese efficient crops and crop rotation and its effects on manganese cycle and availability in soils. To improve scientific understanding on soil processes, more research is needed about soil redox-reactions, electric conductivity, pH and how the dynamic change in soil Eh-pH environment relates to soil health.