Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "hermokasvutekijät"

Sort by: Order: Results:

  • Hella, Emilia (2015)
    This review focuses on neurotrophic factors, especially CDNF, and Amyotropic lateral sclerosis (ALS). This review finds out which neurotrophic factors have been studied in clinical trials of ALS and what kind of results have been got. Neurotrophic factors are important for development and function of neurons because they prevent apoptosis of neurons. They also play role in differentiation, development and migration of neurons. It is also known that many of the neurotrophic factors have protective and restorative properties. ALS is a rare neurodegenerative disease which causes the destruction of motor neurons and leads to death in three years. The disease degenerate the upper and lower motor neurons. Symptoms are muscle weakness, muscle atrophy, cramps and problems with swallowing. At the moment there is no cure for ALS so it is important to study neurotrophic factors that could prevent the progression of the disease and perhaps to protect or repair destroyed motor neurons. This is why it is important to study potential of CDNF in ALS. The experimental part consists of three different parts. The purpose of the first part study was to determine the distribution of CDNF after intraventricular delivery at different time points. CDNF was labeled with 125I (125I-CDNF). The distribution was determined by gammacounter and autoradiography. To determine the stability of the injected 125-I CDNF we performed SDS-PAGE. The second part studied the diffusion volume of CDNF after intraventricular injection with seven wild type mice. After stereotaxic surgery CDNF-immunohistochemistry staining from coronal sections was done. The last experimental part studied the effect of single intracerebral injection of CDNF on motivation, locomotor activity, anxiety and depression with male and female mice. Light-dark box, open field, rotarod, forced swim test (FST), elevated plus maze and fear conditioning were carried out with male mice. After behavioural tests mice were sacrified for HPLC-analysis. Light-dark box and IntelliCage were carried out with female mice before c-fos staining. Gammacounter and autoradiography shows that 125I-CDNF distributes widely after intracerebroventricular injection. It spread throughout to the brain and also all the way to the spinal cord after one and three hours from injection. After 24 hours 125I-CDNF was cleared so the CDNF signal was very weak. SDS-PAGE showed the stability of radioactive CDNF. CDNF increased locomotor activity and decreased anxiety in male mice. But a statistically significant difference appeared in forced swim test and fear conditioning test. HPLC-analysis supported these results partly. CDNF also increased motivation of female mice in IntelliCage experiment. C-fos staining was observed in CDNF group and PBS group so quantitative analysis should be done from these sections so that reliable conclusions could be done. However, because CDNF distributed to spinal cord and it showed some effect on locomotor activity, motivation and depression it might be potential for ALS disease.
  • Viljakainen, Tuulikki (2019)
    Parkinson’s disease is a progressive neurodegenerative disease, in which dopamine neurons are dying in the nigrostriatal dopaminergic pathway. This causes motor symptoms such as slowness of movement, tremor, and rigidity. In addition, various non-motor symptoms appear. All currently used medicines are symptomatic, and there are no disease modifying treatment available for Parkinson’s disease. Several neurotrophic factors have shown promise in animal models of Parkinson’s disease. One of those is cerebral dopamine neurotrophic factor (CDNF) which has been studied in different animal models, including rodents and non-human primates. CDNF is a secreted protein but it is also localized in endoplasmic reticulum (ER). CDNF has two domains, N-terminal and C-terminal, which may have distinct functions. CDNF can be retained in the ER by the ER retention sequence at the end of the C-terminal domain. The C-terminal domain also has an evolutionarily conserved disulfide bridge which is crucial for the biological activity of CDNF. The exact mechanism of CDNF is still unknown. However, it has been shown that CDNF affects the unfolded protein response (UPR) in the presence of ER stress. Neurotrophic factors do not penetrate blood-brain barrier (BBB), for this reason, they need to be injected directly to the brain. Penetration of the BBB is also a problem in the treatment of many other diseases. Various methods for enhancing the BBB penetration of drugs have been studied. For example, permeability of the BBB can be temporarily increased by focused ultrasound combined with microbubbles. Another possibility is the use of a carrier molecule, which can be transported through BBB via specific transport mechanisms. Furthermore, molecule modification offers many applications to achieve enhanced BBB penetration. In view of peripheral administration, a next generation variant of CDNF (ngCDNF) has been developed. The efficacy of this novel variant after intrastriatal injection is equal to that of CDNF in a 6-hydroxydopamine (6-OHDA) rat model of Parkinson’s disease. Systemic administration could also enable treatment of non-motor symptoms of Parkinson’s disease. The aim of this experiment was to study the effects of subcutaneously injected ngCDNF on rotation behaviour, and nigrostriatal TH-positive cells in rats with 6-OHDA lesions. 6-OHDA was injected unilaterally to three different sites in the striatum. Two weeks later, the lesion size was estimated, via amphetamine- induced rotation test. ngCDNF, at two dose levels, was injected twice weekly for three weeks. Amphetamine-induced rotation test was assessed every other week, until week 12. At the end, optical density of tyrosine hydroxylase (TH) was measured from sections of the striatum, and TH positive cells in the substantia nigra were counted. In addition, the effect of ngCDNF on anxiety and depression like behaviour, learning, and locomotor activity were studied at three different levels in naïve mice. Behaviour was analyzed by open field test, forced swim test, and fear conditioning test. The ngCDNF did not seem to have clear effect on rats’ behaviour or TH positive cells and fibers compared to the control group, but positive tendency was found in the group with lower dose. The reduced efficacy of ngCDNF,via subcutaneous administration, is likely due to rapid metabolism and insufficient entry of the active form to the brain. In naïve mice, ngCDNF did not reduce anxiety-like behaviour and did not affect locomotor activity after subcutaneous injections. This result supports previous findings, which suggest that the effects of CDNF are specific to the toxin treated cells and CDNF has no effect in naïve animals.
  • Renko, Juho-Matti (2012)
    Review of the literature: The purpose of the review is to go through what is known about mechanisms of actions of different neurotrophic factors (GDNF, neurturin, CDNF and MANF) and how they are transported within the brain. Neurotrophic factors are endogenous and secreted proteins which have a pivotal role in the development and maintenance of neurons. They support the survival of neurons and they can help them to recover from different injuries. Due to these functions neurotrophic factors might be beneficial for the treatment of neurodegenerative disorders like Parkinson's disease. There are a great deal of studies that clearly show the neuroprotective and neurorestrorative function of GDNF and neurturin on dopaminergic neurons. They are also studied in clinical studies with Parkinson's patients but the results have been partly contradictory. The signalling route of GDNF and neurturin via RET tyrosinekinasereceptor is fairly well known but the other mechanisms of action of these factors needs to be studied further. CDNF and MANF constitute a novel, evolutionarily conserved family of neurotrophic factors. They are shown to have neuroprotective and neurorestrorative actions on dopaminergic neurons both in vitro and in vivo in a rodent model of Parkinson's disease. The mechanisms of action of CDNF and MANF are not quite clear at the moment. There are two different domains in their structure both of which are likely to carry different functions. The N-terminal domains of these proteins are close to saposins, lipid and membrane binding proteins, some of which are shown to have neurotrophic and anti-apoptotic effects. The C-terminal domain of MANF, in turn, is structurally close to the SAP-domain of Ku70-protein which binds Bax in the cytoplasm and thus inhibits apoptosis mediated by Bax. CDNF and MANF might protect neurons both via intracellular mechanisms and extracellularly acting like a secreted neurotrophic factor. CDNF and GDNF are transported retrogradially from striatum to substantia nigra. MANF, unlike the others, is transported from striatum to the frontal cortex. MANF and CDNF are shown to have better diffusion properties in the brain parenchyma than GDNF. Experimental part: We studied, by means of microdialysis, the effects of CDNF, MANF and GDNF on the dopaminergic neurotransmission of naive rats within the striatum. Neurotrophic factors (10 µg) and PBS as a negative control were injected into the left striatum in stereotaxic surgery. After this rats recovered one week before the first mircodialysis. The second mircodialysis was performed three weeks after the surgery. The samples were collected from the left striatum of freely moving rats. During the microdialysis neurotransmission was stimulated by replacing the perfusion solution with hypertonic potassium solution and with amphetamine solution. The concentration of dopamine, DOPAC, HVA and 5-HIAA was measured from the dialysate samples. In vivo TH-activity experiment was carried out for three rats in each group. NSD1015 was injected i.p.after which rats were decapitated and their striatums were dissected. The concentration of L-DOPA, dopamine and metabolites on the treated and untreated hemisphere were analyzed from the tissue samples. The amount of L-DOPA in the striatum after NSD1015-treatment indicates how active TH-enzyme is. There were no significant differences in the concentrations of dopamine and metabolites during the baseline. MANF and CDNF increased the release of dopamine from the nerve terminals compared to GDNF and PBS one week after the surgery. Three weeks after the surgery there was still significant increase in the release of dopamine in MANF group compared to GDNF group. Also the dopamine-DOPAC-turnover was increased significantly in MANF group compared to GDNF and PBS groups one week after the surgery. DOPAC/HVA -ratio was significantly smaller in GDNF group than in other groups one week after the surgery. These findings suggest that MANF potentiates dopaminergic neurotransmission most drasticly. The effects of MANF seem to last longer time than the effects of other neurotrophic factors. CDNF seems to increase the release of dopamine from the nerve terminals as well. The potentiation of dopaminergic neurotransmission could be due to increased biosynthesis of dopamine or due to the potentiation of the function of nerve terminals. In the results of the TH-activity experiment there was a trend according to which L-DOPA is synthesized less after the neurotrophic factor treatment that after the PBS treatment. This suggests that neurotrophic factors might decrease the activity of TH-enzyme.