Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "kondensaatiohäviö"

Sort by: Order: Results:

  • Tuovinen, Saana (2019)
    Observations of frequent new particle formation events have been made in severely polluted environ- ments in China. In theory this should not be possible because of the large condensation sink caused by large concentrations of particles. This thesis tries to shed light on reasons why this happens by investigating heterogeneous nucleation in different conditions, for different vapours and seed particles. Especially of interest are those situations where heterogeneous nucleation is considered to be ineffective which would affect the condensation sink of vapours. Theoretical modelling was used to investigate heterogeneous nucleation and measured data was analyzed to complement theoretical results. In this thesis, special focus is on contact angle θ of heterogeneous nucleation, a variable that depends on surface tensions of the vapour and the seed particle the vapour condenses on. θ has a strong effect on the heterogeneous nucleation probability and the larger it is the less likely nucleation is to occur. Many situations where there was at least in theory little heterogeneous nucleation were found. Conditions similar to real atmospheric conditions were investigated and contact angles needed for heterogeneous nucleation to be ineffective for a vapour were determined. Because θ is related to chemical properties of the seed particle, aerosol chemical composition was also investigated alongside with the corresponding condensation sink and particle formation rates using data measured in Beijing, China. This was done in hopes of finding indications of if and how effective condensation sink and aerosol chemical composition are related. However, no clear connection was yet found. Influence of ineffective heterogeneous nucleation on effective condensation sink was considered. It was found that if ineffectiveness of heterogeneous nucleation affects the condensation sink, effective sink can in theory be significantly smaller than condensation sink. Thus, ineffective heterogeneous nucleation due to multiple factors explored in this thesis could in part explain why new particle formation events are observed even in heavily polluted areas.