Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "kuljetinproteiini"

Sort by: Order: Results:

  • Tikkanen, Alli (2019)
    Organic Anion Transporting Polypeptide 2B1 (OATP2B1) is an influx transporter expressed widely throughout the body in tissues such as intestine, liver, brain, placenta and skeletal muscle. Since many clinically used drugs are transported by OATP2B1, changes in the function of the transporter due to genetic polymorphism could lead to altered pharmacokinetics or -dynamics of OATP2B1 substrate drugs. The aim of this Master’s thesis was to create and optimize a cellular uptake assay to study the function of OATP2B1. Furthermore, the aim was to study the effects of six naturally occurring nonsynonymous single nucleotide variants on OATP2B1 transport function in vitro. With site-directed mutagenesis, single nucleotide changes were introduced into the gene coding for OATP2B1. OATP2B1 variants were expressed in human derived HEK293 cell line using baculovirus expression system. A cellular uptake assay with estrone-3-sulfate and a fluorescent probe 4’, 5’-dibromofluorescein (DBF) as substrates was set up and optimized. With the assay, OATP2B1-mediated uptake of variants was compared to the transport activity of OATP2B1 wild type. Amino acid changes Ser486Phe and Cys520Ser impaired OATP2B1 transport function severely. In addition, variant Thr318Ile transported DBF and estrone-3-sulfate less efficiently compared to OATP2B1 wild type, but Arg312Gln, Thr392Ile and Ser532Arg transport function was not affected. A method to study OATP2B1 function was created successfully. According to the results, single amino acid changes in OATP2B1 can impair OATP2B1 function. The results and method can be utilized to understand findings from pharmacogenetic studies in vivo, and to predict consequences of especially rare variants, which can be difficult to detect in small sample populations in clinical studies. However, further studies on the expression level and cellular localization of OATP2B1 variants are needed to fully characterize the impact of the variants studied.
  • Munsterhjelm, Nina (2012)
    The liver is the major site of drug metabolism and excretion. Within the liver endogenous and exogenous compounds are eliminated through many metabolizing enzymes. Drug removal is not only dependent on metabolic enzymes, but also on transporters. Before cellular metabolism can occur, a drug must first enter the hepatocyte. Very lipophilic drugs enter the cell membrane through passive diffusion, but polar or ionized organic compounds can enter the cell membrane only by transporters. Transporters in the basolateral membrane of the hepatocyte facilitate drug entry and access to drug metabolizing enzymes. Transporters in the canalicular domain (apical) of the hepatocyte faclitate removal of drugs or metabolites from the cell interior. Recent studies have shown that transporters can mediate drug-drug interactions, and transporter genes are subject to genetic polymorphism which may affect pharmacokinetic parameters of a drug, such as absorption, distribution, and excretion. This Master's thesis consists of two parts, a literature review and an experimental section. In the literature review two transporters, OATP1B1 and MRP2, are discussed in detail. OATP1B1 is expressed on the basolateral and MRP2 on the apical membrane of the hepatocyte. These transporters are responsible for the vectorial transcellular hepatobiliary transport of various organic anions in humans. The experimental section aims at modelling vectorial hepatobiliary transport of three compounds in a double-transfected (OATP1B1/MRP2) MDCKII cell line. All three compounds studied, rosuvastatin, estrone sulphate, and estradiol glucuronide, are substrates of both transporters. Wild type (WT) MDCKII cells were used as a control. Tight junctions form a barrier between cells. This barrier regulates the paracellular passage of, for example, water, ions, large molecules, and drugs. In the experimental section the tight junctions were reversibely opened to distinguish between trans- and paracelluar routs of transport of the three compounds studied. Permeation of rosuvastatin and estradiol glucuronide in the basolateral to apical direction was faster in the double-transfected cell line compared to the MDCKII-WT cell line. Permeation of estrone sulphate, however, behaved unexpectedly in the double-transfected cell line. The permeation of this compound was almost equal in the apical to basolateral and basolateral to apical direction. The reason for this unexpected finding remains unclear. By opening the tight junctions the permeation of all compounds in both cell lines was increased, indicating that the compounds studied preferred the paracellular route and the importance of transporters were reduced. The double-transfected MDCKII cell line is a useful in vitro model of hepatic vectorial transport of organic anions in humans.
  • Hurmalainen, Virpi (2021)
    P-glycoprotein is an efflux transporter of the ABC family. It is expressed mainly in tissues that have a role in limiting the absorption and distribution of xenobiotics in the body or their elimination. P-glycoprotein is known to have an important role for example in the blood-brain barrier and in protecting the fetus from xenobiotics in the mother’s blood stream. Genetic polymorphisms in transporter proteins can cause individual differences in the pharmacokinetics of drug substances, which can lead to differences in drug efficacy or side effects. In the ABCB1 gene, which codes for p-glycoprotein, several polymorphisms have been discovered. The frequencies of these polymorphisms vary in different ethnic populations. Previous studies have shown that the effects of these polymorphisms are often substrate-dependent. Since there are several confounding factors usually present in clinical association studies, in vitro studies are needed to clarify the effects of individual polymorphisms. Polymorphisms can be studied in vitro by making intentional mutations to the gene sequence and expressing the variant gene in a suitable cell line. In this study four variant p-glycoprotein genes (c.781A>G, c.1199G>T, c.2005C>T and c.3421T>A) were created by site-directed mutagenesis, and expressed in HEK293 cells using a baculovirus recombinant protein expression method. The effects of the polymorphisms were studied by determining the expression level and the transport acitivity of the variant proteins compared to the wild-type. Western blot was used to determine the expression level and a calcein accumulation assay in HEK293 cells was used to compare the transport activities. Also a membrane vesicle transport assay with n-methyl quinidine was set up and optimized, but the variants were not yet studied with this method during this study. In this study no statistically significant differences were found in the transport activities of any of the four variants compared to the wild-type p-glycoprotein. Also the differences in protein expression level between wild-type and variant proteins were small. However, because of the previously reported substrate dependency of polymorphism effects, it would be beneficial to study the variants with at least one other substrate and one other assay method, and thus the membrane vesicle transport assay would be useful to further compare the transport activities of variant proteins to the wild-type p-glycoprotein.
  • Hurmalainen, Virpi (2021)
    P-glycoprotein is an efflux transporter of the ABC family. It is expressed mainly in tissues that have a role in limiting the absorption and distribution of xenobiotics in the body or their elimination. P-glycoprotein is known to have an important role for example in the blood-brain barrier and in protecting the fetus from xenobiotics in the mother’s blood stream. Genetic polymorphisms in transporter proteins can cause individual differences in the pharmacokinetics of drug substances, which can lead to differences in drug efficacy or side effects. In the ABCB1 gene, which codes for p-glycoprotein, several polymorphisms have been discovered. The frequencies of these polymorphisms vary in different ethnic populations. Previous studies have shown that the effects of these polymorphisms are often substrate-dependent. Since there are several confounding factors usually present in clinical association studies, in vitro studies are needed to clarify the effects of individual polymorphisms. Polymorphisms can be studied in vitro by making intentional mutations to the gene sequence and expressing the variant gene in a suitable cell line. In this study four variant p-glycoprotein genes (c.781A>G, c.1199G>T, c.2005C>T and c.3421T>A) were created by site-directed mutagenesis, and expressed in HEK293 cells using a baculovirus recombinant protein expression method. The effects of the polymorphisms were studied by determining the expression level and the transport acitivity of the variant proteins compared to the wild-type. Western blot was used to determine the expression level and a calcein accumulation assay in HEK293 cells was used to compare the transport activities. Also a membrane vesicle transport assay with n-methyl quinidine was set up and optimized, but the variants were not yet studied with this method during this study. In this study no statistically significant differences were found in the transport activities of any of the four variants compared to the wild-type p-glycoprotein. Also the differences in protein expression level between wild-type and variant proteins were small. However, because of the previously reported substrate dependency of polymorphism effects, it would be beneficial to study the variants with at least one other substrate and one other assay method, and thus the membrane vesicle transport assay would be useful to further compare the transport activities of variant proteins to the wild-type p-glycoprotein.