Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "nanoparticles"

Sort by: Order: Results:

  • Elbadri, Khalil (2020)
    An increased attention has been drawn towards porous silicon (PSi) based materials for biomedical applications, due to their promising features demonstrated through several scientific studies. Here, we further investigated the biological responses of PSi nanoparticles (NPs) with different surface chemistries, including immunomodulatory effects, inflammation mitigation and biocompatibility. In this collaborative study, the PSi NPs were investigated both in vitro and in vivo, using different molecular biology and biochemistry techniques, e.g., qPCR, ELISA, cell sorting and cell viability assays. Our results showed the capabilities of these PSi NPs to relieve the inflammatory conditions, whereas significant decrease was recorded of pro-inflammatory cytokines: TNF-α, IL-1β and IL-6. Likewise, these PSi NPs revealed a considerable consumption aptitude of pro-inflammatory reactive oxygen species molecules. Administrating PSi NPs in an acute liver inflammation (ALI) model, showed no conspicuous influence on cellular viability. Thus, the outcome of this study demonstrates the potential biocompatibility of PSi nanomaterials, in addition to their outstanding features as potential candidates for further incorporating in ALI applications.
  • ELBADRI, KHALIL (2020)
    An increased attention has been drawn towards porous silicon (PSi) based materials for biomedical applications, due to their promising features demonstrated through several scientific studies. Here, we further investigated the biological responses of PSi nanoparticles (NPs) with different surface chemistries, including immunomodulatory effects, inflammation mitigation and biocompatibility. In this collaborative study, the PSi NPs were investigated both in vitro and in vivo, using different molecular biology and biochemistry techniques, e.g., qPCR, ELISA, cell sorting and cell viability assays. Our results showed the capabilities of these PSi NPs to relieve the inflammatory conditions, whereas significant decrease was recorded of pro-inflammatory cytokines: TNF-α, IL-1β and IL-6. Likewise, these PSi NPs revealed a considerable consumption aptitude of pro-inflammatory reactive oxygen species molecules. Administrating PSi NPs in an acute liver inflammation (ALI) model, showed no conspicuous influence on cellular viability. Thus, the outcome of this study demonstrates the potential biocompatibility of PSi nanomaterials, in addition to their outstanding features as potential candidates for further incorporating in ALI applications.
  • Lifländer, Rami (2020)
    Throughout the history, there has been a wide selection of drugs developed for therapy of cardiovascular diseases (CVD). Despite a broad spectrum of different therapeutic strategies to deaccelerate and try to reverse the progression of cardiovascular diseases has been achieved, only a modest amelioration of the health of the CVD patients was achieved, as the mortality remains high by being the cause of nearly one in every three deaths yearly, myocardial infarction being involved in majority of these cases. Novel solutions are being studied to overcome this problem, one of them being nanoparticles, which may provide potential solution by carrying drugs to the desired location. Microfluidics technique may further improve the properties of nanoparticles, being a platform that allows the production of homogenous and repeatable batches that are non-dependent by the operator using it. In this thesis, it is described how microfluidics-based preparation of spermine-functionalised acetalated dextran nanoparticles co-loaded with a trisubstituted isoxazole and curcumin perform in physicochemical and in vitro experiments, in order to evaluate their potential in the application of ischemic myocardial injury therapy.
  • Espo, Erika (2021)
    Nowadays, targetability studies usually require sample modifications and quite often, examination requires the use of directed light in harmful wavelengths. The surface plasmon resonance (SPR) technique does not need either of those actions. With SPR technology, the targetability of biomolecules can be studied in real-time and without any additional labels. The SPR response is received by measuring the change in surface plasmon resonance conditions due to refractive index changes caused by material interactions in the vicinity of a metal sensor surface. In the present study, the targetability of neonatal Fc receptor (FcRn) was studied by SPR. FcRn-mediated targetability studies were performed against protein A and human colorectal adenocarcinoma (Caco-2) immobilized on SPR sensors. The aim of the study was to confirm the FcRn targetability with bare Fc-fragment and Fc-fragment modified nanoparticles (NPs) designed for oral drug delivery. The NPs consisted of a core porous silicon (PSi) particle, entrapped into a lignin capsule, and finally functionalized with the FcRn-targeting ligand. Results confirmed the binding efficacy of bare Fc-fragment with protein A at pH 6.5, which was the critical pH value for preserving the lignin capsule around the PSi NPs. The cell-based SPR response was significantly higher for FcRn-targeted NPs when compared with non-functionalized NPs. According to these results, FcRn-mediated transcytosis emerges with great potential for oral drug delivery via Fc-functionalized NPs.
  • Espo, Erika (2021)
    Nowadays, targetability studies usually require sample modifications and quite often, examination requires the use of directed light in harmful wavelengths. The surface plasmon resonance (SPR) technique does not need either of those actions. With SPR technology, the targetability of biomolecules can be studied in real-time and without any additional labels. The SPR response is received by measuring the change in surface plasmon resonance conditions due to refractive index changes caused by material interactions in the vicinity of a metal sensor surface. In the present study, the targetability of neonatal Fc receptor (FcRn) was studied by SPR. FcRn-mediated targetability studies were performed against protein A and human colorectal adenocarcinoma (Caco-2) immobilized on SPR sensors. The aim of the study was to confirm the FcRn targetability with bare Fc-fragment and Fc-fragment modified nanoparticles (NPs) designed for oral drug delivery. The NPs consisted of a core porous silicon (PSi) particle, entrapped into a lignin capsule, and finally functionalized with the FcRn-targeting ligand. Results confirmed the binding efficacy of bare Fc-fragment with protein A at pH 6.5, which was the critical pH value for preserving the lignin capsule around the PSi NPs. The cell-based SPR response was significantly higher for FcRn-targeted NPs when compared with non-functionalized NPs. According to these results, FcRn-mediated transcytosis emerges with great potential for oral drug delivery via Fc-functionalized NPs.