Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "proxy"

Sort by: Order: Results:

  • Boxström, Agneta (2021)
    Abstract: Northern boreal peatlands form one of the biggest carbon pools in the biosphere, thus having great potential to cause major changes to the global carbon cycle. The ongoing recent warming may affect the carbon dynamics though factors, such as, vegetation, hydrology and permafrost balance. As the future is still uncertain there are no definitive answers on how the peatlands will react in the future. Fortunately, moisture sensitive organisms such as, bryophytes and testate amoeba is preserved in the peat and can therefore be used to reconstruct past climatic shifts. In this thesis I studied palaeohydrology and peat accumulation over the last two millennia, from three peat cores originating in a permafrost peatland in Rogovaya, Russia. I used testate amoeba as a proxy of past moisture conditions and plotted the taxa composition of each core against 14C and 210Pb dated samples, to reconstruct past moisture shifts. The results were also supplemented by plant macrofossil and carbon accumulation data for more robust results. Of the three cores, Rog11 provided the oldest testate amoeba dataset by reaching the Dark Ages Cold Period. During this period there were indications of dry moisture conditions followed by a wet Medieval Warm Period. The Little Ice Age gave indications of a drying trend, while toward the end of the LIA Rog8 indicated opposite moisture conditions. From the end of the LIA onwards a general trend of drying and increased carbon accumulated is noted. Yet, during the last decade the trend has turned. The wet shift might indicate that the threshold for the peatland has been reached and the amount of melting permafrost has exceeded the evapotranspiration rate. As a conclusion my result indicates that the dynamics of both hydrology and carbon are complicated processes affected by both autogenic and allogenic factors, therefore causing large variability even on a local scale. The absence of widely spread observations of the most recent wet shift also indicates that the response of the peatland to the recent warming might be unequal. To rectify this situation, continued research is crucial, so that we can increase our understanding of climate-peatland interactions.
  • Boxström, Agneta (2021)
    Abstract: Northern boreal peatlands form one of the biggest carbon pools in the biosphere, thus having great potential to cause major changes to the global carbon cycle. The ongoing recent warming may affect the carbon dynamics though factors, such as, vegetation, hydrology and permafrost balance. As the future is still uncertain there are no definitive answers on how the peatlands will react in the future. Fortunately, moisture sensitive organisms such as, bryophytes and testate amoeba is preserved in the peat and can therefore be used to reconstruct past climatic shifts. In this thesis I studied palaeohydrology and peat accumulation over the last two millennia, from three peat cores originating in a permafrost peatland in Rogovaya, Russia. I used testate amoeba as a proxy of past moisture conditions and plotted the taxa composition of each core against 14C and 210Pb dated samples, to reconstruct past moisture shifts. The results were also supplemented by plant macrofossil and carbon accumulation data for more robust results. Of the three cores, Rog11 provided the oldest testate amoeba dataset by reaching the Dark Ages Cold Period. During this period there were indications of dry moisture conditions followed by a wet Medieval Warm Period. The Little Ice Age gave indications of a drying trend, while toward the end of the LIA Rog8 indicated opposite moisture conditions. From the end of the LIA onwards a general trend of drying and increased carbon accumulated is noted. Yet, during the last decade the trend has turned. The wet shift might indicate that the threshold for the peatland has been reached and the amount of melting permafrost has exceeded the evapotranspiration rate. As a conclusion my result indicates that the dynamics of both hydrology and carbon are complicated processes affected by both autogenic and allogenic factors, therefore causing large variability even on a local scale. The absence of widely spread observations of the most recent wet shift also indicates that the response of the peatland to the recent warming might be unequal. To rectify this situation, continued research is crucial, so that we can increase our understanding of climate-peatland interactions.
  • Ovaska, Aino (2021)
    Cloud condensation nuclei (CCN) participate in controlling the climate, and a better understading of their number concentrations is needed to constrain the current uncertainties in Earth’s energy budget. However, estimating the global CCN concentrations is difficult using only localised in-situ measurements. To overcome this, different proxies and parametrisations for CCN have been developed. In this thesis, accumulation mode particles were used as a substitute for CCN, and continental proxy for number concentration of N100 was developed with CO and temperature as tracers for anthropogenic and biogenic emissions. The data utilised in the analysis contained N100 measurements from 22 sites from 5 different continents as well as CO and temperature from CAMS reanalysis dataset. The thesis aimed to construct a global continental proxy. In addition to this, individual proxies for each site (the site proxy) and proxies trained with other sites’ data (the site excluded proxy) were developed. The performance of these proxies was evaluated using a modified version of K-fold cross-validation, which allowed estimating the effect of dataset selection on the results. Additionally, time series, seasonal variation, and parameter distributions for developed proxies were analysed and findings compared against known characteristics of the sites. Global proxy was developed, but no single set of parameters, that would achieve the best performance at all sites, was found. Therefore, two versions of global proxy were selected and their results analysed. For most of the sites, the site proxy performed better than the global proxies. Additionally, based on the analysis from the site excluded proxy, extrapolating the global proxy to new locations produced results with varying accuracy. Best results came from sites with low concentrations and occasional anthropogenic transport episodes. Additionally, some European rural sites performed well, whereas in mountainous sites the proxy struggled. Comparing the proxy to literature, it performed generally less well or similarly as proxies from other studies. Longer datasets and additional measurement sites could improve the proxy performance.