Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "ristisitominen"

Sort by: Order: Results:

  • Kunnari, Mikko (2016)
    Crohn's disease is a type of inflammatory bowel disease. There are no treatment procedures that can cure Crohn's disease, but it is usually controllable with medicinal options. However 70 - 80 % of patients will require surgery and most undergo several during their life, due to weak local potency of drugs and disrupted recovery from surgical treatment. A better method of combined treatment, such as a drug releasing surgical suture, could improve the disease recovery process. One approach would be to coat a surgical suture with nanofibrillar cellulose (NFC) hydrogel containing the active drug ingredient within. NFC is biocompatible, biostable and it can be easily chemically modified. It displays pseudoplastic and thixotropic gel-like behavior in aqueous suspension in addition to high shear thinning properties under low and high shear rates. The shear-thinning behavior is particularly useful in a range of different coating applications. Furthermore, recent studies have shown the potential of NFC in controlled drug release. The aim of this Master's thesis was to investigate the suitability of anionic NFC hydrogel for surgical suture coatings and controlled release applications. The structure of NFC hydrogel was modified with crosslinking cations (Fe3+, Al3+, Ca2+) and alginate. The diffusion studies were performed with two antibiotics, metronidazole and rifaximin together with FITC-dextrans (10 and 250 kDa). The surgical suture was coated with each type of hydrogels (n = 16). Furthermore, the suitability of suture drug formulation for controlled drug release was simulated with STELLA® modeling software. It was shown that the NFC hydrogel structure was stiffened with the use of crosslinking cations; however similar results were not observed with the addition of alginate. Release profiles of model compounds were similar before and after NFC hydrogel crosslinking. At 6 days, 50 - 60 % of 10 kDa dextran (6 µg) was released. For 250 kDa dextran (6 µg) the released amount was 25 - 35 %. During the first 3 days of the diffusion study, all of metronidazole (20 µg) was released. Rifaximin samples were not obtained due to high adsorption to the container surfaces. The release profiles of metronidazole and 10 kDa dextran had linear correlation with square-root diffusion process. 250 kDa dextran followed a near zero-order kinetics after a few hours from the start. The coating was performed successfully with NFC hydrogels except for hydrogels with dextrans or without crosslinking. Metronidazole was predicted to release from the surgical suture almost instantly with STELLA® modeling software. NFC hydrogel shows potential as a matrix for controlled drug release and the coating of surgical sutures. However, the manufacturing method of the NFC hydrogel could be improved with surface modifications of nanofibrils or with the choice of a drug or of its derivatives. With pharmacokinetic simulation models it is possible to predict and estimate different factors which affect drug release from the surgical suture. Furthermore, the simulation models can be used to estimate an effect in the treatment of Crohn's disease.
  • Alakalhunmaa, Suvi (2014)
    Aerogels are lightweight, porous and dry foams that are produced from gels by replacing the liquid phase by air. When produced from polysaccharide-based hydrogels, potential applications for aerogels could be found as bio-based packaging materials. The literature review focused on the production of polysaccharide-based hydrogels and their chemical crosslinking, as well as the production of aerogels and their properties. In the experimental study the possibilities for utilization of spruce galactoglucomannan (GGM), an abundant but largely unexploited raw material, as aerogel matrix was explored. Nanofibrillated cellulose (NFC) was used as reinforcement and the polysaccharides were crosslinked with ammonium zirconium carbonate (AZC). Hydrogels were prepared from GGM-NFC-suspensions and heat treatment was performed in order to induce crosslinking reaction. Prepared hydrogels were frozen in a bath of carbon dioxide ice and ethanol and subsequently freeze-dried into cubic aerogels. The aim was to investigate the effect of polysaccharide proportions and AZC content on the strength of hydrogels and on the mechanical properties and moisture sensitivity of aerogels. The formation of crosslinks was observed indirectly from the values of storage and loss moduli by dynamic rheological measurement. The strength of hydrogels was highly dependent on the AZC and NFC content. In contrast, the compressive modulus of aerogels instead was affected only by NFC content at relative humidity (RH) of 50% and 23 °C. Hydrogel strength could not be used for prediction of aerogel strength under these ambient conditions. AZC and NFC mainly decreased the sensitivity of aerogels towards moisture by decreasing the water absorption and its plasticizing effect on aerogels. The effect of crosslinking on mechanical and physical properties of aerogels appeared clearly at RH over 50%. GGM was shown to be a suitable aero-gel raw material when combined with NFC. The role of NFC in enhancing the aerogel’s me-chanical properties was significant. The mechanical properties of uncrosslinked aerogels, how-ever, weakened in a humid environment. In particular, AZC is needed to protect aerogels from the plastizicing effect of water. Properties of crosslinked aerogels in a humid environment would be an interesting subject of further studies.
  • Schmidt, Jutta (2013)
    Increasing the use of biodegradable packaging materials could reduce the need of petroleumbased plastics. Hemicelluloses are a potential source of renewable raw material for packaging purposes. The literature review focused on polysaccharide-based packaging materials and properties of food packaging materials. In addition, crosslinking polysaccharides with citric acid and ammonium zirconium carbonate (AZC) were discussed. The objective of the experimental study was to prepare self-standing films from spruce galactoglucomannan (GGM), and to study their properties. The aim was to enhance the mechanical and permeability properties, and make the films less sensitive to moisture, via crosslinking. Crosslinking was carried out in solution and sorbitol was used as plasticiser. The films were prepared by a casting method and dried at room temperature. Tensile strength, elongation at break and Young’s modulus were measured by tensile testing. In addition, oxygen permeabi lity, water vapour permeability and water solubility of films were measured. The effect of moisture on films was investigated with sorption isotherm and humidity scanning dynamic mechanical analysis. Citric acid did not function as a crosslinking agent, but acted more as a plasticiser increasing elongation. The heating required for the crosslinking reaction should be performed in dry film instead of solution. Crosslinking with AZC resulted in strong films, with tensile strength up to 52 MPa. Sorbitol addition decreased the tensile strength and Young’s modulus, but increased the elongation, as expected. Crosslinking and sorbitol addition both decreased water vapour permeability, resulting in a better water vapour barrier. The deviations in oxygen permeability measurements were high, but it looks like crosslinking with AZC results in better oxygen barrier. In high relative humidity (RH) the film with AZC absorbed less water vapour and the storage modulus decreased slower than in the non-crosslinked film. Thus, crosslinking with AZC made the properties of GGM films less susceptible to changes in RH. AZC appears to be a promising crosslinking agent for hemicellulose films, therefore the suitability for food packaging applications should be further studied.