Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "spheroid"

Sort by: Order: Results:

  • Heilala, Maria (2019)
    Despite the advances in the management of breast cancer, discovery of novel and targeted drugs remains a challenge. It has been suggested that drug failure rates in clinical trials might be diminished by improving the predictive potential of preclinical cancer models. Three-dimensional (3D) scaffold-based cell culture has emerged as an attractive platform for mimicking tissue-like microenvironment, since it is well-known that cells respond to the cues in the extracellular matrix (ECM). The aim of this thesis was to develop fibrin-based hydrogels and evaluate their performance in 3D cell culture of breast cancer cells. The fibrin gel formulation was first optimized by testing the effect of different buffers on gel properties. Structural properties were examined with scanning electron microscopy and mechanical properties measured with oscillatory rheometry. Three different fibrin concentrations of the optimized formulation were then used as scaffolds for DU4475 breast cancer cells. After seven days of culture, the morphology, phenotype and proliferation of the resulting cell structures were assessed by using techniques such as light microscopy, immunofluorescent confocal microscopy and Western blot analysis. The desired properties for 3D cell culture were obtained by preparing fibrin gels at high pH in the absence of calcium. The main finding of the thesis was that fibrin concentration strongly affected the phenotype of DU4475 cells, with cells cultured in the softest gel retaining their original characteristics to the greatest extent. In the future, the developed scaffold could possibly be used in drug discovery and personalized medicine by culturing tumor explants from patients. However, the methods used in the study must be further optimized and the results validated with other breast cancer cell lines and with primary tissues.
  • Oudman, Risto (2022)
    Otsikko: Osteoblastien viabiliteetti ja erilaistuminen 3D-solukasvatuksessa Kirjoittajat: Oudman R., Hasan R., Mustonen T., Hassinen A. ja Rice D. Affiliaatio: Suu- ja leukasairauksien osasto, Lääketieteellinen tiedekunta, Helsingin yliopisto Tutkimuksen tarkoitus: Tavoite tutkimuksessa on kehittää menetelmä, jolla soluja voidaan kasvattaa kolmiulotteisesti ja kuvantaa niitä hyödyntämällä osteoblastien erilaistumisvaiheiden markkereita sekä solujen viabiliteetin määritystä Live-Dead-värjäyskitillä. Oikean menetelmän avulla voidaan mallintaa paremmin solujen luonnollista fysiologista ympäristöä, mikä antaa luotettavampia tuloksia, kun verrataan petrimaljalla saatuihin tuloksiin. Tutkimuksessa pyritään löytämään hyvät värjäysprotokollat osteoblastien kuvantamiseen. Materiaalit ja menetelmät: Kokeissa käytettiin ihmisestä eristettyä MG-63-osteosarkoomasolulinjan soluja. Kokeet toteutettiin kolmiulotteisessa kasvatuksessa 96-kuoppalevyillä. Kyseiset levyt valittiin, koska ne on suunniteltu toimimaan erityisen hyvin valitun konfokaalimikroskoopin (PerkinElmer Opera Phenix HCS system) kanssa. Solut kasvatettiin ja erilaistettiin UPM-Kymmene Oyj:n valmistamassa GrowDex®-T-hydrogeelissä, mikä muodostaa kasvatusalusta kanssa soluille synteettisen ekstrasellulaarimatriksin eli soluväliaineen. Laimentamaton GrowDex®-T oli vahvuudeltaan 1,0 %. GrowDex®-T laimennettiin kasvatusmediaan loppukonsentraatioon 0,2 %. Kyseiseen loppukonsentraatioon päädyttiin pilottikokeilla saaduilla tuloksilla. Kokeet tehtiin kahdella eri solukonsentraatiolla; 200 solua/ul ja 500 solua/ml. Solujen viabiliteettiä mitattiin live-dead värjäyksellä (Sigma-Aldrich Live/dead cell double staining kit), jossa liuos A (Calcein AM liuos) värjää elävät solut ja liuos B (propidium iodide liuos) värjää kuolleet solut. Lisäksi solujen tumat värjättiin NucBlue-tumavärillä (NucBlue Live ReadyProbes Reagent) sekä solukalvot (CellMask Orange Plasma membrane Stain). Kuvaamisessa käytetiin laboratorion valomikroskooppia, fluoresenssimikroskooppia sekä FIMM:n konfokaalimikroskooppia (PerkinElmer Opera Phenix HCS system). Tulokset: Kolmen päivän jälkeen havaittiin korkea solujen viabiliteetti kasvustossa. MG-63 solut myös pyrkivät muodostamaan 3D-spheroidirakenteita. Tuloksista nähtiin, että solukasvatuksen kaikista soluista noin 9% (200 solua/ul) ja 13% (500 solua/ul) kuului spheroidirakenteisiin ja loput pohjakasvustona. Spheroidirakenteiksi laskettiin solut yli 24um korkeudella kaivon pohjasta. Konfokaalimikroskoopin kuvantamisen tulokset analysoitiin käyttäen PerkinElmer Opera Phenixin Harmony ”high-content” kuva-analyysiohjelmaa. Solujen segmentoinnilla saatiin osoitettua MG-63 solujen muodostamien spheroidien kolmiulotteinen rakenne sekä rakenteiden koko. Johtopäätökset: GrowDex®-T soveltuu hyvin sen fysikaalisten sekä kemiallisten ominaisuuksien vuoksi 3D-solukasvatuksiin sekä sen valoa taittavien ominaisuuksien vuoksi konfokaalimikroskooppi-kuvantamiseen. Se tarjoaa myös varteenotettavan vaihtoehdon perinteisille 3D-solukasvatukseen käytettäville kasvatusalustoille. Solukasvatuksen solukonsentraatio kokeen aloituksessa ei merkittävästi vaikuttanut tuloksiin. Muodostuneet spheroidit vaihtelivat koon ja muodon osalta.
  • Oudman, Risto (2022)
    Otsikko: Osteoblastien viabiliteetti ja erilaistuminen 3D-solukasvatuksessa Kirjoittajat: Oudman R., Hasan R., Mustonen T., Hassinen A. ja Rice D. Affiliaatio: Suu- ja leukasairauksien osasto, Lääketieteellinen tiedekunta, Helsingin yliopisto Tutkimuksen tarkoitus: Tavoite tutkimuksessa on kehittää menetelmä, jolla soluja voidaan kasvattaa kolmiulotteisesti ja kuvantaa niitä hyödyntämällä osteoblastien erilaistumisvaiheiden markkereita sekä solujen viabiliteetin määritystä Live-Dead-värjäyskitillä. Oikean menetelmän avulla voidaan mallintaa paremmin solujen luonnollista fysiologista ympäristöä, mikä antaa luotettavampia tuloksia, kun verrataan petrimaljalla saatuihin tuloksiin. Tutkimuksessa pyritään löytämään hyvät värjäysprotokollat osteoblastien kuvantamiseen. Materiaalit ja menetelmät: Kokeissa käytettiin ihmisestä eristettyä MG-63-osteosarkoomasolulinjan soluja. Kokeet toteutettiin kolmiulotteisessa kasvatuksessa 96-kuoppalevyillä. Kyseiset levyt valittiin, koska ne on suunniteltu toimimaan erityisen hyvin valitun konfokaalimikroskoopin (PerkinElmer Opera Phenix HCS system) kanssa. Solut kasvatettiin ja erilaistettiin UPM-Kymmene Oyj:n valmistamassa GrowDex®-T-hydrogeelissä, mikä muodostaa kasvatusalusta kanssa soluille synteettisen ekstrasellulaarimatriksin eli soluväliaineen. Laimentamaton GrowDex®-T oli vahvuudeltaan 1,0 %. GrowDex®-T laimennettiin kasvatusmediaan loppukonsentraatioon 0,2 %. Kyseiseen loppukonsentraatioon päädyttiin pilottikokeilla saaduilla tuloksilla. Kokeet tehtiin kahdella eri solukonsentraatiolla; 200 solua/ul ja 500 solua/ml. Solujen viabiliteettiä mitattiin live-dead värjäyksellä (Sigma-Aldrich Live/dead cell double staining kit), jossa liuos A (Calcein AM liuos) värjää elävät solut ja liuos B (propidium iodide liuos) värjää kuolleet solut. Lisäksi solujen tumat värjättiin NucBlue-tumavärillä (NucBlue Live ReadyProbes Reagent) sekä solukalvot (CellMask Orange Plasma membrane Stain). Kuvaamisessa käytetiin laboratorion valomikroskooppia, fluoresenssimikroskooppia sekä FIMM:n konfokaalimikroskooppia (PerkinElmer Opera Phenix HCS system). Tulokset: Kolmen päivän jälkeen havaittiin korkea solujen viabiliteetti kasvustossa. MG-63 solut myös pyrkivät muodostamaan 3D-spheroidirakenteita. Tuloksista nähtiin, että solukasvatuksen kaikista soluista noin 9% (200 solua/ul) ja 13% (500 solua/ul) kuului spheroidirakenteisiin ja loput pohjakasvustona. Spheroidirakenteiksi laskettiin solut yli 24um korkeudella kaivon pohjasta. Konfokaalimikroskoopin kuvantamisen tulokset analysoitiin käyttäen PerkinElmer Opera Phenixin Harmony ”high-content” kuva-analyysiohjelmaa. Solujen segmentoinnilla saatiin osoitettua MG-63 solujen muodostamien spheroidien kolmiulotteinen rakenne sekä rakenteiden koko. Johtopäätökset: GrowDex®-T soveltuu hyvin sen fysikaalisten sekä kemiallisten ominaisuuksien vuoksi 3D-solukasvatuksiin sekä sen valoa taittavien ominaisuuksien vuoksi konfokaalimikroskooppi-kuvantamiseen. Se tarjoaa myös varteenotettavan vaihtoehdon perinteisille 3D-solukasvatukseen käytettäville kasvatusalustoille. Solukasvatuksen solukonsentraatio kokeen aloituksessa ei merkittävästi vaikuttanut tuloksiin. Muodostuneet spheroidit vaihtelivat koon ja muodon osalta.