Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "toxicity"

Sort by: Order: Results:

  • Lindstedt, Hanna (2022)
    Drug-induced liver injury (DILI) is a relatively rare hepatic condition that can be classified as predictable and unpredictable. However, DILI is a primary reason for drug withdrawals, post-marketing warnings, and restrictions of use. DILI is a problem for the drug users but also for the pharmaceutical industry and regulatory bodies. From the perspective of patients' and clinicians', DILI is the major cause of acute liver injury. At present, a major problem predicting DILI in drug discovery is a poor understanding of its mechanisms as well as the complexity of DILI pathogenicity. The main mechanism behind DILI are alterations in bile acid homeostasis, oxidative stress, and mitochondrial dysfunction. More than 50 % of drugs causing DILI are causing mitochondrial impairment. If the normal function of mitochondria is disturbed, the energy production of the cell decreases, and cell function decline leading eventually to the cell death. In this study prediction of mitochondrial toxicity was studied using cryopreserved primary hepatocytes of humans and rats. The aim of the study was to clarify if there are interspecies differences in the prediction of toxicity but also investigate possible differences in the mechanisms behind hepatotoxicity by using three well-known compounds toxic to mitochondria. To determine these differences, total cellular ATP was measured after 2- and 24- hour exposure time to gain information on overall viability and possible adaptive responses. Mitochondrial energy pathways were studied as a real-time monitoring acute exposure of test compounds. Morphology, location, and possible adaptive response of mitochondria were studied using a fluorescent probe and antibody staining combined with high content imaging (HCI). Overall, primary rat hepatocytes were more sensitive to the test compounds than human hepatocytes. Also, there were differences between human hepatocyte batches that may reflect the metabolic differences between hepatocyte donors. Immunolabeling did not bring any additional values compared to the fluorescent probe staining in the study of morphology of mitochondria. Additionally, it was noticed that treatment with paraformaldehyde significantly changed the hepatocyte mitochondria morphology. Overall, more effort is needed to develop image analysis of mitochondria morphology. Finally, studying mitochondrial morphology has proven to be difficult, and this study did not unfortunately reveal any information about the adaptive responses of mitochondria for drug-induced liver injury.
  • Lindstedt, Hanna (2022)
    Drug-induced liver injury (DILI) is a relatively rare hepatic condition that can be classified as predictable and unpredictable. However, DILI is a primary reason for drug withdrawals, post-marketing warnings, and restrictions of use. DILI is a problem for the drug users but also for the pharmaceutical industry and regulatory bodies. From the perspective of patients' and clinicians', DILI is the major cause of acute liver injury. At present, a major problem predicting DILI in drug discovery is a poor understanding of its mechanisms as well as the complexity of DILI pathogenicity. The main mechanism behind DILI are alterations in bile acid homeostasis, oxidative stress, and mitochondrial dysfunction. More than 50 % of drugs causing DILI are causing mitochondrial impairment. If the normal function of mitochondria is disturbed, the energy production of the cell decreases, and cell function decline leading eventually to the cell death. In this study prediction of mitochondrial toxicity was studied using cryopreserved primary hepatocytes of humans and rats. The aim of the study was to clarify if there are interspecies differences in the prediction of toxicity but also investigate possible differences in the mechanisms behind hepatotoxicity by using three well-known compounds toxic to mitochondria. To determine these differences, total cellular ATP was measured after 2- and 24- hour exposure time to gain information on overall viability and possible adaptive responses. Mitochondrial energy pathways were studied as a real-time monitoring acute exposure of test compounds. Morphology, location, and possible adaptive response of mitochondria were studied using a fluorescent probe and antibody staining combined with high content imaging (HCI). Overall, primary rat hepatocytes were more sensitive to the test compounds than human hepatocytes. Also, there were differences between human hepatocyte batches that may reflect the metabolic differences between hepatocyte donors. Immunolabeling did not bring any additional values compared to the fluorescent probe staining in the study of morphology of mitochondria. Additionally, it was noticed that treatment with paraformaldehyde significantly changed the hepatocyte mitochondria morphology. Overall, more effort is needed to develop image analysis of mitochondria morphology. Finally, studying mitochondrial morphology has proven to be difficult, and this study did not unfortunately reveal any information about the adaptive responses of mitochondria for drug-induced liver injury.
  • Auno, Samuli (2019)
    Heart failure is a disease of major social and economic impact. The disease is most commonly onset by extensive cardiomyocyte death following a myocardial infarction. Five-year mortality of heart failure is higher than some cancers. Loss of cardiac muscle tissue leads to pathological thickening and fibrosis of the left ventricular wall, which eventually further diminish cardiac function. Cardiomyocytes hardly proliferate, which also exacerbates the problem. Several cell signalling pathways are indicated in pathological reprogramming of the heart and the exact significance of these pathways remains to be demonstrated. Treatment strategies based on renewing cardiac muscle, such as direct injection of stem cells into the myocardium, have failed to reach clinically significant effects on heart failure patients. Direct inhibition of pathological cardiac reprogramming by using small molecule modulators remains as an auspicious strategy to treat heart failure. GATA4, or GATA binding protein 4, is a transcription factor expressed mainly in heart, lung, intestine, gonad and liver tissues, which regulates tissue renewal and cell proliferation by controlling protein transcription. GATA4 binds to GATA sequences in DNA with two zinc finger moieties and enables transcription of target genes. Interactions of GATA4 and several other transcription factors are in central role of guiding heart development, hypertrophy and fibrosis. One of these transcription factors is NKX2-5, which synergistically interacts with GATA4. Inhibition of this interaction in rat myocardial infarction model has been shown to protect against development of heart failure. A screening campaign against the transcriptional synergy of GATA4 and NKX2-5 found potent small molecule inhibitors of this interaction, but these compounds are characterised with stem cell toxicity. The aim of the study was to design and synthesise novel derivatives of GATA4-NKX2-5 synergy inhibitor hit molecule with reduced stem cell toxicity. Modifications on the phenyl ring of the hit molecule were designed, which either increase electron density of the ring or possibly alter the torsional angle between the phenyl and isoxazole ring moieties. Activity of the compounds was studied on a luciferase reporter gene system in COS-1 cells and toxicity was analysed on IMR90 human induced pluripotent stem cell line. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) bromide and lactate dehydrogenase (LDH) assays were selected to measure toxicity on stem cells. Stem cell toxicity of several previously synthesised compounds was assayed in parallel with the novel derivatives. Ten novel derivatives were designed, synthesised and assayed. Four of the new compounds, a mono-ortho-methyl, a di-ortho-methyl, a di-meta-methoxy and cyclohexyl derivatives were found to be equipotent inhibitors of reporter gene activity compared to the hit compound. Additionally, the mono-ortho-methyl, di-ortho-methyl and di-meta-methoxy derivatives were less toxic to stem cells than the hit molecule in the MTT assay. Several other derivatives were found to be less toxic, but also non-active in the luciferase assay. None of the studied compounds exhibited notable necrotic toxicity on stem cells, as examined by the LDH assay. According to this study it may be concluded that substituents of the hit molecule phenyl ring may be altered to decrease stem cell toxicity of the compound. Some of the alterations, most notably substituents in the para-position of the phenyl ring and substitution of the phenyl ring with smaller saturated hydrocarbon rings, diminish the activity of the hit compound. Remarkable toleration of ortho-substitution reinforces the hypothesis of phenyl-isoxazole torsional angle significance for toxicity. On the other hand, addition of two methoxy groups to both meta positions most likely lacks any substantial effect on the torsional angle, which implies another mechanism of toxicity avoidance. Activity and improved safety of the novel inhibitors should be confirmed in animal models before any decisive conclusions on the effects of structural modifications on the hit molecule can be made. In addition, other mechanisms of toxicity should be studied with relevant cell-based assays.
  • Auno, Samuli (2019)
    Heart failure is a disease of major social and economic impact. The disease is most commonly onset by extensive cardiomyocyte death following a myocardial infarction. Five-year mortality of heart failure is higher than some cancers. Loss of cardiac muscle tissue leads to pathological thickening and fibrosis of the left ventricular wall, which eventually further diminish cardiac function. Cardiomyocytes hardly proliferate, which also exacerbates the problem. Several cell signalling pathways are indicated in pathological reprogramming of the heart and the exact significance of these pathways remains to be demonstrated. Treatment strategies based on renewing cardiac muscle, such as direct injection of stem cells into the myocardium, have failed to reach clinically significant effects on heart failure patients. Direct inhibition of pathological cardiac reprogramming by using small molecule modulators remains as an auspicious strategy to treat heart failure. GATA4, or GATA binding protein 4, is a transcription factor expressed mainly in heart, lung, intestine, gonad and liver tissues, which regulates tissue renewal and cell proliferation by controlling protein transcription. GATA4 binds to GATA sequences in DNA with two zinc finger moieties and enables transcription of target genes. Interactions of GATA4 and several other transcription factors are in central role of guiding heart development, hypertrophy and fibrosis. One of these transcription factors is NKX2-5, which synergistically interacts with GATA4. Inhibition of this interaction in rat myocardial infarction model has been shown to protect against development of heart failure. A screening campaign against the transcriptional synergy of GATA4 and NKX2-5 found potent small molecule inhibitors of this interaction, but these compounds are characterised with stem cell toxicity. The aim of the study was to design and synthesise novel derivatives of GATA4-NKX2-5 synergy inhibitor hit molecule with reduced stem cell toxicity. Modifications on the phenyl ring of the hit molecule were designed, which either increase electron density of the ring or possibly alter the torsional angle between the phenyl and isoxazole ring moieties. Activity of the compounds was studied on a luciferase reporter gene system in COS-1 cells and toxicity was analysed on IMR90 human induced pluripotent stem cell line. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) bromide and lactate dehydrogenase (LDH) assays were selected to measure toxicity on stem cells. Stem cell toxicity of several previously synthesised compounds was assayed in parallel with the novel derivatives. Ten novel derivatives were designed, synthesised and assayed. Four of the new compounds, a mono-ortho-methyl, a di-ortho-methyl, a di-meta-methoxy and cyclohexyl derivatives were found to be equipotent inhibitors of reporter gene activity compared to the hit compound. Additionally, the mono-ortho-methyl, di-ortho-methyl and di-meta-methoxy derivatives were less toxic to stem cells than the hit molecule in the MTT assay. Several other derivatives were found to be less toxic, but also non-active in the luciferase assay. None of the studied compounds exhibited notable necrotic toxicity on stem cells, as examined by the LDH assay. According to this study it may be concluded that substituents of the hit molecule phenyl ring may be altered to decrease stem cell toxicity of the compound. Some of the alterations, most notably substituents in the para-position of the phenyl ring and substitution of the phenyl ring with smaller saturated hydrocarbon rings, diminish the activity of the hit compound. Remarkable toleration of ortho-substitution reinforces the hypothesis of phenyl-isoxazole torsional angle significance for toxicity. On the other hand, addition of two methoxy groups to both meta positions most likely lacks any substantial effect on the torsional angle, which implies another mechanism of toxicity avoidance. Activity and improved safety of the novel inhibitors should be confirmed in animal models before any decisive conclusions on the effects of structural modifications on the hit molecule can be made. In addition, other mechanisms of toxicity should be studied with relevant cell-based assays.