Skip to main content
Login | Suomeksi | På svenska | In English

Finding groups in Zariski-like structures

Show simple item record

dc.date.accessioned 2014-04-29T07:35:31Z und
dc.date.accessioned 2017-10-24T12:21:27Z
dc.date.available 2014-04-29T07:35:31Z und
dc.date.available 2017-10-24T12:21:27Z
dc.date.issued 2014-04-29T07:35:31Z
dc.identifier.uri http://radr.hulib.helsinki.fi/handle/10138.1/3651 und
dc.identifier.uri http://hdl.handle.net/10138.1/3651
dc.title Finding groups in Zariski-like structures en
ethesis.discipline Mathematics en
ethesis.discipline Matematiikka fi
ethesis.discipline Matematik sv
ethesis.discipline.URI http://data.hulib.helsinki.fi/id/44bc4f03-6035-4697-993b-cfc4cea667eb
ethesis.department.URI http://data.hulib.helsinki.fi/id/61364eb4-647a-40e2-8539-11c5c0af8dc2
ethesis.department Institutionen för matematik och statistik sv
ethesis.department Department of Mathematics and Statistics en
ethesis.department Matematiikan ja tilastotieteen laitos fi
ethesis.faculty Matematisk-naturvetenskapliga fakulteten sv
ethesis.faculty Matemaattis-luonnontieteellinen tiedekunta fi
ethesis.faculty Faculty of Science en
ethesis.faculty.URI http://data.hulib.helsinki.fi/id/8d59209f-6614-4edd-9744-1ebdaf1d13ca
ethesis.university.URI http://data.hulib.helsinki.fi/id/50ae46d8-7ba9-4821-877c-c994c78b0d97
ethesis.university Helsingfors universitet sv
ethesis.university University of Helsinki en
ethesis.university Helsingin yliopisto fi
dct.creator Kangas, Kaisa
dct.issued 2014
dct.language.ISO639-2 eng
dct.abstract We study quasiminimal classes, i.e. abstract elementary classes (AECs) that arise from a quasiminimal pregeometry structure. For these classes, we develop an independence notion, and in particular, a theory of independence in M^{eq}. We then generalize Hrushovski's Group Configuration Theorem to our setting. In an attempt to generalize Zariski geometries to the context of quasiminimal classes, we give the axiomatization for Zariski-like structures, and as an application of our group configuration theorem, show that groups can be found in them assuming that the pregeometry obtained from the bounded closure operator is non-trivial. Finally, we study the cover of the multiplicative group of an algebraically closed field and show that it provides an example of a Zariski-like structure. en
dct.language en
ethesis.language.URI http://data.hulib.helsinki.fi/id/languages/eng
ethesis.language English en
ethesis.language englanti fi
ethesis.language engelska sv
ethesis.thesistype Licentiatavhandling sv
ethesis.thesistype Lisensiaatintyö fi
ethesis.thesistype Licenciate thesis en
ethesis.thesistype.URI http://data.hulib.helsinki.fi/id/thesistypes/licenciatethesis
dct.identifier.urn URN:NBN:fi-fe2017112252518
dc.type.dcmitype Text

Files in this item

Files Size Format View
lisurivalmis.pdf 1.480Mb PDF

This item appears in the following Collection(s)

Show simple item record