dc.date.accessioned |
2014-04-29T07:35:31Z |
und |
dc.date.accessioned |
2017-10-24T12:21:27Z |
|
dc.date.available |
2014-04-29T07:35:31Z |
und |
dc.date.available |
2017-10-24T12:21:27Z |
|
dc.date.issued |
2014-04-29T07:35:31Z |
|
dc.identifier.uri |
http://radr.hulib.helsinki.fi/handle/10138.1/3651 |
und |
dc.identifier.uri |
http://hdl.handle.net/10138.1/3651 |
|
dc.title |
Finding groups in Zariski-like structures |
en |
ethesis.discipline |
Mathematics |
en |
ethesis.discipline |
Matematiikka |
fi |
ethesis.discipline |
Matematik |
sv |
ethesis.discipline.URI |
http://data.hulib.helsinki.fi/id/44bc4f03-6035-4697-993b-cfc4cea667eb |
|
ethesis.department.URI |
http://data.hulib.helsinki.fi/id/61364eb4-647a-40e2-8539-11c5c0af8dc2 |
|
ethesis.department |
Institutionen för matematik och statistik |
sv |
ethesis.department |
Department of Mathematics and Statistics |
en |
ethesis.department |
Matematiikan ja tilastotieteen laitos |
fi |
ethesis.faculty |
Matematisk-naturvetenskapliga fakulteten |
sv |
ethesis.faculty |
Matemaattis-luonnontieteellinen tiedekunta |
fi |
ethesis.faculty |
Faculty of Science |
en |
ethesis.faculty.URI |
http://data.hulib.helsinki.fi/id/8d59209f-6614-4edd-9744-1ebdaf1d13ca |
|
ethesis.university.URI |
http://data.hulib.helsinki.fi/id/50ae46d8-7ba9-4821-877c-c994c78b0d97 |
|
ethesis.university |
Helsingfors universitet |
sv |
ethesis.university |
University of Helsinki |
en |
ethesis.university |
Helsingin yliopisto |
fi |
dct.creator |
Kangas, Kaisa |
|
dct.issued |
2014 |
|
dct.language.ISO639-2 |
eng |
|
dct.abstract |
We study quasiminimal classes, i.e. abstract elementary classes (AECs) that arise from a quasiminimal pregeometry structure. For these classes, we develop an independence notion, and in particular, a theory of independence in M^{eq}. We then generalize Hrushovski's Group Configuration Theorem to our setting. In an attempt to generalize Zariski geometries to the context of quasiminimal classes, we give the axiomatization for Zariski-like structures, and as an application of our group configuration theorem, show that groups can be found in them assuming that the pregeometry obtained from the bounded closure operator is non-trivial. Finally, we study the cover of the multiplicative group of an algebraically closed field and show that it provides an example of a Zariski-like structure. |
en |
dct.language |
en |
|
ethesis.language.URI |
http://data.hulib.helsinki.fi/id/languages/eng |
|
ethesis.language |
English |
en |
ethesis.language |
englanti |
fi |
ethesis.language |
engelska |
sv |
ethesis.thesistype |
Licentiatavhandling |
sv |
ethesis.thesistype |
Lisensiaatintyö |
fi |
ethesis.thesistype |
Licenciate thesis |
en |
ethesis.thesistype.URI |
http://data.hulib.helsinki.fi/id/thesistypes/licenciatethesis |
|
dct.identifier.urn |
URN:NBN:fi-fe2017112252518 |
|
dc.type.dcmitype |
Text |
|