Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by department "Bio- ja ympäristötieteellinen tiedekunta"

Sort by: Order: Results:

  • Holappa, Katri (2018)
    Staphylococcus aureus is a commensal bacterium in humans and approximately 30% of healthy people carry it as part of their microbiome, in the nasal cavity and skin, without any harm. However, it is an opportunistic pathogen that causes severe infections in immunocompromised and hospitalized patients. Typical infections caused by S. aureus are wound and skin infections, pneumonia and urinary tract infections in people with a medical implanted device such as for example a catheter. S. aureus has gained resistance to virtually all antibiotics over the years of excessive antibiotic consumption, making treatment nearly impossible in some cases. MRSA, methicillin resistant S. aureus, is a worldwide problem in hospitals and the mortality rate is still rising. One of the most common MRSA lineages is USA300, a community-acquired MRSA, which is notorious not only for its antibiotic resistance but also for its ability to form prolific biofilms. Biofilm production combined with antibiotic resistance complicates treatment of S. aureus even further. A detailed understanding the molecular mechanisms of biofilm formation might bring us closer to a cure for infections caused by MRSA biofilms. The study comprised two parts. First, characterize the phenotype of the mutants under static and dynamic conditions, test the minimal inhibitory concentrations (MIC’s) for antibiotics and verify the gene knockout by real-time RT-PCR. Second, study gene function by transduction to the parental strain USA300-UAS391 EryS and a MRSA strain TCH1516 EryS to study the gene function in a different bacterial background. The methods used were cell culturing for static and dynamic biofilm as well as growth curve, fluorescence microscopy, antibiotic susceptibility testing and real-time RT-PCR. In total seven strains were selected for characterization. The chosen seven knockouts were ΔHAD (HAD-superfamily hydrolase, subfamily IA, variant 1), non-coding region, ΔausA (non-ribosomal peptide synthetase), ΔoppA (Oligopeptide ABC transporter substrate-binding protein), ΔclfB (clumping factor B), ΔampA (cytosol aminopeptidase), and ΔpgsA (CDP-diacylglycerol--glycerol-3-phosphate 3-phosphatidyltransferase). General characterization showed a few changes in biofilm formation for the genes ΔoppA, ΔausA, ΔHAD and ΔpgsA. Especially ΔpgsA is interesting because of increased ciprofloxacin resistance. The real-time RT-PCR showed some altered gene expression patterns, but no connection to poor biofilm formation. With fluorescence microscopy the growth patterns of USA300 transposon mutant strain biofilms could be described. To verify the results of the characterization, further experimentation is needed, such as RNA sequencing and complementation. Also expanding the studies to other gene hits of the screening is recommended.
  • Alburkat, Hussein (2019)
    LCMV Lymphocytic choriomeningitis virus is a rodent-borne pathogen belongs to Arenaviridae family. Most of the studies have referred Mus musculus as the main reservoir of the LCMV. It has been detected in pet rodents, laboratory rodents, and wild mice. Humans be infected with LCMV through the ingestion or inhalation of sources contaminated with rodent feces, urine, or both. LCMV infection can be asymptomatic, present with mild symptoms, or it can cause aseptic meningoencephalitis (AME) and teratogenic effects in infants. However, clinical cases of LCMV infection have been rarely reported, and there is only fragmental knowledge on the presence and prevalence of LCMV infections around the world. Likewise, the genetic characteristics of the circulating LCMV strains and impact of LCMV on public health have remained poorly characterized. This study was performed in the Southern Iraq, due to the lack of comprehensive information about LCMV in this area. There were three main aims in this thesis. First, to assess the prevalence of LCMV among the healthy human population in the Nasiriyah region, southern Iraq. Second, to assess whether LCMV infections can be associated with neurological manifestations. Third, to characterize the genetic variation and evolutionary history of LCMV strains circulating in southern Iraq. Serum and CSF samples were collected from patients and healthy people in Nasiriyah governorate in the Southern Iraq. Serum samples were screened for LCMV using Immunofluorescence assay (IFA) to detect IgG and IgM antibodies. Real-time PCR was used to detect LCMV genome. In order to confirm the PCR positive samples, we sequenced these samples by Next-generation sequencing. The serological assay results showed 12.22% IgG prevalence of LCMV among healthy people and 7.36% IgG prevalence among patients with neurological symptoms. The IgM prevalence was 1.25% among the patients with acute infections. From symptomatic patients, we sequenced partial L-segments of two new LCMV strains. The phylogenetic tree constructed on the basis of all known LCMV strains suggested that these new LCMV strains from Iraq are genetically distant from the previously known LCMV strains and form a novel sub-cluster within LCMV species. This study is the first survey of LCMV in the Southern Iraq. LCMV appears to be a rather common infection in Iraq. I reported new strains of LCMV that are circulating in the study site and most likely is the causative agent of the central nervous system-associated clinical manifestations in these patients. For future work, I’m aiming the detection of other Arenaviruses spreading in the Southern Iraq.
  • Sultana, Nasrin (2020)
    Tiivistelmä – Referat – Abstract Plant lives and grows in variable environment and climate conditions. Everyday plants can be confronted with a variety of abiotic (temperature, light, salt, water availability) and biotic stress (pathogens, insects etc). These abiotic and biotic stress can halt plant growth and influence crop productivity. Plant has evolved signaling mechanism and different responses to adapt or respond with these unfavorable environmental conditions. Our group’s previous research identified a new mutant in the model plant Arabidopsis thaliana with a striking phenotype – when the plants ages it progressively becomes yellow and eventually the entire plant is white. The mutant was named “white” after its striking appearance. The phenotype is associated with increased accumulation of mRNA transcript for stress and senescence regulated genes. Mapping of the mutation identified a 4 bp deletion in a gene EGY1 that encodes a metalloprotease located in the chloroplast. To identify molecular mechanisms that regulate this unusual type of premature senescence, a suppressor mutants screen was performed in the white mutant, and three suppressors that restore normal appearance to the plant was identified. Mapping of one of these suppressors, identified a mutation in STAY GREEN1 (SGR1) as a likely candidate. SGR1 encodes the protein that catalyze the first step in chlorophyll breakdown, removal of Mg2+ from chlorophyll. The overall aim of my master thesis was to understand the molecular mechanisms behind the development of the age and chlorophyll related phenotypes in the white mutant and its two suppressors S1 and S2. Furthermore, with gene expression analysis, plant stress and senescence responses were studied in white, S1 and S2. By complementation method I proved that mutations in SGR1 gene caused the development of suppressor mutant phenotype and restoration of wild type allele of SGR1 gene restore white phenotype in suppressor mutant. Measurements of chlorophyll concentration provided further evidence that the mutation in SGR1 stabilizes the suppressor mutant phenotype, stops chlorophyll breakdown and keep the leaves green. Gene expression study using qPCR with marker genes provided insight of molecular changes within these phenotypes.
  • Qureshi, Talha (2019)
    The TTN gene encodes a giant muscle protein called titin that regulates the function of muscle sarcomere and interacts with several other muscle proteins. Mutations in TTN are associated with a broad range of skeletal and cardiac muscle disorders termed titinopathies. Previous studies have shown the importance of unusual TTN splicing events in patients with TTN-related cardiomyopathies and muscular dystrophies. In this project, we characterized eight TTN splicing variants to further expound on the pathogenesis of titinopathies and to enhance the diagnostic accuracy for patients with TTN mutations. In addition, we also made a comparative analysis of five different RNA/cDNA sequencing techniques to extrapolate on which approach is most suitable to study splicing variants in TTN gene. Skeletal muscle samples of six patients were analyzed in this study who were previously detected with TTN variants in a compound heterozygous state from a targeted next-generation sequencing assay. Our results from traditional Sanger sequencing methods, second-generation (Illumina RNA-Sequencing) and third-generation sequencing (Single-molecule real-time sequencing) methods showed distinct splicing events in the form of partial or complete exon skipping, intron retention, and in few instances showed multiple splicing effects rendered by a single variant. Complying with the guidelines of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology, the splicing variants were classified as pathogenic, likely pathogenic or variant of uncertain significance primarily on the basis of our experimental data. To address which sequencing method is most promising for analyzing TTN splicing variants, Illumina RNA Sequencing is very efficient, though, the combination of Illumina RNA Sequencing with long-read sequencing could be ideal. Our results further demonstrate that a near full-length titin is vital for survival until birth, and further studies are needed to understand the pathophysiology mechanism of congenital titinopathies.
  • Lehtonen, Valtteri (2020)
    Fluctuating light conditions can cause light stress for plants. The photosynthetic apparatus can be damaged by the excess light. Light stress causes formation of reactive oxygen species in chloroplasts. Arabidopsis thaliana’s mutant radical induced cell death1 (rcd1) is tolerant to this stress. In my thesis I used a compound called methyl viologen which causes the formation of reactive oxygen species in chloroplasts. It has been used as a herbicide. By using this compound, we can make the light stress worse and see bigger differences between the rcd1 mutant and the wild type. We identified the causative gene of rcd1’s chloroplastic stress tolerance, clarified the dependence of growth light intensity for chloroplastic stress tolerance and explored possible structural differences at the cellular level between the wild type and rcd1. Finding the genes that prevent light stress would allow a light stress tolerant crop production which could make food production easier in hot and dry areas of the world. My thesis is a part of a screening study where rcd1 mutants were screened for lowered tolerance to light stress. The amount of stress of the leaves was defined by measuring the chlorophyll fluorescence. Two most promising lines which got damaged by methyl viologen were called #20 and #54. For these a backcrossing was made with the rcd1. Clear correlation was found from their offspring between the phenotype and the methyl viologen tolerance. The correlation was strongest in the line #20 so we focused on it. Small and yellowish pale individuals which resembled their parents were the most sensitive to methyl viologen. These individuals were selected for the sequencing. Candidate genes were in the chromosome 3. The most promising one was called AT3G29185 or BIOGENESIS FACTOR REQUIRED FOR ATP SYNTHASE1 (BFA1). We ordered bfa1 mutant’s seeds. We found that bfa1 mutant was itself sensitive to methyl viologen proving our observation. We discovered that methyl viologen tolerance is growth light dependent. The individuals that grew under higher intensity of light were more tolerant to methyl viologen in both the wild type and rcd1 mutant. We didn’t find structural differences at the cellular level by confocal microscopy. Thus, they can’t explain the differences in the methyl viologen tolerance.
  • Moliner, Rafael (2019)
    Classical and rapid-acting antidepressant drugs have been shown to reinstate juvenile-like plasticity in the adult brain, allowing mature neuronal networks to rewire in an environmentally-driven/activity-dependent process. Indeed, antidepressant drugs gradually increase expression of brain-derived neurotrophic factor (BDNF) and can rapidly activate signaling of its high-affinity receptor TRKB. However, the exact mechanism of action underlying drug-induced restoration of juvenile-like plasticity remains poorly understood. In this study we first characterized acute effects of classical and rapid-acting antidepressant drugs on the interaction between TRKB and postsynaptic density (PSD) proteins PSD-93 and PSD-95 in vitro. PSD proteins constitute the core of synaptic complexes by anchoring receptors, ion channels, adhesion proteins and various signaling molecules, and are also involved in protein transport and cell surface localization. PSD proteins have in common their role as key regulators of synaptic structure and function, although PSD-93 and PSD-95 are associated with different functions during development and have opposing effects on the state of plasticity in individual synapses and neurons. Secondly, we investigated changes in mobility of TRKB in dendritic structures in response to treatment with antidepressant drugs in vitro. We found that antidepressant drugs decrease anchoring of TRKB with PSD-93 and PSD-95, and can rapidly increase TRKB turnover in dendritic spines. Our results contribute to the mechanistic model explaining drug-induced restoration of juvenile-like neuronal plasticity, and may provide a common basis for the effects of antidepressant drugs.
  • Jenkins, Cherie (2020)
    Reptiles have long been studied in search of the mechanisms behind neuronal regeneration. This thesis delves into the regenerative areas of two emerging model species to the field of regenerative research: Pogona vitticeps (bearded dragon) and Pantherophis guttatus (corn snake). This fluorescent immunohistochemical study maps out and compares the constitutive proliferative zones in these two species to better define the focus of future comparative neurodegenerative experiments. A BrdU pulse chase experiment in conjunction with PCNA reveals proliferative zones in the lateral ventricular ependyma of both species. Stem cell niches were found in the ependymal lining adjacent to the medial cortex and dorsal ventricular ridge in both species, however, the nucleus sphericus ependyma was an active proliferative zone only in Pantherophis. Imaging of further markers in this study support the findings of the pulse chase experiment. High levels of the stem cell marker Sox2 was found in lateral ventricular ependymal cells in both species. The glial marker GFAP reveals a highly ordered array of radial glia in the cortical areas of Pogona, which is significantly reduced or absent in Pantherophis. And lastly the neuronal marker HU was found in the same cells that were BrdU positive and had migrated a short distance from the proliferative zones, which shows that the proliferative areas in the lateral ventricular lining do indeed produce neurons. The BrdU and PCNA marked cells were quantified in both species, and a brief comparison between the species showed that Pogona had a significantly higher number and concentration of proliferative cells in the proliferative zones than Pantherophis. Scattered BrdU positive cells that were neither neuronal nor positive for any other marker were also found scattered throughout the parenchyma of Pogona, and these cells remain uncharacterized. Differences between these two species are not surprising, as lizards are known to have better regenerative capabilities than snakes, however, more comparative research between these species is needed to gain further insight into the mechanisms behind their contrasting regenerative capabilities.
  • Korpela, Markus (2020)
    Gene therapy trials are becoming more common place with the first approved products having arrived onto markets within the last 5 years. Gene therapy trials have focused on diseases that are monogenic and curable through the reintroduction of autologous, gene-corrected hematopoietic stem cells with promising results. A popular method for gene-correction is through the integration of the wild-type gene into the patient’s genome with a class of retroviruses called lentivirus. APECED (autoimmune polyendocrinopathy candidiasis ectodermal dystrophy) is a rare, monogenic autoimmune disease that is caused by a recessive mutation within the AIRE gene coding region. APECED has a high prevalence within the Finnish population (1/25,000) and is theoretically curable through the transplantation of autologous gene-corrected hematopoietic stem cells. Therefore, creating and studying a lentivector carrying the endogenous AIRE promoter and coding region could provide insight and a preliminary foundation on how to begin to develop a viable gene therapy for APECED. The aim of this thesis was to generate and characterise the first lentivector containing the wildtype AIRE gene, specifically the proximal AIRE promoter and the AIRE open reading frame (ORF). The lentivector was constructed and then transfected into a human cell-line, HEK293T, from which qPCR and immunohistochemistry were used to detect for AIRE mRNA and protein, respectively. The presence of significant amounts of AIRE mRNA and protein indicated that the constructed plasmid was transcriptionally functional. It is the first plasmid to have Aire transcription regulated by its endogenous promoter and can provide future insight into gene regulation. As a lentiviral plasmid, it demonstrates the integrating of the AIRE gene into an existing lentiviral system and serves as a first step and a technical proof-of-concept in developing a gene therapeutic cure for APECED.
  • Keskinen, Timo (2020)
    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an inherited autosomal dominant disease that leads to cognitive impairment, vascular dementia and ischemic strokes. In CADASIL, vascular smooth muscle cells (VSMCs) degrade gradually and are replaced by connective tissue in the small and mid-sized arteries in the brain. Extracellular granular osmiophilic material (GOM) that surround the VSMCs are a unique feature in CADASIL. The causal gene behind CADASIL is Notch3, which encodes a transmembrane protein with a signaling function. There are over 200 cysteine-altering mutations that cause CADASIL in Notch3. The potential pathology causing mechanism is still unclear, but most likely the mechanism is linked to the aggregation of GOM deposits that are potentially toxic to VSMCs. This thesis project aimed to correct CADASIL causing c.475C>T mutation in Notch3 in different CADASIL cell lines with different CRISPR base editor systems. Another aim was to create induced pluripotent stem cell (iPSC) lines from a CADASIL patient-derived skin biopsy sample to be used in the creation of an in vitro disease model for CADASIL. RNA-based ABEmax base editor system was used to correct immortalized- and primary- CADASIL cell lines. DNA-based ABEmax base editor system was used as a positive control. Simultaneous pluripotent reprogramming and pathogenic CADASIL mutation correction were done in the same transfection during this project. The editing efficiencies were evaluated by Sanger sequencing the genomic target region before and after the transfection. The editing efficiencies were good in general compared to literature. They ranged from 27 % to 73 % target base editing efficiency depending on the editing system-, guide-RNAs - and electroporation parameters used. Confirmed proximal off-target effects were not detected, and distal off-target effects were not evaluated.
  • Pourjamal, Negar (2020)
    Tiivistelmä – Referat – Abstract Telomeres are cap shaped structures at the very end part of each chromosome that protect DNA from degradation or unwanted chromosome-chromosome attachments. Telomere lengths show considerable heterogeneity in different cells of the same cell population. Reasons for heterogeneitiy and mechanisms inside cells causing them are not fully understood. In this study, we explored the correlation between telomere length and different gene expressions. First, using FACS technique we sorted each single cell into each well of 96-well plate. Second, we used SYBR green based qPCR for telomere length measurement. Third, we used Illumina-seq for sequencing extracted mRNAs. [6] We found a set of genes that were in strong correlation with telomere length, giving opportunity to explore the biological pathways. We compared pathways between different samples and found strong connections between genes involved in viral cycles and immune system with extracted genes that were in high correlation with telomere. We found heterogeneity of telomere lengths and transcriptomes in different cell lines. Telomere related proteins, specifically those involved in shelterin complex, are expressed highly in cancer cell lines and LPS-stimulated monocytes compared to the non-stimulated monocytes. In our study, SLC38A2, PURB, UBR3, SSR1, NCAPH2, AIMP2, PHF21A genes were highly correlated with telomere in mutual way and can therefore be considered as new biomarkers/novel candidates for telomere-related studies. The importance of these genes has been reported in aging/mortality. Concurrent with our findings, a recent report also suggested that NCAPH2 plays role in regulating telomere stability and maintenance through its interaction with TERF. [65] We found new genes in correlation with telomere regulation, and our findings are therefore of high importance in research of cancer, neurodegenerative diseases and aging. Further studies are, however, required as our data is limited by small number of samples and inability to properly validate our technique.
  • Salminen, Ella (2020)
    The axolotl (Ambystoma mexicanum) has an astounding ability to regenerate entire lost body parts throughout its life. Significant progress has been made in recent years to understand the mechanisms of axolotl regeneration, but how the animal maintains its capacity for successful regeneration remains obscure. In mammals, the ability to repair damaged tissue drastically declines with age, in part due to the accumulation of senescent cells. However, in axolotls, the number of senescent cells does not increase upon aging. Low levels of chronic senescence in axolotls have been proposed to support their ability to regenerate even at an old age. Axolotls can efficiently clear senescent cells, but whether they can prevent the induction of senescence is not known. This thesis provides the first indication of a secreted anti-senescence activity from axolotl cells. Data presented here show that conditioned medium from cultured axolotl cells reduces senescence and increases proliferation in mouse embryonic fibroblast, a widely used model for spontaneous senescence. Remarkably, conditioned media from other tested cell types, namely cervical cancer cells and young mouse embryonic fibroblasts, did not considerably affect senescence, despite extensively increasing proliferation. Taken together, secreted factors from cultured axolotl cells seem to reduce senescence directly, and not by merely promoting proliferation. This observation forms a basis for future endeavors to determine whether preventing senescence facilitates regeneration in vivo.
  • Akhondzadeh, Soheila (2016)
    Background: Epithelial ovarian cancer is the most common type of ovarian cancer and is the most lethal gynecologic cancer due to its late diagnosis. Compared to ovarian cancer, endometrial carcinoma, as the most common gynecologic malignancy, is referred to as the “curable cancer”, as it can be detected early. As aberrant promoter methylation patterns are a common change in human cancer, detection of promoter methylation status may help in early diagnosis. In this study, we used a custom-designed methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) assay as a rapid and easy method, to simultaneously detect the methylation status of multiple genes in ovarian and endometrial cancer samples. Aims: To design and test an MS-MLPA assay for analyzing promoter methylation of four genes associated with ovarian and endometrial cancers. The selected genes were HNF1 homeobox B (HNF1β), Ten-eleven translocation 1(TET1), L1 cell adhesion molecule (L1CAM), and AT-rich interactive domain 1A (ARID1A). These genes are known to have expression changes by DNA methylation. Methods: The promoter DNA methylation patterns of these four genes were analyzed in 15 cancer cell lines and 5 normal cell lines and DNAs using bisulfite sequencing. Six synthetic probe pairs were designed and optimized by applying them to cancer and normal cell lines and normal DNAs and comparing the results with those of bisulfite sequencing. Finally, the MS-MLPA assay was performed on patient specimens according to the MRC-HOLLAND MS-MLPA general protocol and methylation frequencies were calculated from MS-MLPA data. Results and conclusion: The MS-MLPA assay gave accurate methylation results with the 170 samples assayed. The HNF1B, L1CAM, and TET1 Genes were observed methylated in tumor samples whereas they were not methylated in the normal samples or showed very little methylation, suggested to be favorable diagnostic markers. MS-MLPA robustly and sensitively detects the promoter DNA methylation status.
  • Deb, Debashish (2019)
    There is significant reduction in number of approved drugs for acute myeloid leukemia in recent years. Partially it may be due to the failure of discovery and validation approach to new drugs as well as the complexity of the disease. Ex vivo functional drug testing is a promising approach to identify novel treatment strategies for acute myeloid leukemia (AML). In ideal condition, an effective drug should eradicate the immature AML blasts, but spare non-malignant hematopoietic cells. However, current strategies like conventional cell viability assay fail to measure cell population-specific drug responses. Hence, development of more advanced approaches is needed. Using multiparameter, high-content flow cytometry (FC), we simultaneously evaluated the ex vivo sensitivity of different cell populations in multiple (10) primary AML samples to 7 FDA/EMA-approved drugs and 8 drug combinations. Amongst the 7 tested drugs, venetoclax, cytarabine and dasatinib were very cytotoxic with venetoclax had the highest blast-specific toxicity, and combining cytarabine with JAK inhibitor ruxolitinib effectively targeted all leukemic blasts but spared non-malignant hematopoietic cells. Taken together, we show that the ex vivo efficacy of targeted agents for specific AML cell population can be assessed with a cell phenotype, FC-based approach. Furthermore, we put an effort to analyze the potential of this assay and biomarkers to predict the clinical outcome of individual patients and future perspectives.
  • Virtanen, Kira (2019)
    In addition to Chlamydiaceae, eight novel families have been discovered to belong to the phylum Chlamydiae. The eight families are Parachlamydiaceae, Waddliaceae, Criblamydiaceae, Parilichlamydiaceae, Rhabdochlamydiaceae, Simkaniaceae, Clavichlamydiaceae and Piscichlamydiaceae.These families are phylogenetic relatives to Chlamydiaceae, share the intracellular developmental cycle and are widely distributed in nature and are therefore referred to as environmental Chlamydiae or Chlamydia related bacteria (CRB). CRB have a broad range of potential hosts. All families except Criblamydiaceae cause disease in animals and infect for example fish, arthropods and cattle. Families Parachlamydiaceae, Waddliaceae, Rhabdochlamydiaceae and Simkaniaceae are also shown to cause respiratory disease and adverse pregnancy outcomes in human. Free-living amoebae (FLA) are natural hosts of some CRB. CRB are able to survive and replicate inside of FLA that offers protection and nutrients for CRB. It has been suggested that CRB are transported to new environments inside of FLA. CRB DNA has previously been found on human skin (Hokynar et al. 2016, Hokynar et al. 2018, Tolkki et al. 2018) and in our water distribution system. CRB distributed to our tap- and shower water systems inside of FLA (Thomas and Ashbolt 2011) could be a potential rout of transmission of CRB DNA to human skin. As the diversity and size of the CRB group is large and CRB are very laborious to grow in vitro, it is challenging to detect CRB and to study their pathogenicity. Detection of CRB in clinical and environmental samples is mainly based on PCR methods. A non species-specific PCR method targeting Chlamydiales 16S rRNA (PanChl16S), that in theory amplifies all known CRB, has successfully been used in detection, but post PCR sequencing of the amplicon is required to identify the species. Also, more specific quantitative PCRs have been designed to detect specific families or species of Chlamydiae. However, the volume of clinical specimens available is often limited and allows only few separate analyzes. Due to the challenges identified with detection of CRB, efficient multiplex PCR assays would save time and resources and would be useful tools when detecting CRB DNA. The objective of the work was to explore the possibility of applying multiplexed analyzes to a limited specimen volume effectively. One aim of this thesis was to set up two multiplex PCR assays for detection of seven different CRB and a multiplex PCR for detection of three different FLA. Another aim of the work was to analyze the possibility of CRB to be transported to human skin from our water distribution system inside of FLA. In this thesis we set up two multiplex PCR assays for detection of CRB reference strains P. acanthamoebae, C. sequanensis, S. negevensis, Protochlamydia spp., Rhabdochlamydia spp., W. chondrophila and E. lausannensis. We also set up two PCR assays for detection of three different FLA reference strains: Acanthamoeba spp., Vahlkampfiidae spp., and V. vermiformis. We succeeded in developing two real-time multiplex PCR assays for detection of CRB DNA and two real-time PCR assay for detection of FLA DNA. Variability between replicates for each PCR target was low and the detection limit (100%) for each target ranged from 50-500 control plasmid copies per PCR reaction. The R2-value for each target was ≥0.98 and the reaction efficiency for each target ranged from 82-111%. Samples collected from showerheads (n=18) and water filters (n=2) as well as skin swabs (n=27) were studied with these newly established assays and PanChl16S PCR. The results obtained with the multiplex assays developed in this study were similar to the results obtained with the PanChl16S. CRB DNA was detected in 67% of the showerhead samples, in 100% of the water filter samples and in 31% of the skin swabs. Amoebae DNA was detected in 80% of the showerhead samples. Our results confirm earlier observation that Chlamydiae DNA is frequently observed in human skin swabs and suggest that CRB could be transported to human skin from our water distribution system inside of FLA.
  • Mehtonen, Monica (2019)
    The Baltic ringed (Pusa hispida botnica) and grey seal (Halichoerus grypus) populations have experienced dramatic changes in their abundances since the early 20th century, when their populations were much larger than today but since then have declined due to over exploitation and reproductive challenges linked to environmental pollutants. Both populations have however, begun to recover, and their numbers have increased since the 1970s. This increase has led to more seal-inflicted damages to coastal fisheries resulting in the demand to control their populations. In Finland, fishermen have reported significant economic losses, and many consider seals as the main threat to their livelihood. However, our knowledge on the diet composition and foraging behaviour of Baltic ringed and grey seals in Finnish sea area is lacking. In order to achieve sustainable seal management, more information on their diet is thus needed. Therefore, to shed light on the diet composition of Baltic seals in Finland, I examined the stomach contents from 156 ringed and 73 grey seals collected in 2017 across the Finnish sea area. Furthermore, I analysed dietary differences between demographic factors (i.e. age and sex), and seals from different geographic regions. A total of 15 prey taxa, of which 13 fish species or groups were identified. Ringed seal diet was dominated by benthic isopod Saduria entomon that was recovered from over half of the stomachs. In addition to Saduria entomon, herring (Clupea harengus) were the most important fish species consumed. Other important prey were gobies (Gobiidae), smelt (Osmerus eperlanus) and common whitefish (Coregonus lavaretus). In terms of biomass, common whitefish became the most important prey whereas in numbers gobies dominated the diet. For grey seals, herring were the most common and numerous prey consumed that made up most of their diet. Other common species were sprat (Sprattus sprattus) and smelt. Other prey did not contribute substantially to grey seal diet. Additionally, the results of this study showed differences in diet composition between seals of different age and sex.
  • Cowlishaw, Mark Cary (2020)
    Upregulation of specific helpful proteins represents a possible method for preventing or treating human diseases. Endogenous upregulation (knockup) is the increase of a gene's expression only in cells in which it is already expressed, thus avoiding physiologically abnormal spatiotemporal patterning. A gene's three prime untranslated region (3′UTR) affects protein expression through stability regulation of RNA already transcribed, which suggests 3′UTR modification as a viable route for endogenous upregulation. Mammalian model organisms can be generated in order to test the effects of different 3′UTR modifications, but at great cost of time, effort, and money. If able to predict in advance with an in vitro assay whether an in vivo modification would cause a desirable or undesirable change, these costs could be substantially reduced. In this thesis project, an in vitro assay was used to compare the protein expression influence of twenty neurodegeneration-relevant mouse genes' 3′UTRs to that of a flip-excision cassette (flex-cassette) previously used for in vivo conditional knockup. The assay used was the Promega Dual-Luciferase Reporter Assay, in which plasmids expressing Renilla and Firefly luciferase as reporter and internal control are co-transfected into in vitro cells, then each luciferase's expression measured with its respective substrate and a luminometer. Transfections were carried out in three-well replicates and on multiple days. The aims of the project were the evaluation of the assay's ability to predict in vivo results, the suggestion of 3′UTRs which could be upregulated in vivo by the conditional knockup flex-cassette, and the identification of any trends in 3′UTR-based protein expression influence according to gene function. A number of gene 3′UTRs were identified which were either candidates for flex-cassette upregulation or candidates for use in the flex-cassette to upregulate other genes. However, the flex-cassette's in vitro results were only partially consistent with its previous in vivo results. Specifically, the lox sites in the flex-cassette was observed to lower expression level to a degree not observed in vivo. Additionally, in the course of the project a number of possible workflow improvements were identified, for which suggestions have been made in the text. As such, this in vitro approach requires further study in order to determine suitability for prediction of in vivo 3′UTR behaviour.
  • Hackman, Jenny (2020)
    Finland är ett skogsrikt land, men de existerande skogarna utgör dock kvalitativt enformiga habitat och det råder brist på varierade habitat i form av till exempel blandskog, skogar i naturligt tillstånd och äldre skog. Enligt tidigare studier utgör äldre skogar viktiga habitat för många skogslevande arter och mångfalden i skogarna minskar som en följd av habitatförstörelse. Vidare påvisar forskning att skogarna i Finland är ojämnt skyddade och merparten av skogsskyddet förekommer i norra Finland på statlig mark. Forskning påvisar att dagens moderna skogsbruksmetoder bidrar till att våra skogar är artfattiga och till de största hoten mot mångfalden i våra skogar klassas skogsbruket samt klimatförändringen. Att skogslandskapet i Finland utarmas är ett stort problem i och med att mångfald ökar ett ekosystems beständighet mot yttre störningar. För att åtgärda förlusten av biologisk mångfald har genvägar eller verktyg, med vars hjälp större arealer och flera arter samtidigt kan skyddas tagits fram. Till de här verktygen hör konceptet paraplyarter och en paraplyart är kortfattat en art med vars hjälp flera andra arter kan skyddas och vars förekomst indikerar på att ett lokalt habitat i närheten av paraplyarten är av hög kvalitet. Paraplyarter används explicit för att skydda habitat av hög kvalitet till exempel på områden där biodiversiteten är hög. Tidigare studier har visat att stora dagrovfåglar vanligen är effektiva paraplyarter i och med att deras boplatser kan associeras med en hög biodiversitet. Syftet med den här undersökningen är att klargöra huruvida skogslandskap i närheten av duvhökens (Accipiter gentilis) boplatser uppvisar en högre förekomst av vissa arter jämfört med kontrollområden. Kontrollområdena med vilka boplatserna jämfördes var av två slag: (a) äkta skogskontroller och (b) slumpmässigt utvalda skogskontroller. De äkta skogskontrollerna utgjordes av områden som kvalitativt motsvarade skogen intill duvhöksbon, medan de slumpmässigt utvalda skogskontrollerna utgjordes av skog av vilken typ som helst. För vart och ett av de här områdena undersöktes förekomsten av flygekorre (Pteromys volans) och blåbär (Vaccinium myrtillus). Förekomst av flygekorre karterades på basen av spillningsfynd och blåbärsrisets riklighet uppskattades via analyser av fotografier tagna över fältskiktet. Det insamlade materialet för båda arterna analyserades statistiskt med hjälp av LME - modeller. Resultaten påvisade att flygekorre förekom rikligare vid duvhökens boplatser än i de två kontrollskogarna. Flygekorrens habitatpreferenser överlappar till stor del med duvhökens och mina resultat överensstämmer med tidigare forskning som har påvisat att flygekorren har en nytta av duvhökens närvaro i form av skydd mot predation från nattaktiva rovfåglar. Flygekorren prefererar således samma skogstyper som duvhöken och intressant nog verkar duvhökens närvaro i sig vara viktigare för flygekorren än själva skogstypen. Enligt resultaten från avhandlingen är det dock inte heller uteslutet att en annan art/egenskap tillsammans med duvhöken fungerade som en paraplyart för flygekorren. Blåbärsris däremot uppvisade en rikligare förekomst vid äkta skogskontroller och duvhöksskogarna var troligen överlag för lummiga för blåbärets trivsel, men blåbärsris förekom dock rikligt vid 50 m från boplatserna. Således kan slutsatsen dras att flygekorren kan skyddas i fall av att skogslandskap med duvhöksbon skyddas. Duvhöken kan även ses som ett verktyg för naturskydd eller som en indikator för skogslandskap med hög mångfald, i vilka flygekorre samt en del blåbärsris förekommer. Om vi i framtiden vill ha flygekorre och blåbär i våra skogar bör därmed äldre skogar bevaras i och med resultaten påvisar att nämnda arter inte verkar trivas i moderna ekonomiskogar. En tillämpning av resultaten kunde vara att bruka paraplyarter och förekomst av nyckelbiotoper för naturskydd simultant.
  • Partanen, Reeta-Maria (2020)
    There is a naturally reproducing Atlantic salmon population in the River Teno in northern Norway and Finland. The Teno population has a strong population structure and up to 28 subpopulations have been recognized. Estimation of effective population size is important in conservation of the subpopulations. Effective population size tells about genetic variation of a population and is among the most important concepts in conservation genetics. In this study, current and past effective population sizes of 28 subpopulations were estimated from high density SNP-data for 1137 individuals in total. The estimation was done with the linkage disequilibrium method and the effects of using different assumptions were studied. Current estimated effective population sizes in subpopulations were generally low and ranged from around nine to 272 individuals. Only four populations had a current effective population size bigger than 50 individuals. Past effective population sizes showed a clear declining trend from the most distant generations in all populations. The choice between physical and linkage map as well as female, male or average linkage map had an effect to estimates. Also, different sample size corrections resulted in different estimates. Furthermore, effective population size was estimated with temporal method in three populations. It was detected that the estimates from temporal and linkage disequilibrium method were different from each other. The results of this study suggest that Teno Atlantic salmon subpopulations have declined over the past 150 generations and are in risk of losing genetic variation due to current low effective population size. This should be taken into account in conservation plans.
  • Shrestha, Subhash (2019)
    SH3 domains are relatively short and most common of modular protein binding domain in eukaryotes. They are present in proteins that play critical role in various cell signaling and regulatory pathway. Human genome encoded 296 types of SH3 domains have been successfully displayed in phagemid using classical PelB signal sequence and used for finding novel binding partners. However, given its shorter length and tendency to fold rapidly it is useful to understand if signal sequence that directs SH3 translocation through Co translational pathway is much more efficient in displaying these domains than the one that translocate protein post translationally. For the study, PelB signal sequence of phagemid displayed human SH3 library was replaced with DsbA signal sequence using round the horn PCR method (Site directed mutagenesis) and verified with agarose gel electrophoresis. Subsequently, infective phages were prepared. The infective titer of newly generated DsbAss based library was found to be higher than that of PelBss based library. Both libraries normalized at 1 x1012cfu/ml were panned against known protein targets MC159(Molluscum contagiosum 159), NCF2(Neutrophil cytosolic factor 2) and NS1(Nonstructural protein 1). Enrichment with DsbAss library was moderately higher for each antigen. However sequencing results showed that results for proteins panned with PelBss library were congruent with previous finding whereas DsbAss library selected some potential weak binders and nonspecific ones along with strong binders. Panning results of DsbAss with NCF2 was striking as all clones selected were NCF1 SH3 domains. Although further functional study was not performed. Based on the study, we concluded that both libraries have its own advantage. PelBss based library can be used for finding strong binders while DsbAss based library can be used for studying weaker interaction and functional role of NCF2-NCF1 SH3 domain interaction is still an open question.
  • Sofieva, Svetlana (2019)
    Nemaline myopathy (NM) is a rare congenital disorder, the most common of congenital myopathies. It affects primarily the skeletal muscles and it is recognised by nemaline bodies in muscle tissue samples and muscle weakness. Mutation of eleven genes are known to lead to NM and the most frequent disease-causing variants are either recessive NEB variants or dominant ACTA1 variants. Variants in NEB are thought to be well tolerated and only 7% of them are hypothesized to be pathogenic. Over 200 pathogenic NEB-variants have been identified in Helsinki and the majority occurred in patients as a combination of two different variants. The missense variants were speculated to have a modifying effect on pathogenicity by affecting nebulin-actin or nebulin-tropomyosin interactions. Nebulin is a gigantic protein coded by NEB and is one of the largest proteins in vertebrates. It is located in the thin filament of the skeletal muscle sarcomere. Enclosed by terminal regions, nebulin has an extensive repetitive modular region that covers over 90% of the protein. The repetitive zone comprises of 26 modules called super repeats (SR). SRs consist of seven simple repeats. There are seven conserved SDXXYK actin-binding sites at each super repeat, one per simple repeat, and one conserved WLKGIGW tropomyosin-binding site. Due to its enormous size and highly repetitive sequence, nebulin is one of the least studied proteins in vivo, in vitro or in silico. In the NM patient database used for this study, there are 70 families with verified pathogenic mutations and in 30 of them, there were additional missense variants in NEB. These missense variants can be pathogenic modifying factors or have no impact on the phenotype. Seven missense variants were selected to study the effect of these mutations on actin-binding capacity compared to wild-type nebulin using the SR panel constructed previously by Laitila and Lehtonen. Also, due to the differences in actin-binding capacity of SRs compared to each other, one of the aims was to determine whether corresponding mutations in different SRs would have a similar or different effect on actin-binding capacity. For this aim, one missense mutation in the strongly actin-binding SR 1, and one in the weakly actin-binding SR 7 were selected from the NM database, and corresponding variants were created. Also, an in-frame deletion in SR7 found in the ExAC database and the corresponding mutation in SR1 were constructed for this study. The actin-binding strength was determined using actin co-sedimentation assay and actin affinity assay. The results for co-sedimentation assay indicate that missense variants can have an effect on nebulin-actin interactions and, therefore, can be a possible cause for NM. The corresponding mutations had no correlation in their effect on actin-binding strength, just the opposite. S1-m-2 decreased actin-binding strength of SR1 and S7-m-2 had no effect on SR7. Likewise, S7-m-1 and S7-del-1 decreased actin-binding strength of SR7 and corresponding mutations had no effect on SR1. The selected missense mutations found in NM patients in SRs 2 and 4 decreased actin-binding strength, if located at the actin-binding sites and in SR 10 increased the actin-binding strength, if located at the actin-binding site. The change in actin binding strength was defined as significant if the P-value was below 0.005. The more accurate affinity assay was performed as a trial only for S16 and S16-m-1, a variant at a tropomyosin-binding site close to an actin-binding site. It indicated a difference in actin-binding affinity missed by the actin co-sedimentation assay. The results are preliminary, but show big promise and should be optimized and implemented in the future missense mutation affinity studies. In an attempt to understand if the effect missense mutations have on nebulin-actin interaction is based on the change in nebulin structure, the 3D-structure of each produced fusion protein was predicted in silico. Considering that the variants were produced as GST-fusion proteins, the position and effect of GST in them is also a point of interest. In order to predict the structure of these large proteins, a combined approach was implemented using I-TASSER (Iterative Threading ASSEmbly Refinement) software. The software uses ab initio modeling, threading methods and atomic-level structure refinement to build an accurate 3D-model of a protein from sequence. According to the predicted 3D models of the fusion proteins, the GST-part of the proteins folds into a globular structure and acts as a core around which the nebulin fragments fold. The GST does not bind to actin and is positioned on the inside, which indicates minimal effect on nebulin-actin interaction, but may be a reason for an alternative nebulin fragment folding. The accuracy of the default set of programs in software does not give the definitive answer of the possible effect missense mutations can have on structural changes. However, I-TASSER approach for 3D-modeling is promising with further software optimization and can possibly serve as an effective bioinformatic tool in the future.