Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by master's degree program "Ilmakehätieteiden maisteriohjelma (Atmospheric Sciences)"

Sort by: Order: Results:

  • Köhler, Daniel (2023)
    Numerical weather prediction models are the backbone of modern weather forecasting. They discretise and approximate the continuous multi-scale atmosphere into computable chunks. Thus, small-scale and complex processes must be parametrised rather than explicitly calculated. This introduces parameters estimated by empirical methods best fit the observed nature. However, the changes to the parameters are changing the properties of the model itself. This work quantifies the impact parameter optimisation has on ensemble forecasts. OpenEPS allows running automated ensemble forecasts in a scientific setting. Here, it uses the OpenIFS model at T255L91 resolution with a 20 min timestep to create 10-day forecasts, which are initialised every week in the period from 1.12.2016 to 30.11.2017. Four different experiments are devised to study the impact on the forecast. The experiments only differ in the parameter values supplied to OpenIFS, all other boundary conditions are held constant. The parameters for the experiments are obtained using the EPPES optimisation tool with different goals. The first experiment minimises the cost function by supplying knowledge regarding the ensemble initial perturbation. The second experiment takes a set of parameters with a worse cost function value. Experiments three and four replicate experiments one and two with the difference that the ensemble initial perturbations are not provided to EPPES. The quality of an ensemble forecast is quantified with a series of metrics. Root mean squared error, spread, and continuous ranked probability score are used with ERA5 reanalysis data as the reference, while the filter likelihood score is providing a direct comparison with observations. The results are summarised in comprehensive scorecards. This work shows that optimising parameters decreases the root mean square error and continuous ranked probability score of the ensemble forecast. However, if the initial perturbations are included in the optimisation the spread of the ensemble is strongly limited. It also could be shown that this effect is reversed if the parameters are tuned with a worse cost function. Nonetheless, when excluding the initial perturbations from the optimisation process, then a better model can be achieved without sacrificing the ensemble spread.
  • Leino, Henrik (2022)
    Low-level wind shear is a significant aviation hazard. A sudden reduction in the headwind along an aircraft flight path can induce a loss of lift, from which an aircraft may not be able to recover when it is close to the ground. Airports therefore use low-level wind shear alert systems to monitor wind velocities within the airport terminal area and alert of any detected hazardous wind shear. There exist three ground-based sensor systems capable of independently observing low-level wind shear: a Doppler weather radar-based, a Doppler wind lidar-based, and an anemometer-based system. However, as no single sensor system is capable of all-weather wind shear observations, multiple alert systems are used simultaneously, and observations from each system are integrated to produce one set of integrated wind shear alerts. Algorithms for integrating Doppler weather radar and anemometer wind shear observations were originally developed in the early 1990s. However, the addition of the Doppler wind lidar-based alert system in more recent years warrants updates to the existing radar/anemometer integration algorithms. This thesis presents four different replacement candidates for the original radar/anemometer integration algorithms. A grid-based integration approach, where observations from different sensor systems are mapped onto a common grid and integrated, is found to best accommodate central integration considerations, and is recommended as the replacement to the original radar/anemometer algorithms in operational use. The grid-based approach is discussed in further detail, and a first possible implementation of the algorithm is presented. In addition, ways of validating the algorithm and adopting it for operational use are outlined.
  • Aldana, Miguel Francisco (2021)
    Accuracy and general performance of weather radar measurements are of great importance to society due to their use in quantitative precipitation estimation and its role on flood hazard risks prevention, agriculture or urban planning, among others. However, radars normally suffer from systematic errors such as attenuation, misscalibration in Z field or bias in Zdr field, or random errors such as clutter, beam blockage, noise, non-meteorological echoes or non-uniform beam filling, which affect directly the rain rate estimates or any other relevant product to meteorologists. Impact of random errors is reduced by exploiding the polarimetric properties of polarimetric radars by identifying and classifying measurements according to their signature and a classification scheme based on the available polarimetric variables, but systematic errors are more difficult to address as they require a ’’true’’ or reference value in order to be corrected. The reference value can either be absolute or obtained from another radar variable. In reality, an absolute reference value is not feasible because we normally do not know what we are observing with the radar. Therefore, a way of assesing this issue is by elaborating theoretical relations between radar variables based on their consistency when measuring a volume with hydrometeors of known characteristics such as size and concentration. This procedure is known as self-consistency theory and it is a powerful tool for checking radar measurements quality and correcting offsets causing bias, misscalibration or attenuation. The theoretical radar variables themselves can be simulated using available T-Matrix scattering algorithms, that estimate the scattered phase and amplitude for a given distribution of drops of a given size. Information of distribution of drops of a given size, commonly referred as drop size distributions, can be obtained, for instance, from gauge or disdrometer measurements. Once the theoretical relations among radar variables are established, it is possible to check the consistency of, for instance, measured differential reflectivity with respect to differential reflectivity calculated as function of measured reflectivity, assuming the latter has been filtered properly, and any discrepancy between the observed and theoretical differential reflectivity can be thus attributed to offsets in the radar. This work thus presents a methodology for the revision of radar measurements filtering and quality for their improvement by correcting bias and calibration, using theoretical relations between radar variables through self-consistency theory. Furthermore, as the aforementioned issues are easier to track and resolve in the liquid rain regime of precipitation, this work presents a detailed description of methodologies to exclude ice-phased hydrometeors such as the melting layer detection algorithm and its operational implementation along with other complementary filters suggested in the literature. Examples of the melting layer detection and filtering as well as self-consistency curves for radar measurement performance evaluation are also provided.
  • Kiema, Sarai (2024)
    Ilmatieteen laitoksen ylläpitämä Suomen virallisten sademittarien havaintoverkko on harva ja sen laajentaminen vaatisi enemmän resursseja. Kansalaisten sadehavaintojen hyödyntäminen olisi yksi keino laajentaa havaintoverkkoa ja siten muun muassa parantaa sääennusteiden laatua. Tässä tutkielmassa selvitettiin kansalaisten Netatmo-kesäsadehavaintojen käyttökelpoisuutta Suomessa. Vuosien 2019–2022 kesä-, heinä- ja elokuun Netatmo-sadehavaintojen laatua tutkittiin vertailemalla niitä Ilmatieteen laitoksen automaattisadeasemien havaintoihin. Vertailua tehtiin tilastollisten suureiden, keskiarvon, korrelaation ja absoluuttisen keskivirheen, avulla. Ennen varsinaista analyysia pyrittiin rajauksilla selkeyttämään aineistoa sekä poistamaan siitä selvästi virheellisiä Netatmo-sadeasemia ja -havaintoja, kuten yli 150 mm:n tunti- ja yli 200 mm:n vuorokausisademäärät. Pääsääntöisesti Netatmo-sadehavainnot näyttävät tilastollisten suureiden valossa hyviltä, sillä esimerkiksi 75 % Netatmo- ja lähimpien Ilmatieteen laitoksen asemien välisistä vuorokausisateiden korrelaatioista oli vähintään 0.6. Netatmo-havaintojen välinen vaihtelu oli kuitenkin suurempi kuin Ilmatieteen laitoksen asemien havaintojen, mikä kertoo osan Netatmo-havainnoista olevan virheellisiä. Virheitä löytyi useita erilaisia. Yleisesti monien Netatmo-asemien havaittiin aliarvioivan sademäärää, koska keskimäärin Netatmo-asemat olivat mitanneet sateita vajaat 10 % vähemmän kuin niiden vertailuasemat. Lisäksi Netatmo-asemien havainnoissa oli huomattavasti enemmän pieniä 0.1 mm mittauksia kuin Ilmatieteen laitoksen vertailuasemilla eikä osa asemista ollut mitannut mitään 0.1 mm virhemittauksia lukuunottamatta. Jotkut Netatmo-asemat puolestaan mittasivat yksittäin tai jopa jatkuvasti virheellisiä hyvin suuria sademääriä. Osa asemista myös yliarvioi sademäärää, sillä asemien sateet korreloivat hyvin vertailuasemien sateiden kanssa ollen vain paljon suurempia. Toisaalta joidenkin Netatmo-asemien realistiset sadehavainnot oli mitattu eri aikoihin kuin vertailuasemien sateet, joten asemien koordinaatit voivat olla väärät. Välillä taas Netatmo-havaintojen laatu muuttui ajan myötä, sillä kyse on kansalaisten havainnoista. Asemat saattoivat ensin tuottaa hyviä havaintoja ja sitten huonoja tai päinvastoin. Kaikkiaan Netatmo-kesäsadehavainnot vaikuttavat käyttökelpoisilta, koska suurin osa havainnoista on hyviä. Netatmo-asemat myös saavat suuria sateita kiinni hyvin. Lisäksi huonoja havaintoja korrelaation perusteella tuottavat Netatmo-asemat ovat hajallaan eri puolilla Suomea ja hyviä asemia on kaikkialla enemmän. Koska virheellisiä Netatmo-asemia ja -havaintoja on silti varsin paljon, Netatmo-sadehavainnot tarvitsevat kattavaa laadun varmistusta ennen havaintojen hyödyntämistä. Laadun varmistusta voisi tehdä tämän tutkimuksen tavoin vertailemalla havaintoja tilastollisesti Ilmatieteen laitoksen asemien havaintoihin. Lisäksi Netatmo-havaintoja voisi verrata keskenään.
  • Mom, Bernd (2023)
    The parameterization of deep convection is simulated poorly over the Central and East Pacific. This could lead to issues in predicting the annual total precipitation in the tropics, such as the existence of a double intertropical convergence zone over the equatorial Pacific. Resolving tropical deep convection instead of parameterization leads to the presence of more linear systems. Observations over Atlantic indicate that shear-perpendicular lines (squall lines) propagate faster than shear- parallel lines, mainly due to their connection with the low-level vertical wind shear (VWS). The study examines the different movement speeds of mesoscale convective systems (MCSs) over the East- and West Pacific to determine whether this could explain the reason why climate models have problems with predicting deep convection. A higher proportion of fast moving MCSs (squall lines) could contribute to the prediction problems in the tropics. The MCS motion is determined by the sum of the mean wind and propagation speed. In squall lines, the MCS motion is mainly influenced by the propagation, which is associated with the low-level VWS. Therefore, the effect of the low-level VWS on the fast- and slow moving MCSs is also investigated. The Global High-Resolution Mesoscale Convective System Database is used, which provides infor- mation about the time, location and movement of MCSs. Additionally, ERA5 wind data is used to obtain the mean wind and VWS. Two specific areas over the northern equatorial Pacific are chosen to compare the different types of MCSs. These areas are over the East Pacific (120°W - 140°W and 5°N - 12°N) and West Pacific (140°E - 160°E and 0°N - 7°N). The movement speed is used to categorize the MCSs into three groups: slow moving MCSs (< 3 m/s), moderate moving MCSs (3 m s−1 − 7 m s−1) and fast moving MCSs (> 7 m/s). The study reveals that the share of the fast moving MCSs is 9.8% over the East Pacific and 13.8% over the West Pacific. This is only a 4 percent point difference between the two areas. Therefore, it is not shown that the fast moving MCSs contribute to the existing issues that models have in predicting the annual total precipitation over the East Pacific. Moreover, approximately 85-90% are categorized as slow- to moderate moving MCSs. Hence, the influence of fast moving MCSs is relatively small when compared to the other types. A difference is seen in the mean wind and VWS over the East Pacific, but do not explain the MCS motion vector. Therefore, the difference between fast- and slow moving MCSs cannot be explained by only the monthly averaged mean wind and low-level VWS over the East Pacific. Over the West Pacific, the mean wind direction and VWS are about the same in direction and speed. Therefore, the difference between fast- and slow moving MCSs is not explained by the low-level VWS over the West Pacific.
  • Suikkari, Riikka (2023)
    Tutkielmassa on selvitetty lumensyvyyden muutoksia ERA5-Land-uudelleenanalyysin antamille tuloksille ajanjaksolla 1950-2021. Datan analyysi ja käsittely on toteutettu Pythonilla. ERA5-Land:n etuihin lukeutuu muun muassa parempi erotuskyky kuin ERA5-uudelleenanalyysiin, mikä parantaa aineiston tarkkuutta huomattavasti. ERA5-Land ei suoraan käytä havaintoarvoja vaan lumensyvyys lasketaan muitten sääsuureitten, kuten lämpötilan ja sademäärän, aikasarjoja hyödyntäen. Näin ollen tutkielmassa käsiteltyihin suureisiin on sisällytetty muitakin suureita kuin vain lumensyvyys jotta syitä lumensyvyyden muutoksiin olisi helpompaa hahmottaa. Tutkielmaan valikoitiin kolme tutkimusaluetta; Suomi kokonaisuudessaan, Fennoskandian alueelta Norjan, Ruotsin sekä Suomen yhteinen pinta-ala, sekä Japanista Hokkaidon ja Honshun saarten muodostama maa-alue. Aineiston pohjalta voidaan todeta varsin yksiselitteisesti lumensyvyyden kuukausikeskiarvojen olevan, varsinkin lumensyvyyden huippuarvokuukausina, vertailukaudelle 1991-2020 pienempiä kuin vertailukaudelle 1951-1980. Sama trendi näkyy myös vuotuisten keskiarvojen kehityksessä. Muutosten suuruus on jonkin verran sidoksissa alueellisiin erityispiirteisiin mutta päätrendi on kaikille alueille jokseenkin samansuuntainen; nykyisentyyppinen ilmastollinen kehitystrendi laskee lumensyvyyttä pitkällä aikatähtäimellä. Toisin sanoen ilmastonmuutos vähentää lumimäärää pohjoisella pallonpuoliskolla.
  • Holm, Sebastian (2023)
    The Differential Mobility Particle Sizer (DMPS) is a widely used instrument in the size distribution measurements of sub-micron aerosol particles. The particles are size classified based on their electrical equivalent diameter by a Differential Mobility Analyser (DMA) in the DMPS. Only charged particles can be measured with a DMPS. An aerosol charger is hence required since most ambient particles are neutral. An estimation of the size dependent charge distribution of the aerosol particles is required to reach a representative size distribution of the whole aerosol population from the raw measurement data. The charged fractions of the population are conventionally calculated by applying bipolar charging (i.e., an ion atmosphere including ions of both polarities charges aerosols by diffusion and ion attachment onto the particles) theories. Fixed charger ion properties have been used to derive approximation to these theories. The charger ion properties in ambient “real-world” measurements are, however, not fixed but proven to vary substantially. These variations may lead to significant differences when comparing to the approximations. A new method for aerosol charging that reduces the uncertainties that originate from unknown properties of the charger ions was tested in this thesis. The method consists of the introduction of a known trace compound (hereafter called doping) into the aerosol sample flow upstream of a bipolar charger. The effect of doping on charger ion mobility distribution was successfully tested in laboratory experiments. A possible enhancement of charging efficiencies of nanoparticles was studied. The charger ion doping was also tested in atmospheric measurements, where it showed an effect on charger ion properties.
  • Leino, Joonas (2022)
    Mars-planeetan kaasukehä koostuu enimmäkseen hiilidioksidista, kun taas vesihöyryä on hyvin vähän. Kaasukehän lämpötila vaihtelee noin +10 ja -130 Celsius-asteen välillä ja pintapaine on vain noin sadasosa Maan ilmakehän paineesta. Marsin kaasukehässä on usein paljon hienojakoista pölyä, joka absorboi tehokkaasti auringonsäteilyä ja täten vaikuttaa kaasukehän toimintaan. Marsin pinnan reagoidessa erittäin nopeasti auringonsäteilyn määrän muutoksiin sekä kaasukehässä olevan pölyn vuoksi rajakerroksen mallinnuksessa käytettävissä malleissa säteilyn parametrisaatioiden täytyy olla mahdollisimman hyviä. Helsingin yliopisto ja Ilmatieteen laitos ovat kehittäneet Marsin kaasukehän tutkimukseen tarkoitetun 1-ulotteisen pylväsmallin. Malli on erittäin nopea ja helposti muokattavissa, joten sillä voidaan testata uusia ilmakehäfysiikan lainalaisuuksia ja algoritmeja, joita voidaan mahdollisesti lisätä kolmiulotteisiin Marsin kaasukehän malleihin. Tämä työ tehtiin osana Ilmatieteen laitoksen Marsin tutkimusryhmää ja työssä tutustutaan Marsin kaasukehän rajakerrokseen sekä pylväsmalliin. Lisäksi mallin antamia tuloksia esitellään ja verrataan Curiosity mönkijän (toiselta nimeltään Mars Science Laboratory, MSL) havaintoihin sekä tutkitaan mallin herkkyyttä sen alustusparametreihin. Mallin ennustamia lämpötilan, vesihöyryn tilavuuden sekoitussuhteen ja suhteellisen kosteuden vuorokausisyklejä verrattiin MSL:n havaintoihin eri vuodenaikoina. MSL laskeutui vuonna 2012 lähelle Marsin päiväntasaajaa Gale-kraatterin pohjalle ja se sisältää Ilmatieteen laitoksen suunnittelemat ja rakentamat mittalaitteet paineelle ja suhteelliselle kosteudelle. Mallin ennustamat vuorokausisyklit vastasivat hyvin mönkijän havaintoja ja tuloksista nähtiin myös lämpötilan suuri vuorokausivaihtelu kaasukehän reagoidessa nopeasti auringonsäteilyn muutoksiin. MSL:n paineen mittauksista (yli 3000 Marsin vuorokautta) nähtiin selvästi hiilidioksidin vuodenaikaiskierto etelänavalta pohjoisnavalle ja päinvastoin. Lisäksi vuoden 2018 globaali pölymyrsky näkyi monissa eri mittaustuloksissa. Mallin herkkyyttä tutkittiin muuttamalla neljää eri alustusparametria: pinnan lämpötilaa ja painetta, ilmapylvään vesisisältöä (PWC) sekä pölyn optista paksuutta (tau). Näiden testien perusteella mallin ennustamiin vuorokauden lämpötilaprofiileihin eniten vaikuttivat pinnan lämpötilan ja pölyn optisen paksuuden alustus, kun taas kosteusprofiileihin eniten vaikuttivat PWC:n ja pölyn optisen paksuuden alustus. Näistä parametreista pinnan paineen alustuksella oli vähiten vaikutusta mallin ennustamiin profiileihin.
  • Hyvärinen, Sara (2023)
    The mean temperature of Earth has been rising due to human-influenced climate change. Climate change has been mostly caused by the rise of greenhouse gases from anthropogenic sources. After carbon dioxide (CO2), the second most important anthropogenic greenhouse gas to climate change is methane (CH4). Approximately half of the methane emissions come from natural sources, including wetlands. The northern high latitude wetlands store large amounts of carbon in permafrost, and the thawing of permafrost could release more methane into the atmosphere. However, there is still much uncertainty related to the methane emissions from the northern high latitude wetlands. The emissions on these wetlands have an annual cycle related to the freezing and thawing of the soil with the highest emissions during summer and the lowest during winter. Climate change can affect the duration and timing of the freezing and thawing periods leaving the winter period shorter. In this thesis, the melting season for the northern high latitude wetlands was defined for four regions: non-permafrost, sporadic, discontinuous and continuous permafrost as well as two smaller regions: Hudson Bay lowlands and Western Siberian lowlands for the years 2011-2020. The melting period was defined with a new method of using the SMOS F/T soil thawing data, which has not been done before this study. The data includes daily information on the freezing state of the soil in the northern latitudes. The melting period methane emissions were defined from the inversion model Carbon Tracker Europe -CH4. The relationship between the emissions, melting period length and mean temperature was studied. Emissions during the spring melting season were detected in all the permafrost regions defined in this study. The fluxes grew stronger as spring progressed and the soil and snow melted. The melting period methane emissions were relatively small compared to the annual emissions (a few per cent of the annual budget). However, the emissions were a little larger than autumn emissions. To understand the melting season emissions better, different drivers in addition to air temperature, like the melting of the permafrost, should be studied in relation to the CH4 emissions.
  • Juurikkala, Kasper (2023)
    Clouds and aerosols are among the key components of Earth's energy budget, and a major source of uncertainty in climate models, affecting the predictability of the future climate. This thesis focuses on the microphysical processes governing cirrus clouds, wispy clouds composed of ice crystals. Understanding these processes is crucial due to the extensive global coverage of cirrus clouds and their potential warming effect on the atmosphere. The study investigates ice nucleation, the process by which ice crystals form in the atmosphere. Ice nucleation occurs via two main pathways: homogeneous freezing and heterogeneous nucleation. Homogeneous freezing is a process where droplets spontaneously freeze without an aid of an ice nucleating particle (INP). It occurs in highly supersaturated conditions and at cold temperatures below -38°C. Heterogeneous nucleation occurs when INPs act as surfaces to trigger freezing at temperatures below 0°C. The study is conducted using UCLALES-SALSA Large Eddy Simulation (LES) model, which offers high spatial and temporal resolution for atmospheric simulation. The aim is to investigate ice nucleation with five well-established parameterizations. Simulations produced with these parameterizations are compared with cirrus cloud properties measured during the MACPEX campaign. Among heterogeneous nucleation mechanisms, deposition ice nucleation is considered as a primary contributor to the formation of cirrus clouds in the upper troposphere and used as a mechanism to generate ice in the model study. Heterogeneous nucleation requires the presence of INPs which are assumed to be mineral dust is used as it known to dominate ice nucleation. Results show good agreement between modeled and measured data for ice concentration (Ni) and ice water content (IWC). The comparison between parameterizations revealed a relatively similar performance, with variations in Ni and IWC falling within the same order of magnitude. However, conclusive determination of the best-performing parameterization within the temperature and humidity ranges of the study was challenging. The study sheds light on the fundamental difficulties when using parameterizations with ice nucleation processes in cirrus clouds without accurate initial conditions and knowledge about the history of ice nucleation of the measured cirrus clouds. Also, the importance of proper validation of each parameterization by using different scenarios was emphasized.
  • Korhonen, Vesa (2023)
    Thawing of permafrost is widely observed, and its rate is expected to be accelerated due to the global warming caused by anthropogenic climate change. Although permafrost thawing has been acknowledged in IPCC Assessment reports, uncertainties related to model-based estimates of its extent and magnitude in the future exist due to the challenges for the models to account for heterogeneous changes in permafrost under the changing climate. Various one-dimensional finite element conductive heat transfer model codes have been successfully used for simulating permafrost, while models created with the COMSOL multiphysics tool have seen little use. In this work, COMSOL version 5.6 was chosen for modelling the heat transfer in permafrost. COMSOLs' ability to accurately simulate thermal evolution in porous medium experiencing freezing was demonstrated using the Interfrost test case T1, which is a benchmark modelling problem adapted to use by the Intercomparison project for TH (Thermo-Hydro) coupled heat and water transfers in permafrost regions. Benchmark results agreed with Lunardini's analytical solution, although compared to the previous studies, the results had more deviation from the analytical solution. Discontinuous permafrost in North-Western Siberia is thawing. Based on the temperature measurements available from three boreholes located in the area (Nadym), and an observed increasing mean annual air temperature trend of 0.5\textdegree C per decade, the rate of thawing could be increasing. A one-dimensional heat transfer model for one of the boreholes was created and benchmarked against soil temperature measurements to form a basis for future estimates of the permafrost evolution. The temperature time series produced by the model agreed moderately with the measurements, but the need for further model improvements was identified. Adjustments proposed in this work and parameter changes indicated by the sensitivity analysis form a basis for further model development. Additionally, the results of the conducted sensitivity analysis showed the importance of using accurate soil properties in modelling works.
  • Kemppainen, Deniz (2023)
    The Arctic is warming approximately four times as fast as the rest of the planet, and the current and future changes may have drastic effects on the entire globe. However, the detailed processes of the Arctic climate have been studied to a small extent due to the remote and hard-to-reach location, and the representation of the Arctic in climate models has been inadequate. There are many uncertainties in climate models, and significant uncertainties concern aerosol-related information. Atmospheric aerosols have a large, yet not entirely understood and quantified effect on the climate. Aerosols affect the Earth’s radiative balance by scattering and absorbing incoming radiation, and they play a significant role in the cloud formation process. In order to improve the representation of the Arctic in climate models and tackle the unsolved questions about the Arctic atmosphere, sea ice, ocean, biogeochemistry and ecosystem, a one-year-long expedition called Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) was conducted in the central Arctic between September 2019 and October 2020. As secondary aerosol formation (new particle formation) produces more than 50% of the atmospheric cloud condensation nuclei, and iodic acid has been identified to be a significant compound for new particle formation in the Arctic pristine environments, the iodic acid concentrations during the full-year MOSAiC expedition was investigated. The main research objective was to quantify the seasonal cycle of iodic acid in the Arctic. The correlation with temperature, solar radiation and ozone were also studied. Together with ice dynamics, sea ice thickness and air mass back trajectory simulations, the possible sources of measured iodic acid were investigated. The participation in forming new particles was also studied. The measured iodic acid concentrations varied between 1e4 and 4e7 molecules/cm3 with a detection limit of 1.22e5 molecules/cm3, and the concentrations were in the same range with measured earlier in the Arctic. The highest concentrations were measured in April. An increased correlation of iodic acid concentration with temperature and radiation was observed during spring, and an anticorrelating trend was observed between iodic acid concentration and ozone during the period of high iodic acid, implying that iodic acid is partially responsible for ozone depletion in the arctic. Comparison with particle data showed that iodic acid concentrations measured during MOSAiC were sufficient to take part in the new particle formation. However, nucleation was not observed during the highest iodic acid concentration period in April.
  • Lehmusjärvi, Tuuli (2022)
    The effects of atmospheric aerosol particles on Earth’s radiative balance are mainly cooling, which is mostly due their indirect effects with clouds. In the Arctic more than half of the cloud condensation nuclei (CCN) production is originated from secondary aerosols, and to further the understanding of Arctic climate and its changes due to the global warming, it is necessary to better understand the secondary aerosol processes there. Highly oxygenated organic molecules (HOM) are known to be important for the formation and especially for the growth of newly formed secondary aerosols to climate relevant sizes. Because of the low volatilities of HOM, they can condense onto the smallest particles, which is crucial for the growth of the new particles. Volatile organic compounds (VOC), especially monoterpenes, are known to be sources of HOM in boreal forest, but in the Arctic where the vegetation is scarce the sources of HOM have not yet been identified. The processes related to secondary aerosol formation in the Arctic are still not fully understood. Especially the observations of HOM and their sources are lacking. Recent studies in Ny-Ålesund, Svalbard showed that multiple aerosol precursors are found to be present in the Arctic atmosphere, as well as contributing to the early stages of the formation of secondary particles. However, more molecular scale observations of aerosol precursors are still needed to form a full picture of the Arctic climate processes. In this thesis, the different aerosol precursors and their contributions to the new particle formations in high Arctic location Ny-Ålesund, Svalbard were analysed. Chemical compositions of HOM were identified for the first time from Arctic atmosphere, and their contributions to new particle formation in high Arctic location were investigated. Because of the high concentrations of HOM during the observed NPF events, it can be suggested that they were contributing to the nucleation of aerosol particles. Particle growth rate calculation shows that the HOM present in the study site were responsible for up to 50% of the total growth of the newly formed particles. VOC flux measurements done in same location were also analysed, and Arctic tundra in Svalbard was found out to be a source of at least four different VOC. Furthermore, the identified HOM were linked to the VOC flux measurements, suggesting a possible link between Arctic VOC and HOM.
  • Feng, Weihang (2023)
    After 2013, the environmental protection department in China has significantly reduced on-road emission through the upgrade of emission standards, the improvement of fuel quality and economic tools. However, the specific effect of the control policies on emission and air quality is still difficult to quantify. This is mainly due to the data shortage on vehicle emission factors and vehicle activities. In this research, we developed the 2008-2018 on-road emissions inventory based on Emission Inventory Preparation Guide (GEI) and existing vehicle activity database. Our estimates suggest that CO and PM2.5 showed a relatively significant decrease, by 66.2% and 58.8%. However, the trend of NOx (5.8%) and NMVOC (-4.8%) was relatively stable. The Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD), Pearl River Delta (PRD) and Sichuan Basin (SCB) regions all showed a uniform trend especially in NOx. For Beijing-Tianjin-Hebei, the significant decline in NOx might be caused by earlier implementations in emission standard and fuel quality. In addition to this, we designed additional evaporation emission scenarios to verify the application of GEI in quantify emission impact on secondary pollutant (PM2.5 and O3). The results indicate that evaporation emission contributed to Maximum Daily Average 8-hour (MDA8) O3 concentration by about 3.5%, for Beijing, Shanghai and Nanjing. This value can reach up to 5.9%, 5.3% and 7.3%, but the impact on PM2.5is extremely limited. Our results indicate the feasibility of GEI in improving and lowering the technical barrier of on-road emission inventory establishment at the same time and its further application in quantifying on-road emission contribution to air quality. Besides that, it shows a strong potential in on-road policy environmental assessment and short-term air quality assessment.
  • Corner, Joona (2023)
    The aim of this work is to develop and optimise an atmospheric inverse modelling system to estimate local methane (CH4) emissions in peatlands. Peatlands are a major source of CH4 regionally in boreal areas and they have significance on a global scale as a soil carbon storage. Data assimilation in the inverse modelling system is based on an ensemble Kalman filter (EnKF) which is widely used in global and regional atmospheric inverse models. The EnKF in this study is an implementation of the EnKF used in the global atmospheric inversion model CarbonTracker Europe-CH4 (CTE-CH4) applied to local setting in the peatland. Consistency of the methodology with regional and global models means that it is possible to expand the system in scale. Siikaneva fen in Southern Finland is used as a testbed for the optimisation of the system. Prior natural CH4 fluxes in Siikaneva are acquired from the HelsinkI Model of MEthane buiLd-up and emIssion for peatland (HIMMELI) which simulates exchange of gases in peatlands. In addition to the peatland fluxes, anthropogenic fluxes at the site are estimated as well in the inversion. For the assimilation of atmospheric CH4 concentration observations, the CH4 fluxes are transformed into atmospheric concentration with a simple one-dimensional box model. The optimisation of the system was done by changing parameters in the model which affect the data assimilation. In model optimisation tests it was discovered that the performance of the modelling system is unstable. There was large variability in the produced estimates between consecutive model runs. Model evaluation statistics did not indicate improvement of the estimates after the inversion. No exact reason for the unstability was able to be determined. Posterior estimates of CH4 fluxes for years 2012–2015 did not differ much from prior estimates and they had large uncertainty. However, evaluation against flux measurements showed reasonable agreement and posterior concentration estimates were within the uncertainty range of the observed concentration.
  • Zhang, Jiangyi (2023)
    Ozone, an important and ubiquitous trace gas, protects lives from harm of solar ultraviolet (UV) radiation in the stratosphere but behaves as a toxic compound in the troposphere to living organisms. Also, tropospheric ozone is a vital oxidant or source of daytime oxidant (i.e., OH radical) for e.g., different volatile organic compounds (VOCs). Affecting global radiation balance directly or indirectly by acting as cloud condensation nuclei and having negative impact to human health, aerosols are widely studied for over a century. Highly oxygenated organic molecules (HOM) were proved to be a large source of secondary organic aerosol (SOA) and their oxidation formation pathways from VOCs can also trigger the production of ozone once involving NOx (=NO+NO2) and UV light. The highly nonlinear relationship among ozone, NOx, and VOCs (O3-NOx-VOC sensitivity or O3 formation sensitivity) has been researched since last century. The complex system was recently reflected during COVID-19 lockdowns: reduction of NOx increased the ozone production. This is because the system was in VOC-limited regime, where reducing VOCs is the most efficient way to reduce O3. However, the determination of O3 formation regimes (either VOC-limited or NOx-limited) is challenging in different environmental conditions. The intrinsic connection between HOM and O3 formation provide a new insight: the proportions of VOCs and NOx not only affect the O3 formation regimes but also impact the distribution of HOM species. Therefore, in this study, we try to unveil the indicating role of HOM species on the O3 formation sensitivity by chamber experimental works with a nitrate chemical ionization mass spectrometer (CI-APi-TOF) and gas monitors. Injected NOx and VOCs step by step, the experiments were designed to make the atmosphere-mimicking system change between those two regimes. The ratio between HOM-dimers and HOM organic nitrate monomers was selected as the indicator for O3 formation sensitivity due to their closely connected chemical reactions, involving peroxy radicals. Furthermore, a simple box model was developed for simulating chamber results and obtaining O3 isopleths to visually show the O3 formation regimes. Through experimental and model results, it can be inferred that ratios below 0.2 consistently correspond to the VOC-limited regime, whereas ratios above 0.5 consistently correspond to the NOx-limited regime. This study demonstrates that the ratio based on HOM species could additionally indicate the O3 formation sensitivity of ambient air when we use CI-APi-TOF to investigate the chemical compounds and aerosol formation, helping to elaborate the O3 pollution in the real troposphere.
  • Turunen, Tarja (2023)
    Norway spruce (Picea abies (L.) Karst.) is one of the economically most important tree species in Finland. It is known to be drought-sensitive species and expected to suffer from the warming climate. In addition, warmer temperatures benefit pest insect Eurasian spruce bark beetle (Ips typographus L.) and pathogen Heterobasidion parviporum, which both use Norway spruce as their host and can make the future of Norway spuce in Finland even more difficult. In this thesis, adult Norway spruce mortality was studied from false colour aerial photographs taken in years between 2010 and 2021. Dead trees were detected from the photos by visual inspection, and mortality was calculated based on the difference in the number of dead trees in the photos from different years. The aim was to find out if Norway spruce mortality in Finland had increased over time, and what were the factors that had been driving tree mortality. The results indicate that tree mortality was the highest in the last third of the studied 10-year period, so it was concluded that tree mortality had increased over time. Various possible tree mortality drivers were analysed and found to be connected to tree mortality. Each driver was analysed individually by testing correlation with tree mortality. In addition, linear regression analysis and segmented linear regression with one breakpoint were used with the continuous variables. Increased tree mortality correlated with higher stand mean age, mean height, mean diamater, and mean volume, supporting the findings in earlier research. Mortality was connected to the proportion of different tree species in the stand: the higher the proportion of spruce, the higher the mortality, and the higher the proportion of deciduous trees, the lower the mortality. Of different fertility classes, tree mortality was the highest in the second most fertile class, herb-rich heat forest, and mortality decreased with decreasing fertility. Dead trees were also found to be located closer to stand edges than the stand centroid. Increased temperature resulted in increased mortality. Increased vapour pressure deficit (VPD) and drought, which was analysed with Standardized Precipitation Evapotranspiration Index (SPEI) of different time scales, were also connected with increased tree mortality. Further research is required for understanding and quantifying the joint effect of all the interacting mortality drivers. Nevertheless, it seems that for Norway spruce, the warmer future with increased mortality is already here, and it should be taken into consideration in forest management. Favouring mixed stands could be one of the solutions to help Norway spruce survive in the warming climate.
  • Uusinoka, Matias (2022)
    Sea-ice dynamics is becoming increasingly essential for the modelling warming climate as the extent and thickness of the ice cover are decreasing along with increasing drift speeds and mechanical weakening. The description of the sea-ice dynamics involves an enormous variety of spatial and temporal scales from meters to the scale of the Arctic Basin and from seconds to years in the geophysical approaches. The complex coupled spatio-temporal scaling laws prohibit the commonly utilized procedures for scale linkage of ice mechanics. Currently, deformation scaling presents one of the principal open questions in sea ice dynamics for which the thesis aims to provide observational analysis. The high-resolution ship-radar imagery gathered during the MOSAiC expedition from October 2019 to September 2020 for which deformation component rates were calculated to generate a seasonal deformation time series. Current research of deformation scaling commonly relies on satellite imagery and drift buoys for which the spatial and temporal resolutions often tend to be considerably lower than for the ship-radar data. The formerly observed dominant deformation mode of shear and the strong spatial correlation of divergence and shear in the Arctic sea ice were confirmed with no signs of seasonal variation. The temporally averaged deformation variations were found to coincide with satellite derived deformation events rather poorly. A strong length scale dependence of deformation was confirmed in the ship-radar data. The spatial scaling law exponents were found to show unexpectedly high values with the behaviour of both spatial and temporal scaling law exponents disobeying the previously observed large-scale characteristics. The seasonal variation of both scaling law exponents were found to exhibit the commonly observed trends following the progression of total deformation rate. The obtained results showed unexpected values and behaviour for the deformation scaling law exponents, which was suggested to be due to the technical faults in the ship-radar data. The faults were often spatially local and lasted merely for a single time step leading to a possible increase in the localization and intermittency of the deformation rates. Additionally, the new ice conditions of the Arctic Ocean and drift route along the Transpolar Drift were suggested as a possible physical source of the unexpected results. Further studies with different methodologies were suggested for the verification and possible the dismissal of the unexpected results.
  • Maalampi, Panu (2024)
    Fog has a significant impact on society, by making transportation and aviation industries difficult to operate as planned due to reduced visibility. Studies have estimated that 32 % of marine accidents, worldwide, and 40 %, in the Atlantic Ocean, took place during dense sea fog. Therefore forecasting fog accurately, and allowing society to function, would help mitigate financial losses associated with possible accidents and delays. However, forecasting the complex fog with numerical weather prediction (NWP) models remains difficult for the modelling community. A NWP model typically operates in the resolution of kilometres, when the multiple processes associated with fog (turbulence, cloud droplet microphysics, thermal inversion) have a smaller spatial scale than that. Consequently, some processes need to be simplified and parametrised, increasing the uncertainty, or more computational power is needed to be allocated for them. One of these NWP models is HARMONIE-AROME, which the Finnish Meteorological Institute develops in collaboration with its European colleague institutes. To improve the associated accuracy, a brand new, more complex and expensive, option for processing aerosols in HARMONIE-AROME, is presented. This near-real-time (NRT) aerosol option integrates aerosol concentrations from Copernicus Atmospheric Monitoring Services' NRT forecast into HARMONIE-AROME. The statistical performance of the model's sea fog forecast in the Baltic Sea was studied in a case study using marine observations. The quantitative metric, proportion score, was studied. As a result, a forecast using the NRT option showed a slight deterioration in visibility (0.52 versus 0.59), a neutral improvement in cloud base height (0.52 versus 0.51), and a slight deterioration in 2-meter relative humidity (0.73 versus 0.76) forecasts with respect to the reference option. Furthermore, the score in general remained weak against observations in the case of visibility and cloud base height. In addition, based on qualitative analysis, the spatial coverage of the forecasted sea fog in both experiments was similar to the one observed by the NWCSAF Cloud Type-product. In total, the new aerosol option showed neutral or slightly worse model predictability. However, no strong conclusions should be made from this single experiment sample and more evaluations should be carried out.
  • Hasu, Mikael (2022)
    This thesis investigates how the Lorenz model state sensitivity appears on the prior state error of the Extended Kalman Filter (EKF) process. The Lorenz model is a well-known ordinary differential equation system. Its simple nonlinear equations show that a chaotic system, like the atmosphere, does not have a single deterministic solution. Edward N. Lorenz also showed that the predictability of the state depends on the flow itself, and numerical weather prediction models, therefore, cannot always be trusted equally. For this reason, when computing a forecast, it is necessary to consider both the model and observations with their weight uncertainties to get the most probabilistic analysis state. The EKF is an algorithm that provides a powerful data assimilation method for nonlinear systems. Its operating principle is based on the evolution of prior state (model evolution) and observation updates. Each observation update calculates the most likely state based on the prior state and observation errors. The process continues from the new analysis state by evolving the model until the next observation update. In this study, I made the EKF utilizing the Lorenz model and sent ensembles from the analysis states on the Lorenz attractor. I calculated the variance of evolved ensembles and compared them to the magnitude of prior state error at the observation update time levels. The results showed that these two parameters are positively correlated. For the 18-timestep observation interval, Pearson’s correlation coefficient was 0.850, which indicates a very high correlation. Therefore, it can be concluded that when the prior state error is small, the ensemble on the Lorenz attractor indicates good predictability (i.e., dispersion of ensemble members is small) and vice versa.