Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by master's degree program "Neurotieteiden maisteriohjelma"

Sort by: Order: Results:

  • Chalas, Petros (2020)
    Histamine and hypocretin/orexin are neuromodulators important for regulation of alertness and wakefulness. These systems project to major areas of the brain, are highly conserved among vertebrates and they significantly innervate each other. Different studies have indicated an interaction between the histaminergic and orexin systems, however the role of histamine in this interaction is still not well-established. The goal of this study was to examine possible changes in orexin neurons development and larvae behaviour, after genetic loss of histamine decarboxylase (hdc), the histamine-synthesizing enzyme. Using whole-mount in-situ hybridization and immunofluorescence staining we observed a significant reduction in the expression of the hcrt mRNA and the orexin A peptide in 6 dpf hdcKO zebrafish larvae. However, KO of hdc had no effect on startle response, dark flash response and sleeping behaviour of 6 dpf larvae. To further investigate the regulatory role of the histaminergic system, we employed treatment of hdcWT and KO larvae with ciproxifan, a histamine H3 receptor inverse agonist. Ciproxifan treatment increased darkness habituation in 7 dpf hdcWT and KO larvae but reduced the intensity of the dark flash response only on hdcWT larvae. Furthermore, ciproxifan treatment differentially affected the expression of the orexin A peptide in 7 dpf hdcWT and KO larvae but had no effect on the expression levels of the hcrt mRNA. Collectively, these findings suggest the significance of histaminergic signaling for normal development of orexin neurons and the implication of histamine in the execution of the dark flash response. Lastly, this study indicates the complex role of the histamine H3 receptor and the requirement of further studies for better characterization of its function.
  • Saarreharju, Roosa (2020)
    While weeks of continuous treatment is required for conventional antidepressant drugs (e.g. fluoxetine) to bring their full therapeutic effects, a subanesthetic dose of ketamine alleviates the core symptoms of depression (anhedonia, depressed mood) and suicidal thinking within just few hours and the effects may last for days. Nitrous oxide (N2O, “laughing gas”), another NMDAR antagonist, has recently been shown to have similar rapid antidepressant effects in treatment-resistant depressed patients (Nagele et al. 2015). We previously found using naïve mice ketamine and N2O treatment to upregulate five mRNAs related to the MAPK pathway and synaptic plasticity, both implicated as being important in the action of rapid-acting antidepressants. In the current study, these shared mechanisms were further investigated in C57BL/6JHsd mice, using behavioral test batteries to study depressive-like behaviour and RT-qPCR for biochemical analyses. We first aimed to demonstrate behavioral differences between naïve mice and a chronic corticosterone-induced animal model of depression, and to use this model to investigate antidepressant-like effects of ketamine and N2O. According to the results, chronic corticosterone produced some behaviors typical of a depressive-like phenotype, namely significant worsening of coat state and decreased saccharin consumption in the saccharin preference test. Both ketamine and N2O exhibited antidepressant-like effects by reverting decreased saccharin preference. We then aimed to elucidate the effects of ketamine and N2O on five previously found shared mRNAs: Arc, Dusp1, Dusp5, Dusp6 and Nr4a1. N2O significantly upregulated all targets in the vmPFC, except Dusp5, two hours after beginning of N2O treatment. Neither ketamine nor sole chronic corticosterone produced any significant changes. The results of this study suggest that N2O is a potential candidate for rapid alleviation of depressive symptoms. We suggest that the action of rapid-acting antidepressants, more specifically N2O, is based on a homeostatic response of the brain to a presented challenge. Here this challenge would be cortical excitation previously been shown to be caused by N2O, which leads to activation of pathways such as MAPK and subsequent Arc, Dusp and Nr4a1 signaling. The level of expression of these markers would then depend on which phase this response is in and hence, the differences in time between treatment and brain sample dissection could be a reason for conflicting results to previous research. Future studies would benefit from detailed investigation of the chronic corticosterone-induced model due to its potential in controlling for behavioral variability, thus reducing the number of animals needed for preclinical research. Overall the preliminary findings of this study could be one of the first steps in the search for the mechanisms underlying the potential antidepressant effect of N2O, how these molecular markers are related to its action and how it differs from the action of ketamine.
  • Feodoroff, Michaela (2020)
    Within the field of cancer immunotherapy, immune checkpoint inhibitors have been a revolution since they provoke re-activation of T-cell immune responses towards cancer. Despite their success, they only work in 13% of the patients because of a poorly immunogenic tumor, mostly due to weak T-cell infiltration. Oncolytic viruses have shown the ability to work in synergy with checkpoint inhibitors because of their tumour-specific tropism, innate immunogenicity and ability to secrete immunostimulatory agents into the tumor microenvironment. Regardless of the great potential, we lack suitable pre-clinical models to test this effect. In this study we developed renal cell carcinoma-derived organoids as in vitro platforms due to their high pre-clinical predictability compared to that of murine and in vitro 2-dimensional cell culture models. To test the ability of oncolytic viruses to stimulate the immune system, we generated three cytokine-expressing (CXCL9, CXCL10 and IL-15) oncolytic adenoviruses using a novel cloning method that we developed. We have shown that these viruses successfully produce high amount of the cytokine and attract peripheral blood mononuclear cells freshly isolated from Buffy coats. Genetically modified oncolytic adenoviruses were also shown to infect and kill human renal cell carcinoma organoids. Together, our results demonstrate the potential of organoids as test platforms for oncolytic virus -based therapy and the importance of adequate cytokine expression in T-cell recruitment. The tumor organoid platform we developed will be useful for advancing patient-specific treatment strategies and serve as a base for innovative immunotherapy models.