Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by department "Department of Chemistry"

Sort by: Order: Results:

  • Uuksulainen, Pasi (2013)
    Tutkielma on rakenteeltaan kaksiosainen. Kirjallisuustutkimus on tehty Helsingin yliopistossa ja kokeellinen tutkimus Espanjassa (Universidad Complutense de Madrid). Tästä johtuen ensimmäinen osa on kirjoitettu suomeksi ja toinen osa englanniksi. Kirjallisuuskatsauksessa perehdytään C6-substituoitujen pyrimidiininukleosidien valmistukseen. C6-substituoiduilla pyrimidiininukleosideilla on havaittu olevan monia erilaisia biologisia vaikutuksia. C6-substituoiduista pyrmidiininukleosideista ei ole kovin paljon julkaisuja johtuen synteettisten keinojen vähäisyydestä. C6-substituoituja pyrimidiininukleosideja voidaan valmistaa joko yhdistämällä C6-substituoitu silyloitu emäs ja suojattu sokeri tai muokkaamalla suoraan valmiin nukleosidin C6-asemaa. Happamissa olosuhteissa glykosylaatioreaktiolla valmistettujen C6-substituoitujen pyrimidiininukleosidien saantoa voidaan parantaa käyttämällä Friedel-Crafts-katalyyttejä ja suojaamalla emäksen N3-asema. Glykosylaatioreaktiolla valmistettujen pyrimidiininukleosidien C6-asemassa olevat substituentit ovat yleensä pieniä ryhmiä. Valmiin pyrimidiininukleosidin C6-aseman muokkaukseen on useita keinoja, joista palladiumkatalyytit tarjoavat yhden tehokkaimmista keinoista liittää esimerkiksi aryyliryhmiä C6-asemaan. Muokkaamalla valmista nukleosidia vältetään myös glykosylaatioreaktiossa syntyvien N3-isomeerien muodostuminen. Joidenkin substituenttien kohdalla havaittiin N-glykosidisidoksen hajoamista. Kokeellisen tutkimuksen tavoitteena oli valmistaa uusia asymmetrisessä katalyysissä käytettäviä kiraalisia kamferijohdannaisia ligandeja. Kahden kamferijohdannaisen ligandin valmistuksessa saatiin valmistettua lupaavia välituotteita. Kolme polyhydroksyloitunutta norbornaani- johdannaista eivät toimineet kiraalisina ligandeina vaan tuottivat raseemisen seoksen.
  • El Fellah, Samira (2017)
    In the first part of this thesis the principles of capillary electrophoresis (CE) are presented from the aspects of steroid and sterol analysis focusing mainly on two separation techniques: micellar electrokinetic chromatography (MEKC) and capillary electrochromatography (CEC). Analytes are delineated in steroids, corticosteroids, phytosterols, and cholesterol. Conventional chromatographic methods: gas chromatography (GC) and high-pressure liquid chromatography (HPLC) are somewhat challenging for steroid and sterol analysis, since direct analysis of steroids/sterols and their conjugates is rarely feasible. Hence, alternative separation and analysis methods need to be approached. MEKC and CEC have provided intriguing new opportunities for steroids and sterols, respectively. The experimental part covers the study on finding out the steroid composition and concentrations of wastewater samples collected from wastewater treatment plants (WWTP) around Finland. In addition, the efficiencies of the WWTPs were resolved. There were two types of wastewater samples: influent and effluent. Influent is the unclean water and effluent is the cleaned water that has passed through the process steps. The sample pretreatment includes filtering (glass fiber and membrane filters), solid phase extraction (SPE) (with C18 (Strata-X) and quaternary amine (N+) sorbents), and liquid-liquid extraction (LLE) (with diethyl ether). SPE was effective in purifying and concentrating the water samples, with a concentration factor of 20,000. The analysis was performed with partial filling-micellar electrokinetic chromatography, utilizing UV detection. It was found that the method was suitable for both qualitative and quantitative analysis of endogenous steroids and their corresponding metabolites. Androstenedione, testosterone glucuronide, and progesterone were found from the samples. Some notable results are that biological treatment most likely increases the amount of androstenedione, whereas enzymatic processes remove efficiently progesterone. Overall, the lowest steroid concentrations were obtained from the samples of Espoo, Pori, and Uusikaupunki. On the contrary, highest concentrations were in Kajaani, Mikkeli, and Porvoo.
  • Koskinen, Outi (2017)
    Lignin (wood in Latin) is a natural amorphous, aromatic polymer that acts as the essential glue and support that gives vascular plants their structural rigidity and colour. It is found mostly between but also within the plant cells and in the cell walls. Lignin consists of p-coumaryl (almost exclusively in grasses), coniferyl (common in softwoods) and sinapyl alcohol (common in hardwoods) monomers that form dimers with different linkage types depending on the types of monomer radicals combined together. As the result of lignin biosynthesis is a complex aromatic network where the β – aryl ether (β-O-4) linkage type is the most abundant one between monomer units. Within each type there is a lot of variation: lignins differ from species to species, and from one tissue to the next in the same plant--even within different parts of the same cell. Pulping industry separates lignin from biomass and the lignin waste is combusted on-site as energy for steam generation. Lignin is however potentially a renewable source of aromatic platform compounds that are important in other fields of industry. Many of these platform chemicals are currently obtained from fossil fuel sources. Hence there is an environmentally friendly need to develop efficient methods to convert lignin into high-value products. Rigid molecular structure of lignin and the abundant amount of hydrogen bonds in it makes it highly recalcitrant towards conventional solvents and mild reaction conditions. In addition a considerable sulfur content from the pulping processes establishes a catalyst poison. Thus the processing methods for lignin valorization need to be optimized with proper reaction conditions and effective catalysts while keeping the costs as reasonable as possible. This thesis is divided into literature and experimental sections. The literature section discusses about the chemical structure and biosynthesis of lignin, industrial view of lignin and a short review of recently examined studies of processing methods on lignin concentrating on hydrogen-dependent methods and ionic liquids as the hydrogen source. The experimental section concentrates on a novel ionic liquid in the studies with hydrogenation and hydrogen lysis of aileron, a widely used lignin model compound.
  • Nurttila, Sandra (2013)
    Lignocellulosic biomass has received widespread attention as environmentally benign feedstock for fuels. Biomass consists of cellulose, hemicellulose and lignin and has rather high oxygen content. Different techniques for the conversion of lignocellulose to liquid fuels have been suggested in the literature. In this thesis the emphasis is on the utilization of biomass-derived platform molecules. Platform molecules include eg. ketones, alcohols and carboxylic acids. In the literary section different deoxygenation and C-C coupling reactions for the conversion of biomass-derived platform molecules to larger hydrocarbons have been reviewed. Reaction routes for upgrading of the platform molecules 5-hydroxymethylfurfural, 2-furaldehyde, levulinic acid and some monofunctional compounds have been presented. These paths comprise mainly dehydration, hydrogenation, aldol condensation and ketonization. Heterogeneous catalysis, particularly bifunctional supported catalysts, dominates in this field. The selectivity that may be achieved with homogeneous catalysts is seen as highly desirable and served as the main incentive for the experimental work. Furthermore, the lack of publications in the area of homogeneously catalyzed C-C coupling of biomass-derived compounds also motivated for the work. Herein, 1st row transition metal acetates were utilized as catalysts for the ketonization of biomass-derived levulinic acid and other carboxylic acids. Some experiments were conducted with lignin as well. Reactions were performed under microwave heating or reflux conditions. Products were analyzed by GC-MS, GC-FID, NMR and FTIR. Combinatorial chemistry made it possible to conduct up to twelve reactions simultaneously. More than 160 reactions were performed in less than two months' time. The main product in many of the reactions was aromatic phthalic acid mono 2-ethylhexyl ester. Some other interesting products included hexadecanoic acid, 2,6-dimethyl-2,5-heptadien-4-one, diisooctyl and dibutyl phthalate. Despite small amounts of the products, their presence proves that various compounds may be produced from biomass by tailoring the catalyst and reaction conditions.
  • Lumen, Dave (2016)
    Fluori-18 on positroniemissiolla hajoava nuklidi, jonka puoliintumisaika on 110 minuuttia. Hajoamistapansa johdosta F-18:a voidaan käyttää merkkiaineena positroniemissiotomografiassa (PET), jossa se on käytetyin radionuklidi sopivan pitkän puoliintumisaikansa ja energiansa (0,64 MeV) takia. Uusia radiolääkeaineita pyritään kehittämään erilaisiin lääketieteellisiin sovellutuksiin ja suurta mielenkiintoa ovat keränneet bioperäiset nanomateriaalit, joiden suuri pinta-ala/tilavuus -suhde tarjoaa paljon erilaisia mahdollisuuksia mm. spesifiseen lääkeainekuljetukseen. Suora F-18:n nukleofiilinen substituutio on usein vaikea ja joskus jopa mahdoton suorittaa kompleksisissa ja monisubstituoiduissa molekyyleissä, joita ei ole aktivoitu. Esimerkiksi monet biomolekyylit eivät kestä suorassa fluorauksessa käytettäviä korkeita lämpötiloja ja liuottimia. Tällöin käytetään apuna F-18-leimattuja prosteettisia ryhmiä esim. sukkinimidyyli-4-[18F]fluorobentsoaattia ([18F]SFB), joiden avulla saadaan F-18 leimattua biomolekyyliin. Prosteettisten ryhmien valmistus vaatii usein monivaiheiset synteesit, mikä tekee niiden käytöstä haastavaa. [18F]SFB pystyy reagoimaan peptidiketjun vapaiden aminoryhmien kanssa (lysiini ja terminaalinen amino-ryhmä) paljon miedommissa olosuhteissa kuin suorassa radiofluorauksessa. F-18 saadaan näin liitettyä biomolekyyliin, jolloin biomolekyyli saadaan leimattua radionuklidilla vahingoittamatta biomolekyylin rakennetta. Tässä tutkielmassa leimattiin CCMV-virusten proteiinikapsidin pintarakennetta eri puskuriliuoksissa käyttäen [18F]SFB:tä. Ensin [18F]SFB:n automatisoitu synteesi optimoitiin laboratorion laitteistolle sopivaksi, jotta sitä voitiin valmistaa toistettavasti hyvällä radiokemiallisella saannolla. Tämän jälkeen CCMV-virusten leimautuvuutta testatiin neljässä eri puskuriliuoksessa pH-välillä 6-8. Puskuriliuoksina käytettiin fosfori- ja boraattipuskureita. [18F]SFB:n synteesi saatiin optimoitua ja tuotetta saatiin tuotettua hyvillä saannoilla, puoliaikakorjatun saannon ollessa 71 ± 3 % ja radiokemiallisen puhtauden ollessa yli 90 %. Virukset saatiin leimattua ja parhaimmillaan päästiin 12,9 ± 14,9 %:n leimautuvuuteen. Leimausta ei saatu kuitenkaan tehtyä toistettavasti ja leimatuista viruksista läpäisyelektronimikroskopialla (TEM) otetuista kuvista nähtiin, että virukset olivat hajonneet leimauksen aikana.
  • Pesonen, Antto (Helsingin yliopistoHelsingfors universitetUniversity of Helsinki, 2012)
    The increased use of liquid biofuels has created a need for an accurate and a reliable technique for determining blend ratios of biofuel and fossil fuel due to technical reasons related to car engines and due to legislative reasons. The true portion of biological carbon in a fuel can be determined reliably only by radiocarbon measurement. Radiocarbon is created in upper atmosphere by cosmic radiation and is transferred to flora and fauna via photosynthesis. When an organism dies, the radiocarbon in its body starts do decay. Because the half-life of radiocarbon is very long and because biofuels are manufactured from relatively young feedstock materials, it is possible to calculate the biofraction of a fuel sample by determining its radiocarbon contents. The most popular techniques for determining this are, to date, accelerator mass spectrometry and liquid scintillation counting. Liquid scintillation counting is cheaper and easier to use, but in low concentrations the accuracy is not as good. In addition, the technique has the drawback of quenching effects. Accelerator mass spectrometry is the most accurate method, but the disadvantages are the price and size of the equipment and labor-intensive sample preparation process, which can take several days. In addition to the radioanalytical techniques, the biofractions of biofuels have been determined by infrared, Raman, nuclear magnetic resonance, X-ray and fluorescence spectroscopy and by gas and liquid chromatography, but these techniques have more limited applicability. In these techniques, the determination is usually based on direct or indirect detection of fatty acid methyl ester groups. However, the newer generation biofuels do not anymore contain these groups and their chemical composition is similar to fossil fuels. In addition, by using these techniques one cannot determine e.g. whether the ethanol in petrol blend is in fact manufactured from biological or fossil sources. In the experimental section of the thesis an elemental analyzer -based sample preparation method was developed, by which the time spent on sample preparation for accelerator mass spectrometer was decreased when compared to previous method, described by standard ASTM D6866-10. The biodiesel samples were combusted in the elemental analyzer and the carbon dioxide collected cryogenically. The carbon dioxide was reduced to graphite and their radiocarbon contents was measured by accelerator mass spectrometry. In addition, the results from elemental analyzer method were compared to previous results by closed-tube-combustion method. It was noticed that the elemental analyzer method was more accurate, faster and easier to use.
  • Pietiläinen, Olli (2014)
    This thesis will review the chemical background of most commonly used sequencing technologies. Since the development of first sequencing methods in 1977, sequencing has become a routine tool in molecular biology and medical research. During past decade the field has evolved rapidly leading to million-fold reductions in the cost of sequencing. Although the 2',3'-dideoxy Sanger method is still widely used, new methods referred to as next-generation sequencing have taken over the market. Development of efficient sequencing technologies has relied on major chemical and technical advances. Over the years, the fundamentals of sequencing have not changed, but the marked increase in efficiency is reached through massive parallelization of individual polymerase catalyzed DNA extension reactions. This has been enabled by introduction of chemically modified nucleotides with cleavable terminator groups and fluorescent dyes attached to them. In addition, the massive parallelization relies on advances in silica surface chemistry that allow DNA fragments to be covalently bound to solid supports, forming the grounds of DNA microarray technology. New developments in sequencing aim for the detection of single DNA molecules in real time during DNA synthesis and replacing the optical detection methods with electronic methods that allow recording of the sequence data in digital format. The experimental part of the thesis studies selective oxidation of 5-hydroxymethyl cytosine to 5-formyl cytosine. In addition to the four alternating bases, DNA in living cells undergoes covalent modifications. These are referred to as epigenetic changes and they are thought to have important biological roles. A class of epigenetic modification involves the methylation and hydroxymethylation of the 5-carbon of cytosine. The modified cytosine residues are not distinguished from cytosine in traditional polymerase based sequencing. However, treating DNA with bisulfite prior to sequencing leads to deamination of cytosine, but leaves the modified cytosine residues unchanged. It was recently suggested that the methylated and hydroxymethylated cytosine residues could be distinguished from each other by selectively oxidizing the 5-hydroxymethyl cytosine to 5-formyl cytosine prior to bisulfite treatment. 5-formyl cytosine undergoes deamination in bisulfite treatment, which allows distinguishing between the two. We investigated six potential oxidizing agents for oxidizing 5-methylcytosine. For testing the agents, we used 5-hydroxymethyl uracil, 5-hydroxymethyl cytosine as model molecules. In addition, we synthesized a protected 5-hydroxymethyl-2'-deoxycytidine that could further be used for synthesis of 5-hydroxymethyl-2'-deoxycytidine phosphoramidite that can be then used in oligonucleotide synthesis. The preliminary results suggest that four agents (KRuO4, (NH4)2Ce(NO3)6, TPAP, and BaMnO2) could potentially be used for selective oxidation of 5-hydroxymethylcytidine in DNA. However, the compatibility of these agents should be carefully tested in DNA oligonucleotides and genomic DNA, as well as with available sequencing technologies.
  • Leon-Denegri, Eduardo (2015)
    Many diseases are associated with oxidative stress caused by free radicals. Fungal endophytes are microbes that inhabit host plants without causing disease and have been recognized as potential sources of pharmaceutically valuable compounds. The extract of the endophytic fungi, Phialophora lignicola found in roots of Pinus sylvestris (Scots pine) seedlings has revealed protective bioactivity on human retinal pigment epithelial cells (hRPE) against oxidative stress which can lead to obtain compounds for the treatment or prevention of Age-related macular degeneration (AMD). The current research was directed towards finding the naturally-occurring antioxidant(s) in P. lignicola and to characterize and identify them by NMR spectroscopy and MS analysis. The bioactive aqueous extract of P. lignicola was fractionated by preparative HPLC and the antioxidant activity of each sample was evaluated by H2O2 scavenging test and bioassay with model cells of hRPE cells. The bioactive fractions were characterized by 500 Mhz NMR spectroscopy, performing both one- and two-dimensional NMR experiments, including 1H NMR, COSY, TOCSY, HSQC, ROESY, 31P-NMR and 31P-1H correlation. ESI-TOF MS in the positive mode was used for the determination of molecular weights found in the fractions. Additionally, LC-MSn was used for the separation of compounds and mass analysis to complement the information given by ESI-TOF MS. The present study provides evidence that two bioactive fractions of P. lignicola possessed the presence of antioxidative activity. The NMR experiments suggested arginine and polysaccharides. ESI-TOF MS results established the presence of arginine, a hexose-arginine conjugate and other compounds that based on NMR and mass spectrometry literature they could be chitin oligomers. Furthermore, LC-MSn identified fragments typical of L-arginine. For future research, some drawbacks of this study such as concentration of samples and chromatographic purification method should be improved to optimize the NMR and mass spectrometry analysis.
  • Isomaa, Keijo (2013)
    This study focuses on chemometric analysis of instrumental data that has been obtained from chemical analysis of plant extracts. Chemometric analysis applies statistical and mathematical tools on chemical data, aiming to find new information or classifying samples in categories defined by the analyst. Chemometric analysis is based on computational pattern recognition and reveals any features that studied samples may have in common. In the literature part of this study, chemometrics and relevant concepts closely related to it are first explained and four commonly used chemometric methods are introduced, namely principal component analysis, hierarchical cluster analysis, k nearest neighbors and soft independent modeling of class analogy. The text is written with emphasis on being easily understandable without prior knowledge on the subject. After introducing these concepts, the literature concerning metabolomic studies of plant extracts published in the recent ten years are reviewed. This literature commonly employs chemometrics, aiming to discover if two or more varieties of the same plant species have markedly differing metabolomes and whether they can be exploited to automatically recognize these varieties. Additionally, the chemometric approaches often attempt to discover what factors are causing the successful findings. The purpose of the literature survey is to concretely show how chemometrics can achieve these goals, and to learn what the most common ways to treat the analytical data prior to chemometric analysis are. The experimental part applies chemometric methods to study bean extracts of the Ricinus communis plant, aiming to reveal if seed extracts of a same plant variety can be observed being similar, but clearly different from extracts of other varieties. Such situation could be exploited to develop a method that automatically identifies unknown seeds of the plant. The experimental work consisted of extracting homogenized samples with dilute aqueous acid, analyzing the extracts by three different instrumental techniques (liquid chromatography with ultraviolet light detection, liquid chromatography-mass spectrometry, and proton nuclear magnetic resonance spectroscopy) and finally analyzing the instrumental data by chemometric methods. Chemometrics research suffers from nonexistent standard operating procedures, since there is no universal way to treat a sample or data derived from it. While the main steps are often same, the details of sample preparation and preprocessing of analytical data vary greatly and can have a significant impact on the outcome. Despite, the data preprocessing is often left partially or completely manifested. The experimental finding was that six varieties of Ricinus communis could be successfully discriminated by both principal component analysis and hierarchical cluster analysis, applied on chromatographic data, while the results for spectroscopic data were not successful. The results encourage continuing the research, but with more emphasis on peak alignment and further experimenting with the preprocessing of the spectroscopic data. Choosing different short segments of the original spectroscopic profile is suggested, to leave out excessive information that is not helpful in discriminating the plant varieties but could obscure the relevant information.
  • Jubele, Anna (2018)
    In the first part of this thesis literature about the determination amines in food samples of the past decade (2007 – 2017) has been reviewed. The sample preparation methods and chromatographic determination methods have been reviewed. The review is focused on biogenic amines (BA) since BAs are the most relevant in food samples. Monitoring the concentration levels of BAs in foods is important because elevated levels of amine concentrations in food products can indicate spoilage which can lead to food poisoning. Food samples are complex matrices therefore sample preparation is required prior to analysis. Amine extraction methods are reviewed in more detail, including conventional solid-liquid extraction (SLE) and solid phase extraction (SPE), and novel and miniaturized methods: solid phase micro extraction (SPME), liquid phase micro extraction (LPME) and dispersive liquid-liquid micro extraction (DLLME). The derivatization methods of Bas have also been reviewed including derivatization with o - phthaldialdehyde (OPA), dansyl chloride, benzoyl chloride and diethyl ethoxymethylenemalonate (DEEMM). Chromatographic methods are well researched tools in determination of amines in food samples. In the past decade only few application were found of thin layer chromatography (TLC). The gas chromatography (GC) has been used more often, especially in the analyses of beverages. However, the high performance liquid chromatography (HPLC) is the main method of choice in determination of amines in food samples as demonstrated by the large numbers of research articles. Recently also the ultra-high performance liquid chromatography (UHPLC) has been gaining popularity. In this master’s thesis experimental part several sets of experiments were performed. Adsorbing materials were synthesized using suspension polymerization and silica gel functionalization. Compositions of materials were estimated by FTIR. The materials were characterized in terms of their suitability for amine adsorption. Ion exchange capacity was determined by titration. Static and dynamic binding capacity was determined by HPLC-UV. Derivatization studies of atmospheric amines by 9-Fluorenylmethoxycarbonyl chloride (Fmoc-Cl) were carried out by HPLC-UV. Potential imine formation was investigated by HPLC-UV. The most promising adsorbing material was a hydrolyzed copolymer of divinylbenzene and methacrylic anhydride (DVB-(MAA)2O). Its ion exchange capacity was 4.8 meq/g, static binding capacity was 0.95 mmol/g of tertiary amine and dynamic binding capacity was 2.0 mmol/g for primary amine and 0.8 mmol/g for tertiary amine.
  • Nousiainen, Mikko (2017)
    The goal for this study was to find out how well a two-dimensional gas chromatograph with mass spectrometric and flame ionization detectors (GCxGC-MS/FID) could be used for the needs of an oil refining company. There has been a lot of development with comprehensive GCxGC in recent years, in order to gain new methods to analyse more complex sample matrices. The one-dimensional GC is still far more used technique but it simply cannot analyse very well those complex samples that have a lot of co-eluting particles within it. The GCxGC allows separation in two dimensions and helps to solve some of these problems. Usually comprehensive GC is coupled with either a FID or MS. FID especially is widely used in petroleum chemistry due to its very good response factor to hydrocarbons, which are the primary compounds in petrochemical samples. The goal was to study if these two detectors could be coupled within the same apparatus. The gas stream would be split with a Y-connector, so the data from both detectors could be acquired simultaneously. The main goal was to find right parameters for different types of sample matrices. Some templates were also created, which are used in quick data handling to extract results out of the chromatogram.
  • Benkyi, Isaac (2016)
    Porphyrins and porphyrin derivatives are naturally occurring molecules, whereas carbaporphyrinoids are synthesized porphyrin derivatives. They have received much attention in recent years by the scientific community due to their diverse potential applications in technological developments such as molecular electronic devices and conversion of solar energy. However, the full utilization of this class of compounds can not be realized without an in-depth understanding of their chemical and physical properties. Two of such properties are aromaticity and optical properties. In this thesis, the aromatic properties and the light absorption spectra in the ultraviolet and visible (UV/Vis) range have been studied computationally for some recently synthesized carbaporphyrins and carbachlorins using first-principle computational approaches. In the first part of the thesis, the background of carbaporphyrinoids and some examples of naturally occurring porphyrins and porphyrin derivatives are delineated. The second and third part review theoretical and computational methods that are employed in studies of the molecular aromaticity and electronic excitation spectra of molecules. The computational studies of magnetically induced current densities and electronic excitation energies are discussed in the fourth chapter. The obtained results are also presented in chapter four and the main conclusions are summarized in the last chapter. The study shows that all the carbaporphyrinoids studied sustain a magnetically induced ring current in the porphyrin macro ring. This indicates that they are aromatic according to the ring-current criterion. However, the calculated ring-current pathways differ from those predicted from the nucleus independent chemical shift (NICS) calculations and the current pathways deduced from H NMR spectroscopy studies. The vertical excitation energies which is akin to the ultraviolet-visible spectrum obtained experimentally for some of the selected carbaporphyrinoids also showed deviations from those of the experimental values. These deviations can be ascribed to solvent effects as in the calculation of the vertical excitation energies, solvent effects were not accounted for.
  • Rauhalahti, Markus (2018)
    The development of new energy sources for the replacement of fossil fuels is an important task in chemistry. Artificial photosynthesis is a viable option for the generation of fuels. In it, water molecules are oxidized and the resulting protons are reduced to hydrogen, or further combined with carbon dioxide to form carbon fuels. The processes are powered by solar energy. Water oxidation is the bottleneck in the process, as the reaction requires the breaking of four O-H bonds, formation of a O-O bond, and the dissociation of the formed oxygen molecule. Research in past decades has resulted in transition metal complexes, mostly with ruthenium and iridium metal centers, which catalyze oxidation of water with moderate turnover frequencies and numbers. In order for the artificial photosynthesis to be a viable source of energy, catalysts using cheaper and more abundant first row transition metals and having better performance are needed. The the theory section the relevant inorganic and quantum chemistry and the used computational methods are presented. In the literature section, biological photosynthesis and the modular artificial photosynthetic system are presented and the most important water oxidation catalysts are highlighted. In the research section, an efficient water oxidation catalyst by the group of Sun is studied computationally. The coordination geometries and spin-state energetics of the catalyst were studied using Ru, Fe, and Os metal centers at different stages of the catalytic cycle. The Fe catalyst was a high-spin complex with weakened metal-ligand bonding due to the occupation of antibonding metal-ligand orbitals. The modification of the ligand framework with substituents was also studied. Substitution did not have a major effect in charge distributions or coordination geometries, implying that the differences in reactivities observed experimentally are due to environmental effects.
  • Taubert, Stefan (Helsingin yliopistoUniversity of HelsinkiHelsingfors universitet, 2004)
  • Dimitrova, Maria (2016)
    Ionic liquids are chemical compounds with low symmetry, which is manifested by the existence of the liquid phase below room temperature. A common class of ionic liquids is based on the imidazolium cation and an inorganic anion. The specific structure gives rise to some peculiar properties, including low vapour pressure, thermal and chemical stability, electrical conductivity, catalytic activity, and good solvation ability for both polar and non-polar compounds. The complex non-covalent interactions between the ions give rise to an internal structure with specific distribution of the polar and non-polar moieties. Of particular interest is the cage-like structure suggested by 129Xe NMR spectroscopy, and confirmed by molecular dynamics simulations, as small molecules or noble gas atoms can be embedded in these cavities. Computational studies on ionic liquids can be performed at different levels of theory using a multiscale approach. Molecular dynamics can give the distribution of ion pairs in the bulk structure. Density functional theory allows evaluations of the intermolecular interactions in small clusters. High-level ab initio methods are suitable for calculating thermodynamic properties and interaction energies. In this work, the ionic liquid 1-butyl-3-methylimidazolium chloride and its interactions with xenon have been investigated using density functional theory calculations. Studies on an isolated pair provided geometrical parameters, and revealed a favourable interaction with a xenon atom. The calculation on a system consisting of four ion pairs showed that the properties of ionic liquids have to be investigated on larger systems in order to avoid artificial interactions. A cluster consisting of 32 ion pairs was optimized at the PBEh-3c/def2-mSVP level of theory. The interaction energy with xenon was found to be 5.4 kcal/mol, which confirms the experimentally observed ability of imidazolium-based ionic liquids to dissolve the noble gas.
  • Aho, Jari (Helsingin yliopistoHelsingfors universitetUniversity of Helsinki, 2008)
    The purpose of this study is to describe the development of application of mass spectrometry for the structural analyses of non-coding ribonucleic acids during past decade. Mass spectrometric methods are compared of traditional gel electrophoretic methods, the characteristics of performance of mass spectrometric, analyses are studied and the future trends of mass spectrometry of ribonucleic acids are discussed. Non-coding ribonucleic acids are short polymeric biomolecules which are not translated to proteins, but which may affect the gene expression in all organisms. Regulatory ribonucleic acids act through transient interactions with key molecules in signal transduction pathways. Interactions are mediated through specific secondary and tertiary structures. Posttranscriptional modifications in the structures of molecules may introduce new properties to the organism, such as adaptation to environmental changes or development of resistance to antibiotics. In the scope of this study, the structural studies include i) determination of the sequence of nucleobases in the polymer chain, ii) characterisation and localisation of posttranscriptional modifications in nucleobases and in the backbone structure, iii) identification of ribonucleic acid-binding molecules and iv) probing of higher order structures in the ribonucleic acid molecule. Bacteria, archaea, viruses and HeLa cancer cells have been used as target organisms. Synthesised ribonucleic acids consisting of structural regions of interest have been frequently used. Electrospray ionisation (ESI) and matrix-assisted laser desorption ionisation (MALDI) have been used for ionisation of ribonucleic analytes. Ammonium acetate and 2-propanol are common solvents for ESI. Trihydroxyacetophenone is the optimal MALDI matrix for ionisation of ribonucleic acids and peptides. Ammonium salts are used in ESI buffers and MALDI matrices as additives to remove cation adducts. Reverse phase high performance liquid chromatography has been used for desalting and fractionation of analytes either off-line of on-line, coupled with ESI source. Triethylamine and triethylammonium bicarbonate are used as ion pair reagents almost exclusively. Fourier transform ion cyclotron resonance analyser using ESI coupled with liquid chromatography is the platform of choice for all forms of structural analyses. Time-of-flight (TOF) analyser using MALDI may offer sensitive, easy-to-use and economical solution for simple sequencing of longer oligonucleotides and analyses of analyte mixtures without prior fractionation. Special analysis software is used for computer-aided interpretation of mass spectra. With mass spectrometry, sequences of 20-30 nucleotides of length may be determined unambiguously. Sequencing may be applied to quality control of short synthetic oligomers for analytical purposes. Sequencing in conjunction with other structural studies enables accurate localisation and characterisation of posttranscriptional modifications and identification of nucleobases and amino acids at the sites of interaction. High throughput screening methods for RNA-binding ligands have been developed. Probing of the higher order structures has provided supportive data for computer-generated three dimensional models of viral pseudoknots. In conclusion. mass spectrometric methods are well suited for structural analyses of small species of ribonucleic acids, such as short non-coding ribonucleic acids in the molecular size region of 20-30 nucleotides. Structural information not attainable with other methods of analyses, such as nuclear magnetic resonance and X-ray crystallography, may be obtained with the use of mass spectrometry. Sequencing may be applied to quality control of short synthetic oligomers for analytical purposes. Ligand screening may be used in the search of possible new therapeutic agents. Demanding assay design and challenging interpretation of data requires multidisclipinary knowledge. The implement of mass spectrometry to structural studies of ribonucleic acids is probably most efficiently conducted in specialist groups consisting of researchers from various fields of science.
  • Ghulam, Shenelle Pearl (2016)
    Bonding is a central concept in chemistry education; thus a thorough understanding of it is crucial in order to understand various other concepts of chemistry. However, students often find it difficult to understand the concept of bonding and as a result develop alternative conceptions. Living in a macroscopic world, students may find it difficult to shift between macroscopic and molecular levels; this is one of the reasons why students find it difficult to understand chemical bonding. The wide range of complex and sophisticated scientific models that scientists have developed to explain bonding, can be confusing for students. Moreover, students develop alternative conceptions as a result of the way they are taught. Computer-based molecular modelling could be utilized to facilitate and enhance student understanding of bonding. This thesis describes a study on the supportive opportunities and challenges encountered when using computer-based molecular modelling to enhance student understanding of bonding, focusing particularly on three main inquiries. Investigating the challenges students face when utilizing computer-based molecular modelling to understand and explain chemical bonding. Exploring the features of computer-based molecular modelling that enhance student understanding of bonding. And analysing how to optimally support students understanding of bonding when using computer-based models. The study was conducted as a design-based research, centred particularly on student's opinions. An exercise was designed and implemented with 20 International Baccalaureate (11th grade students) during their chemistry lessons. The exercise sheet comprised of brief explanations on bonding, instructions to visualize models on Edumol (a web based molecular modelling and visualization environment) and questions to be answered after visualizing the models. The research results highlighted the importance of well planned activities to ensure the effective use of computer-based models. Prior to using computer-based models in class, teachers must consider possible solutions for technical difficulties that might arise. They must also plan activities based on student's prior experiences with models, to ensure that nothing hinders the students learning process. Additionally, teachers must individualize activities by taking into consideration students opinions and preferences, to ensure productive learning. Furthermore, teachers should optimize the use of the effective features of computer-based models. Features such as molecular electrostatic potentials, that are only possible to visualize via computer-based models. Finally, teachers should use the necessary supportive materials in conjunction with the computer-based models to enhance student understanding of bonding.
  • Idström, Linda (2018)
    Accurate and sensitive analysis of mono-, di-, and oligosaccharides is desired in several different scientific areas due to the wide appearance of saccharides. This work focuses on the detection of mono-, di-, and oligosaccharides utilizing capillary electrophoresis (CE). Saccharide analysis with CE is challenging due to the lack of UV-absorbing chromophores in the molecular structure. CE also requires that the analytes are in their charged form, which is demanding in the case of mono-, di-, and oligosaccharides due to their high pKa-values. The first part of this work presents several detection methods and procedures to succeed in saccharide analysis with CE. A selection of the scientific work published in this area is presented to highlight the different detection possibilities. Derivatization of the analytes is commonly used to transform the saccharides into UV absorbing species. Special compositions of the background electrolyte, e.g. borate buffers and copper(II) containing buffers can be exploited to form charged complexes with the saccharides, which enhance the separation. Indirect UV detection is not as sensitive as direct UV detection of saccharide derivatives, but it is fast and useful in applications where high sensitivity is not required. Electrochemical detection (pulsed amperometric detection and contactless conductivity detection) is especially useful in miniaturized and portable systems. An advantage of electrochemical detection is also that no sample pretreatment or special reagents are required. Mass spectrometry (MS) detection is a powerful tool when detailed information about oligosaccharide structures is required and when the sample amounts are small. MS detection is therefore especially suitable in biochemical applications. In the second part of this work, CE was utilized for the separation and quantification of five novel ionic liquids and the quantification of acetate and xylose in ionic liquid matrices. The internal standard method was used in the quantitative work. The novel ionic liquids were detected with direct UV detection and the limit of detection ranged from 2-5 µg/mL. Resolution and number of effective plates were calculated from the separation studies. In the quantitative work, calibration curves were obtained for four of the novel ionic liquids. CE with indirect UV detection was used for the quantification of acetate, which is a typical counter ion in ionic liquids. A calibration curve for acetate was obtained and the linearity ranged from 0.0025 to 0.2 mg/mL. The method was successfully applied to the determination of the concentration of acetate in a standard sample containing the ionic liquid [MTBDH][OAc]. In the last part of the work, solid phase extraction was utilized to extract ionic liquids from industrial samples. CE with direct and indirect detection was used to check if the extraction was complete and if saccharides were present in the extracts. A calibration curve for xylose was constructed and the linear range for xylose was 0.05 to 3 mg/mL. It was found that the developed method for xylose detection was not sensitive enough to detect possible saccharide residues in the extracts and the analytical procedure requires further development.
  • Helin, Aku (2018)
    Short-chain aliphatic amines (SCAA) are present in multiple different matrices in the environment at low concentration levels. SCAA are considered to be environmentally relevant compounds due to their role as precursors in the formation of carcinogenic N-nitrosoamines in various matrices and new particle formation in the atmosphere. SCAA are characteristically highly volatile, polar, reactive and basic compounds. Consequently, the quantitative determination of SCAA tends to be rather challenging. In the literature part of this thesis, different analytical methods used for the determination of SCAA in environmental samples are reviewed. The typical approach for the analysis of SCAA has been the use of derivatization techniques. Derivatization converts SCAA into less polar and less volatile form, which enables the use of conventional separation techniques, such as gas chromatography (GC) and high-performance liquid chromatography (HPLC). However, the methods involving derivatization can be quite time consuming, require the usage of excess reagents and are mainly applicable for the analysis of primary and secondary SCAA. To reduce the amount of reagent and solvent consumption, microextraction techniques have been implemented as part of the derivatization methods. For the analysis of free SCAA, mainly ion chromatography (IC) and GC have been used. In recent years, also novel online mass spectrometry techniques have been used for the determination of free SCAA in atmospheric air. In the experimental part of this thesis, a novel solid-phase microextraction (SPME) device called SPME Arrow was used for the extraction of free SCAA. Different SPME Arrow sorbent materials were tested, including commercial and custom sorbents, extraction conditions were optimized and the performance of SPME Arrow was compared to conventional SPME fiber. The developed method was applied for the determination of SCAA in wastewater samples and atmospheric air samples. In general, the performance of the custom sorbent coated SPME Arrow was not adequate due to the deterioration of coating, although the preliminary results indicated possible selectivity towards dimethylamine. Considering the commercial sorbent coated SPME devices, the SPME Arrow was better than the SPME fiber in terms of limit of quantification and performance in real sample analysis. When the SPME Arrow was used for wastewater sample analysis, no matrix interferences were observed, opposite to the results obtained with the SPME fiber. In addition, the SPME Arrow could be used for the determination of SCAA in atmospheric air samples following prior preconcentration by using denuder for sampling.
  • Tsai, Chen-Yeh (2018)
    Sugar and Sugar alcohol are indicative compounds in the environmental aerosol which make them really important. The concentration of sugar and sugar alcohol reveal biogenic and anthropogenic information such as climate, air quality, wood consumption, the activity of plantation and pollution. The conventional analysis methods of sugar and sugar alcohol are reverse phase High Performance Liquid Chromatography–Mass Spectrometry (HPLC-MS/MS), and Gas Chromatography-Mass Spectrometry (GC-MS/MS). However, both of them have some limitations due to the sugar and sugar alcohol aerosol sample which are not easy to analyze. For reverse phase HPLC-MS/MS, the separation of analytes is not satisfied. For the GC-MS/MS, the derivatization process requires extra work and the derivatization compound is not stable. Besides, the matrix effect from the aerosol sample is a significant challenge which needs to be solved. Hence, the hydrophilic interaction chromatography (HILIC) and the Solid Phase Extraction (SPE) are introduced. The retention factors of HILIC column are the hydrophilic partition, the hydrogen bonding, and the electrostatic interactions. Polar stationary phase is used in HILIC mode, and the highly organic solvent is employed in mobile phase. Hence, a stagnant aqueous-rich layer is generated in HILIC mode, which can separate sugars and sugar alcohol efficiently. Furthermore, the interference and the matrix effect are solved by SPE. The development and the optimization of SPE-HILIC-MS/MS method for sugars were done in the experimental part. Eventually, the real environmental aerosol was analyzed by the optimized parameters and methods. The sugars and sugar alcohols were analyzed successfully from atmospheric aerosol samples.