Skip to main content
Login | Suomeksi | På svenska | In English

Kuolevuuden estimointiongelma ja Nelson-Aalen estimaattori henkivakuutusmatematiikassa

Show simple item record

dc.date.accessioned 2020-04-29T06:11:22Z
dc.date.available 2020-04-29T06:11:22Z
dc.date.issued 2020-04-29
dc.identifier.uri http://hdl.handle.net/123456789/28200
dc.title Kuolevuuden estimointiongelma ja Nelson-Aalen estimaattori henkivakuutusmatematiikassa fi
ethesis.discipline none und
ethesis.department none und
ethesis.faculty Matemaattis-luonnontieteellinen tiedekunta fi
ethesis.faculty Faculty of Science en
ethesis.faculty Matematisk-naturvetenskapliga fakulteten sv
ethesis.faculty.URI http://data.hulib.helsinki.fi/id/8d59209f-6614-4edd-9744-1ebdaf1d13ca
ethesis.university.URI http://data.hulib.helsinki.fi/id/50ae46d8-7ba9-4821-877c-c994c78b0d97
ethesis.university Helsingin yliopisto fi
ethesis.university University of Helsinki en
ethesis.university Helsingfors universitet sv
dct.creator Närhi, Marianne
dct.issued 2020
dct.language.ISO639-2 fin
dct.abstract Henkivakuutusyhtiöt tarjoavat asiakkailleen monenlaisia tuotteita. Vakuutuksia on erityyppisiä, mutta usein ne ovat liitoksissa vakuutetun elinaikaan. Mainittakoon näistä esimerkiksi kuolemanvara- ja elämänvaravakuutus. Ensimmäisessä korvaus maksetaan mikäli vakuutettu kuolee vakuutusaikana ja toisessa mikäli vakuutettu on elossa ennalta sovittuna ajanhetkenä. Vakuutetun elinaika ei kuitenkaan ole tiedossa sopimusta tehdessä, joten vakuutusyhtiön pitää pystyä estimoimaan vakuutettujen kuolevuutta. Riittävän tarkalla estimoinnilla pyritään estämään tilanne, jossa korvausten määrä ylittää vakuutusyhtiön varat. Kuolevuusennustetta voidaan käyttää muun muassa vakuutusten hinnoitteluun. Estimointi on kuitenkin haastavaa, sillä kuolevuuden kehitykseen tulevaisuudessa vaikuttavat muun muassa mahdolliset lääketieteelliset läpimurrot tai populaation elintapojen muutokset. Kuolevuus ei pysy samana sukupolvesta toiseen, vaan pääsääntöisesti monissa maissa uusi sukupolvi elää edellistä sukupolvea keskimäärin pidempään. Kuolevuutta onkin helpompi ennustaa lyhyellä kuin pitkällä aikavälillä. Tutkielman alussa määrittelemme tämän työn kannalta oleellisia esitietoja, jotka liittyvät sekä elinaikaan ja kuolevuuteen että yleisesti stokastisiin prosesseihin. Erityisen tärkeitä ovat elinajan ja kuolevuusfunktion käsite. Näiden lisäksi martingaali, laskuriprosessi ja kompensaattori ovat tämän työn avainkäsitteitä. Tutustumme määritelmien lisäksi Doob-Meierin hajotelmaan, jonka perusteella alimartingaali voidaan kirjoittaa systemaattisen ja täysin satunnaisen osan summana. Systemaattisesta osasta puhutaan kompensaattorina ja satunnaisen osan muodostaa martingaali. Tutkielman tarkoituksena on johtaa kumulatiivista kuolevuutta estimoiva Nelson-Aalen estimaattori tilanteessa, jossa vakuutettuja on n kappaletta ja vakuutetun mahdollisia eri kuolinsyitä k kappaletta. Oletamme parametrin n arvon olevan suhteellisen suuri ja parametrin k arvon suhteellisen pieni. Johdamme lisäksi estimaattorin odotusarvon sekä varianssin. Havaitaan, että estimaattori on hieman harhainen, mutta kuitenkin asymptoottisesti harhaton. Teemme lisäksi lyhyen sovelluksen R:llä, jonka tarkoituksena on auttaa lukijaa hahmottamaan miltä todellisen otoksen pohjalta laaditut Nelson-Aalen estimaatit voisivat näyttää ja tutkitaan kuinka hyvin ne vastaavat todellisia arvoja. Tutkielman loppupuolella tarkastellaan tilannetta, jossa vakuutettujen määrä kasvaa rajatta ja huomataan, että normalisoitu Nelson-Aalen estimaattori alkaa muistuttaa Gaussista martingaalia. Erityisesti kiinteällä ajanhetkellä estimaattori on asymptoottisesti normaalijakautunut. Todistuksessa käytämme Rebolledon keskeistä raja-arvolausetta martingaaleille. Tulosta käyttämällä olisi mahdollista määrittää luottamusrajat estimoitavalle kumulatiiviselle kuolevuudelle. Lopuksi käymme läpi vaihtoehtoisia tapoja estimoida kuolevuutta. fi
dct.subject Nelson-Aalen estimaattori
dct.subject kuolevuusfunktio
dct.subject martingaali
dct.subject laskuriprosessi
dct.subject kompensaattori
dct.language fi
ethesis.isPublicationLicenseAccepted true
ethesis.language.URI http://data.hulib.helsinki.fi/id/languages/fin
ethesis.language Finnish en
ethesis.language suomi fi
ethesis.language finska sv
ethesis.thesistype pro gradu -tutkielmat fi
ethesis.thesistype master's thesis en
ethesis.thesistype pro gradu-avhandlingar sv
ethesis.thesistype.URI http://data.hulib.helsinki.fi/id/thesistypes/mastersthesis
dct.identifier.ethesis E-thesisID:403cd220-04b1-4712-b1a6-0de57eaa49a5
dct.identifier.urn URN:NBN:fi:hulib-202004291989
dc.type.dcmitype Text
ethesis.facultystudyline Matematiikka fi
ethesis.facultystudyline Mathematics en
ethesis.facultystudyline Matematik sv
ethesis.facultystudyline.URI http://data.hulib.helsinki.fi/id/SH50_050
ethesis.mastersdegreeprogram Matematiikan ja tilastotieteen maisteriohjelma fi
ethesis.mastersdegreeprogram Master's Programme in Mathematics and Statistics en
ethesis.mastersdegreeprogram Magisterprogrammet i matematik och statistik sv
ethesis.mastersdegreeprogram.URI http://data.hulib.helsinki.fi/id/MH50_001

Files in this item

Files Size Format View
Narhi_Marianne_Pro_gradu_2020.pdf 657.6Kb PDF

This item appears in the following Collection(s)

Show simple item record