Skip to main content
Login | Suomeksi | På svenska | In English

Cauchy-Eulerin yhtälö

Show full item record

Title: Cauchy-Eulerin yhtälö
Author(s): Rautaoja, Jukka
Contributor: University of Helsinki, Faculty of Science, none
Discipline: none
Degree program: Master's Programme for Teachers of Mathematics, Physics and Chemistry
Specialisation: Teacher in Mathematics
Language: Finnish
Acceptance year: 2020
Abstract:
Tässä tutkielmassa esitetään Cauchy-Eulerin yhtälö, sen ratkaisu ja kaksi sovellusta sen monista sovelluksista. Cauchy-Eulerin yhtälö on homogeeninen lineaarinen differentiaaliyhtälö, jolla on muuttujakertoimet. Ensimmäisessä luvussa perustellaan aiheen valinta sekä kerrotaan perustietoja lineaarisista differentiaaliyhtälöistä ja Cauchy-Eulerin yhtälön historiasta. Toisessa luvussa esitetään Cauchy-Eulerin yhtälö ja osa yhtälön ratkaisun todistukseen tarvittavista aputuloksista. Kolmannessa luvussa todistetaan sekä toisen kertaluvun että n:nnen kertaluvun ratkaisu yhtälölle. Molempia todistuksia ennen esitetään todistuksien kannalta merkittävimmät aputulokset. Tärkeimpänä esimerkkinä mainittakoon Laplace-muunnos. Toisen kertaluvun ratkaisu todistetaan, koska se on helpompi ymmärtää, sitä tarvitaan molempiin sovelluksiin, ja koska se auttaa ymmärtämään n:nnen kertaluvun ratkaisua. Neljännessä luvussa yhtälölle esitetään kaksi sovellusta: Laplacen yhtälön napakoordinaattiesityksen ratkaisu ja Black-Scholesin yhtälön ratkaisu. Laplacen yhtälöä hyödynnetään kuvaamaan fysiikassa ajasta riippumattomissa tilanteissa tapahtuvia muutoksia esimerkiksi sähkömagneettisissa potentiaaleissa, tasaisissa lämpötiloissa ja hydrodynamiikassa. Yhtälön napakoordinaattiesitystä käytetään sellaisissa tilanteissa, joissa ympäristö on ympyrän rajaama kiekko. Black-Scholesin yhtälöä käytetään finanssimatematiikassa kuvaamaan osakeoptioiden arvonmuutosta. Siten molempia yhtälöitä käytetään paljon, ja ne ovat CauchyEulerin yhtälön tärkeitä sovelluksia. Viidennessä luvussa esitellään tutkielman tulokset. Tuloksina esitetään Cauchy-Eulerin yhtälön n:nnen kertaluvun ratkaisu, Laplacen yhtälön napakoordinaattiesityksen ratkaisu ja Black-Scholesin yhtälön ratkaisu. Sekä Laplacen yhtälön napakoordinaattiesityksen että Black-Scholesin yhtälön ratkaisu saadaan muuttujien separoinnin avulla, jolloin saadaan kaksi eri yhtälöä, joista toinen on toisen kertaluvun Cauchy-Eulerin yhtälö, jonka ratkaisu aiemmin todistettiin.


Files in this item

Files Size Format View
Rautaoja_Jukka_Maisterintutkielma_2020.pdf 727.7Kb PDF

This item appears in the following Collection(s)

Show full item record