Skip to main content
Login | Suomeksi | På svenska | In English

The differential geometry of Markov transitions in Hamiltonian Monte Carlo

Show simple item record

dc.date.accessioned 2021-02-24T06:57:10Z
dc.date.available 2021-02-24T06:57:10Z
dc.date.issued 2021-02-24
dc.identifier.uri http://hdl.handle.net/123456789/34613
dc.title The differential geometry of Markov transitions in Hamiltonian Monte Carlo en
ethesis.faculty Matemaattis-luonnontieteellinen tiedekunta fi
ethesis.faculty Faculty of Science en
ethesis.faculty Matematisk-naturvetenskapliga fakulteten sv
ethesis.faculty.URI http://data.hulib.helsinki.fi/id/8d59209f-6614-4edd-9744-1ebdaf1d13ca
ethesis.university.URI http://data.hulib.helsinki.fi/id/50ae46d8-7ba9-4821-877c-c994c78b0d97
ethesis.university Helsingin yliopisto fi
ethesis.university University of Helsinki en
ethesis.university Helsingfors universitet sv
dct.creator Penttinen, Jussi
dct.issued 2021
dct.language.ISO639-2 eng
dct.abstract HMC is a computational method build to efficiently sample from a high dimensional distribution. Sampling from a distribution is typically a statistical problem and hence a lot of works concerning Hamiltonian Monte Carlo are written in the mathematical language of probability theory, which perhaps is not ideally suited for HMC, since HMC is at its core differential geometry. The purpose of this text is to present the differential geometric tool's needed in HMC and then methodically build the algorithm itself. Since there is a great introductory book to smooth manifolds by Lee and not wanting to completely copy Lee's work from his book, some basic knowledge of differential geometry is left for the reader. Similarly, the author being more comfortable with notions of differential geometry, and to cut down the length of this text, most theorems connected to measure and probability theory are omitted from this work. The first chapter is an introductory chapter that goes through the bare minimum of measure theory needed to motivate Hamiltonian Monte Carlo. Bulk of this text is in the second and third chapter. The second chapter presents the concepts of differential geometry needed to understand the abstract build of Hamiltonian Monte Carlo. Those familiar with differential geometry can possibly skip the second chapter, even though it might be worth while to at least flip through it to fill in on the notations used in this text. The third chapter is the core of this text. There the algorithm is methodically built using the groundwork laid in previous chapters. The most important part and the theoretical heart of the algorithm is presented here in the sections discussing the lift of the target measure. The fourth chapter provides brief practical insight to implementing HMC and also discusses quickly how HMC is currently being improved. en
dct.subject Hamiltonian Monte Carlo
dct.subject differential geometry
dct.subject Monte Carlo
dct.subject Markov chains.
dct.language en
ethesis.isPublicationLicenseAccepted true
ethesis.language.URI http://data.hulib.helsinki.fi/id/languages/eng und
ethesis.language englanti fi
ethesis.language English en
ethesis.language engelska sv
ethesis.thesistype pro gradu -tutkielmat fi
ethesis.thesistype master's thesis en
ethesis.thesistype pro gradu-avhandlingar sv
ethesis.thesistype.URI http://data.hulib.helsinki.fi/id/thesistypes/mastersthesis
dct.identifier.ethesis E-thesisID:48e8709a-3f7a-4d67-a270-51566b536bb5
dct.identifier.urn URN:NBN:fi:hulib-202102241531
dc.type.dcmitype Text
dct.alternative Markovin siirtymiin liittyvä differentiaali geometria Hamiltonian Monte Carlo -metodissa fi
ethesis.facultystudyline Matematiikka fi
ethesis.facultystudyline Mathematics en
ethesis.facultystudyline Matematik sv
ethesis.facultystudyline.URI http://data.hulib.helsinki.fi/id/SH50_050 und
ethesis.mastersdegreeprogram Matematiikan ja tilastotieteen maisteriohjelma fi
ethesis.mastersdegreeprogram Master's Programme in Mathematics and Statistics en
ethesis.mastersdegreeprogram Magisterprogrammet i matematik och statistik sv
ethesis.mastersdegreeprogram.URI http://data.hulib.helsinki.fi/id/MH50_001 und

Files in this item

Files Size Format View
Penttinen_Jussi_tutkielma_2021.pdf 712.9Kb PDF

This item appears in the following Collection(s)

Show simple item record