Skip to main content
Login | Suomeksi | På svenska | In English

Polynomial and exponential equations modulo primes

Show simple item record 2021-06-08T07:20:14Z 2021-06-08T07:20:14Z 2021-06-08
dc.title Polynomial and exponential equations modulo primes en
ethesis.faculty Matemaattis-luonnontieteellinen tiedekunta fi
ethesis.faculty Faculty of Science en
ethesis.faculty Matematisk-naturvetenskapliga fakulteten sv
ethesis.faculty.URI Helsingin yliopisto fi University of Helsinki en Helsingfors universitet sv
dct.creator Järviniemi, Olli
dct.issued 2021
dct.language.ISO639-2 eng
dct.abstract This thesis is motivated by the following questions: What can we say about the set of primes p for which the equation f(x) = 0 (mod p) is solvable when f is (i) a polynomial or (ii) of the form a^x - b? Part I focuses on polynomial equations modulo primes. Chapter 2 focuses on the simultaneous solvability of such equations. Chapter 3 discusses classical topics in algebraic number theory, including Galois groups, finite fields and the Artin symbol, from this point of view. Part II focuses on exponential equations modulo primes. Artin's famous primitive root conjecture and Hooley's conditional solution is discussed in Chapter 4. Tools on Kummer-type extensions are given in Chapter 5 and a multivariable generalization of a method of Lenstra is presented in Chapter 6. These are put to use in Chapter 7, where solutions to several applications, including the Schinzel-Wójcik problem on the equality of orders of integers modulo primes, are given. en
dct.subject Prime divisors of polynomials
dct.subject Chebotarev's density theorem
dct.subject Artin's primitive root conjecture
dct.language en
ethesis.isPublicationLicenseAccepted true
ethesis.language englanti fi
ethesis.language English en
ethesis.language engelska sv
ethesis.thesistype pro gradu -tutkielmat fi
ethesis.thesistype master's thesis en
ethesis.thesistype pro gradu-avhandlingar sv
dct.identifier.ethesis E-thesisID:98248c0d-fc1c-40fa-8302-075121b34e37
dct.identifier.urn URN:NBN:fi:hulib-202106082543
dc.type.dcmitype Text
ethesis.facultystudyline Matematiikka fi
ethesis.facultystudyline Mathematics en
ethesis.facultystudyline Matematik sv
ethesis.mastersdegreeprogram Matematiikan ja tilastotieteen maisteriohjelma fi
ethesis.mastersdegreeprogram Master's Programme in Mathematics and Statistics en
ethesis.mastersdegreeprogram Magisterprogrammet i matematik och statistik sv

Files in this item

Files Size Format View
Jarviniemi_Olli ... smoduloprimes_2021.pdf.pdf 863.9Kb PDF

This item appears in the following Collection(s)

Show simple item record