Skip to main content
Login | Suomeksi | På svenska | In English

Birkhoffin-Kakutanin teoreema

Show full item record

Title: Birkhoffin-Kakutanin teoreema
Author(s): Pentti, Toni
Contributor: University of Helsinki, Faculty of Science
Degree program: Master 's Programme for Teachers of Mathematics, Physics and Chemistry
Specialisation: Teacher in Mathematics
Language: Finnish
Acceptance year: 2021
Abstract:
Tämän tutkielman tarkoitus on esitellä ja todistaa eräs topologisiin ryhmiin liittyvä lause. Lause kertoo topologisen ryhmän oleva metristyvä avaruus, mikäli ryhmän neutraalialkiolla on numeroituva ympäristökanta. Tutkielmassa käsitellään tarkemmin topologisiin ryhmiin liittyviä tuloksia ja niiden seurauksia. Ensimmäinen kappale on varattu johdannolle. Heti alussa käydään läpi miksi tutkielman tulos on merkittävä ja miksi siihen on järkevää paneutua. Tutkielmassa esitellään oleelliset lähtötiedot, jotta lukijan on helpompi tutustua varsinaiseen aiheeseen. Toisessa kappaleessa kerrotaan tärkeimmät käsitteet ja ne yritetään mahdollisimman selvästi selittää lukijalle. Tässä kappaleessa käydään myös läpi tutkielmassa käytettyjä merkintätapoja. Kolmannessa kappaleessa tutustutaan topologisiin ryhmiin ja niihin liittyviin tuloksiin. Kappaleessa on lyhyesti esiteltynä topologisen ryhmän määritelmä, pohjaten algebran määrittelemään ryhmän käsitteeseen ja yleisen topologian määräämiin ehtoihin. Topologisille ryhmille johdetaan kaksi lausetta, jotka ovat tutkielman päätuloksen todistusta varten oleellisia. Ensimmäinen lauseista kertoo, että neutraalialkiolle voidaan rakentaa symmetrisiä ympäristöjä niin, että niiden tulo kuuluu aina johonkin toiseen ympäristöön. Toinen lauseista taas antaa tiedon siitä kuinka neutraalialkiolle löytyy ympäristöjä johon jokin toinen alkio ei kuulu. Nämä lauseet antavat työkalut rakentamaan ryhmän alkioille avoimia ympäristöjä, joita käytetään taas edelleen sopivia ympäristökantoja rakennettaessa. Tässä kappaleessa käydään läpi kaikki tarvittava päätulosta varten. Tutkielman varsinainen päätulos esitellään lyhyesti kappaleen neljä alussa. Kappaleessa todistetaan vaihe vaiheelta topologisen ryhmän neutraalialkiolle rakennetun numeroituvan ympäristökannan avulla, että löydetään metriikka joka määrittää avoimet joukot siten, että ne ovat samoja kuin topologian määräämät avoimet joukot. Tulos on merkittävä siksi, että se antaa työkalun tarkastella topologisten ja metristen avaruuksien yhteyksiä. Lähtökohta työlle oli kirjoittajan oma kiinnostus topologisiin ryhmiin ja niihin liittyviin tuloksiin. Tavoitteena oli todistaa tärkeä tulos topologian alalta, joka auttaa linkittämään topologiset ja metriset avaruudet toisiinsa.


Files in this item

Files Size Format View
Pentti_Toni_tutkielma_2021.pdf 732.4Kb PDF

This item appears in the following Collection(s)

Show full item record