Skip to main content
Login | Suomeksi | På svenska | In English

Dirichlet'n ongelma C^2:n hyperbolisessa yksikkökuulassa

Show simple item record

dc.date.accessioned 2022-03-30T05:32:17Z
dc.date.available 2022-03-30T05:32:17Z
dc.date.issued 2022-03-30
dc.identifier.uri http://hdl.handle.net/123456789/39988
dc.title Dirichlet'n ongelma C^2:n hyperbolisessa yksikkökuulassa fi
ethesis.faculty Matemaattis-luonnontieteellinen tiedekunta fi
ethesis.faculty Faculty of Science en
ethesis.faculty Matematisk-naturvetenskapliga fakulteten sv
ethesis.faculty.URI http://data.hulib.helsinki.fi/id/8d59209f-6614-4edd-9744-1ebdaf1d13ca
ethesis.university.URI http://data.hulib.helsinki.fi/id/50ae46d8-7ba9-4821-877c-c994c78b0d97
ethesis.university Helsingin yliopisto fi
ethesis.university University of Helsinki en
ethesis.university Helsingfors universitet sv
dct.creator Frosti, Miika
dct.issued 2022
dct.abstract Tämä tutkielma käsittelee C^2:n hyperbolisessa yksikkökuulassa asetettuja Dirichlet'n ongelmia. Työn tavoitteena on löytää ongelman ratkaisujen joukosta ne funktiot, jotka ovat sileitä, eli rajattomasti derivoituvia. Tätä varten kuvaillaan aluksi R^2:n yksikköympyrässä ja puoliavaruudessa määritellyt Dirichlet'n ongelmat ja miten muodostaa niille ratkaisut. Molempien alueiden ongelmia varten luodaan aluekohtaiset Greenin funktiot, joiden avulla johdetaan Poissonin ydin. Tämän ytimen avulla saadaan sileä ratkaisu Dirichlet'n ongelmaan. Tämän jälkeen tutustutaan C^2:n hyperboliseen yksikkökuulaan, ja miten siinä määritellyt Dirichlet'n ongelmat eroavat R^2:n yksikkökuulan ongelmista. Aiheen kannalta merkittävintä on ero euklidisen ja hyperbolisen Laplace-Beltramin operaattorin ominaisuuksissa. Kun tärkeimmät eroavaisuudet ovat selvitetty, voidaan todistaa, että Poisson-Szegön ytimen avulla määritelty funktio ratkaisee Dirichlet'n ongelman. On kuitenkin mahdollista näyttää esimerkillä, että ratkaisut eivät ole välttämättä sileitä. Jotta näistä ratkaisuista voidaan erottaa sileät funktiot, on hyödynnettävä palloharmonisia funktioita. Näiden tärkeimpiä piirteitä kuvaillaan sekä reaaliavaruudessa että kompleksiavaruudessa. Näiden funktioiden ja hypergeometristen funktioiden avulla voidaan määritellä uusi muoto Poisson-Szegön ytimelle, josta voidaan puolestaan johtaa tutkielman lopputulos. Kyseiseksi lopputulokseksi saadaan se, että yksikkökuulan Dirichlet'n ongelmien ratkaisut ovat sileitä jos ja vain jos ratkaisut ovat pluriharmonisia. fi
dct.subject osittaisdifferentiaaliyhtälöt
dct.subject funktionaalianalyysi
dct.subject kompleksianalyysi
dct.subject Fourier-analyysi
ethesis.isPublicationLicenseAccepted true
ethesis.language.URI http://data.hulib.helsinki.fi/id/languages/fin
ethesis.language suomi fi
ethesis.language Finnish en
ethesis.language finska sv
ethesis.thesistype pro gradu -tutkielmat fi
ethesis.thesistype master's thesis en
ethesis.thesistype pro gradu-avhandlingar sv
ethesis.thesistype.URI http://data.hulib.helsinki.fi/id/thesistypes/mastersthesis
dct.identifier.ethesis E-thesisID:e7fa9d9f-339e-4728-ae4f-dd6f3922f8f6
dct.identifier.urn URN:NBN:fi:hulib-202203301556
ethesis.facultystudyline Matematiikka fi
ethesis.facultystudyline Mathematics en
ethesis.facultystudyline Matematik sv
ethesis.facultystudyline.URI http://data.hulib.helsinki.fi/id/SH50_050
ethesis.mastersdegreeprogram Matematiikan ja tilastotieteen maisteriohjelma fi
ethesis.mastersdegreeprogram Master 's Programme in Mathematics and Statistics en
ethesis.mastersdegreeprogram Magisterprogrammet i matematik och statistik sv
ethesis.mastersdegreeprogram.URI http://data.hulib.helsinki.fi/id/MH50_001

Files in this item

Files Size Format View
Frosti_Miika_maisterintutkielma_2022.pdf 430.0Kb PDF

This item appears in the following Collection(s)

Show simple item record