Skip to main content
Login | Suomeksi | På svenska | In English

Pólyan lause

Show simple item record

dc.date.accessioned 2022-06-15T08:47:20Z
dc.date.available 2022-06-15T08:47:20Z
dc.date.issued 2022-06-15
dc.identifier.uri http://hdl.handle.net/123456789/41560
dc.title Pólyan lause en
ethesis.faculty Matemaattis-luonnontieteellinen tiedekunta fi
ethesis.faculty Faculty of Science en
ethesis.faculty Matematisk-naturvetenskapliga fakulteten sv
ethesis.faculty.URI http://data.hulib.helsinki.fi/id/8d59209f-6614-4edd-9744-1ebdaf1d13ca
ethesis.university.URI http://data.hulib.helsinki.fi/id/50ae46d8-7ba9-4821-877c-c994c78b0d97
ethesis.university Helsingin yliopisto fi
ethesis.university University of Helsinki en
ethesis.university Helsingfors universitet sv
dct.creator Jylhä, Lotta
dct.issued 2022 xx
dct.abstract Pólyan lauseen mukaan verkon Z^d symmetrinen satunnaiskävely on palautuva, jos d < 3 ja poistuva, jos d ≥ 3. Alunperin Georg Pólyan todistamalle lauseelle on ajan kuluessa muodostunut erilaisia todistusmenetelmiä. Tässä tutkielmassa syvennytään näistä kahteen toisiaan täydentävään menetelmään ja todistetaan Pólyan lause niiden avulla. Luvussa 5.1 Pólyan lauseelle esitetään laskennallinen todistus, joka tarjoaa yksinkertaisen ja konkreettisen tavan tutkia säännöllisen verkon satunnaiskävelyn käyttäytymistä. Luvussa 5.2 esitettävän virtauksen teorian avulla voidaan Pólyan lauseen lisäksi tutkia satunnaiskävelyn käyttäytymistä laajemmin eri verkoissa. Tarvittavat taustatiedot verkosta, Markovin ketjusta ja satunnaiskävelystä esitetään luvuissa 2 ja 3. Pólyan lauseen todistus on jaettu kahteen eri lukuun. Lauseen todistus alkaa luvusta 5.1, jossa verkon syklien ja polkujen lukumääriä tutkimalla Pólyan lause osoitetaan verkolle Z^d, missä d ≤ 3. Kombinatorinen todistus on idealtaan yksinkertainen, mutta siinä tehtävä arvio vaatii syvällisempää perustelua. Tutkielmassa tämä arvio toteutetaan Robbinsin kaavalla, joka on tarkempi arvio kirjallisuudessa useammin käytetylle Stirlingin kaavalle. Robbinsin kaava osoitetaan luvussa 4. Luvussa 5.2 esitetään verkon virtauksen teoria, jonka avulla Pólyan lause todistetaan verkolle Z^d, missä d > 3. Verkon virtauksen ja satunnaiskävelyn yhteys löytyy virtaukseen liittyvästä energian käsitteestä. Osoittautuu, että verkon virtauksista energialtaan pienimmän virtauksen energia riippuu verkon satunnaiskävelyn käyttäytymisestä. Tulos osoitetaan ensin äärelliselle verkolle, josta se johdetaan koskemaan ääretöntä verkkoa verkkoon liittyvän kontraktion käsitteen avulla. Luvussa 6 Pólyan lauseen merkitys korostuu, kun virtauslauseen avulla osoitetaan, että satunnaiskävelyn poistuvuus säilyy verkkojen kvasi-isometriassa. Tätä varten esitetään virtauslauseen seurauksia ja tarvittavat taustatiedot kvasi-isometriasta fi
dct.subject verkko
dct.subject satunnaiskävely
dct.subject polyan lause
ethesis.isPublicationLicenseAccepted true
ethesis.language.URI http://data.hulib.helsinki.fi/id/languages/fin
ethesis.language suomi fi
ethesis.language Finnish en
ethesis.language finska sv
ethesis.thesistype pro gradu -tutkielmat fi
ethesis.thesistype master's thesis en
ethesis.thesistype pro gradu-avhandlingar sv
ethesis.thesistype.URI http://data.hulib.helsinki.fi/id/thesistypes/mastersthesis
dct.identifier.ethesis E-thesisID:d3002957-a48a-4963-9795-793c9fe71ab2
dct.identifier.urn URN:NBN:fi:hulib-202206152695
dct.alternative Pólya's Theorem en
ethesis.facultystudyline Matematiikka fi
ethesis.facultystudyline Mathematics en
ethesis.facultystudyline Matematik sv
ethesis.facultystudyline.URI http://data.hulib.helsinki.fi/id/SH50_050
ethesis.mastersdegreeprogram Matematiikan ja tilastotieteen maisteriohjelma fi
ethesis.mastersdegreeprogram Master 's Programme in Mathematics and Statistics en
ethesis.mastersdegreeprogram Magisterprogrammet i matematik och statistik sv
ethesis.mastersdegreeprogram.URI http://data.hulib.helsinki.fi/id/MH50_001

Files in this item

Files Size Format View
Jylha_Lotta_Thesis_2022.pdf 773.0Kb PDF

This item appears in the following Collection(s)

Show simple item record