Skip to main content
Login | Suomeksi | På svenska | In English

Estimating the distribution of rat population in Helsinki with non-stationary Gaussian model interpreting coastline as a physical barrier

Show full item record

Title: Estimating the distribution of rat population in Helsinki with non-stationary Gaussian model interpreting coastline as a physical barrier
Author(s): Nikkanen, Leo
Contributor: University of Helsinki, Faculty of Science
Degree program: Master 's Programme in Mathematics and Statistics
Specialisation: Statistics
Language: English
Acceptance year: 2022
Often in spatial statistics the modelled domain contains physical barriers that can have impact on how the modelled phenomena behaves. This barrier can be, for example, land in case of modelling a fish population, or road for different animal populations. Common model that is used in spatial statistics is a stationary Gaussian model, because of its computational requirements, relatively easy interpretation of results. The physical barrier does not have an effect on this type of models unless the barrier is transformed into variable, but this can cause issues in the polygon selection. In this thesis I discuss how the non-stationary Gaussian model can be deployed in cases where spatial domain contains physical barriers. This non-stationary model reduces spatial correlation continuously towards zero in areas that are considered as a physical barrier. When the correlation is selected to reduce smoothly to zero, the model is more likely to results similar output with slightly different polygons. The advantage of the barrier model is that it is as fast to train as the stationary model because both models can be trained using finite equation method (FEM). With FEM we can solve stochastic partial differential equations (SPDE). This method interprets continuous random field as a discrete mesh, and the computational requirements increases as the number of nodes in mesh increases. In order to create stationary and non-stationary models, I have described the required methods such as Bayesian statistics, stochastic process, and covariance function in the second chapter. I use these methods to define spatial random effect model, and one commonly used spatial model is the Gaussian latent variable model. At the end of second chapter, I describe how the barrier model is created, and what types of requirements this model has. The barrier model is based on a Matern model that is a Gaussian random field, and it can be represented by using Matern covariance function. The second chapter ends with description of how to create a mesh mentioned above, and how the FEM is used to solve SPDE. The performance of stationary and non-stationary Gaussian models are first tested by training both models with simulated data. This simulated data is a random sample from polygon of Helsinki where the coastline is interpreted as a physical barrier. The results show that the barrier model estimates the true parameters better than the stationary model. The last chapter contains data analysis of the rat populations in Helsinki. The data contains number of rat observations in each zip code, and a set of covariates. Both models, stationary and non-stationary, are trained with and without covariates, and the best model out of these four models was the stationary model with covariates.

Files in this item

Files Size Format View
Nikkanen_Leo_thesis_2022.pdf 783.6Kb PDF

This item appears in the following Collection(s)

Show full item record