dc.date.accessioned |
2022-06-15T08:50:12Z |
|
dc.date.available |
2022-06-15T08:50:12Z |
|
dc.date.issued |
2022-06-15 |
|
dc.identifier.uri |
http://hdl.handle.net/123456789/41571 |
|
dc.title |
Uusiutumisteorian peruskäsitteiden sovelluksia |
fi |
ethesis.faculty |
Matemaattis-luonnontieteellinen tiedekunta |
fi |
ethesis.faculty |
Faculty of Science |
en |
ethesis.faculty |
Matematisk-naturvetenskapliga fakulteten |
sv |
ethesis.faculty.URI |
http://data.hulib.helsinki.fi/id/8d59209f-6614-4edd-9744-1ebdaf1d13ca |
|
ethesis.university.URI |
http://data.hulib.helsinki.fi/id/50ae46d8-7ba9-4821-877c-c994c78b0d97 |
|
ethesis.university |
Helsingin yliopisto |
fi |
ethesis.university |
University of Helsinki |
en |
ethesis.university |
Helsingfors universitet |
sv |
dct.creator |
Rautiainen, Leo |
|
dct.issued |
2022 |
|
dct.abstract |
Tämän gradun keskeisin asia on uusiutumisteoria. Uusiutumisteoria on todennäköisyysteoriaa, ja siinä tarkastellaan tilanteita niin sanotusti takaperin. Eli voidaan vaikka simuloida tiettyä tilannetta erittäin monta kertaa, ja laskea tuloksen perusteella vastaus. Esimerkki tästä on tilanne, jossa tarkastellaan, kuinka monta kertaa olisi heitettävä noppaa, jotta saadaan sama lukuarvo viisi kertaa peräkkäin. Tällainen on haastavampaa laskea klassisen todennäköisyyslaskennan metodein, koska otannan kokoa ei ole tiedossa.
Tutkielman tarkoituksena on, että tutkielman lukija joko saisi ymmärrystä siitä, mitä uusiutumisteoria on, tai hänen tietämyksensä syvenisi. Tämä on toteutettu niin, että tutkielman alussa on pyritty selittämään matemaattisia asioita, joita käytetään myöhemmin tutkielmassa, jotta tutkielma olisi luettavissa mahdollisimman monelle eri matematiikan osaamistasoiselle ihmiselle. Todistusten seuraaminen ihmiselle, joka on matematiikan opinnoissaan vasta alkuvaiheessa voi olla erittäin haastavaa, mutta esimerkit on pyritty kirjoittamaan niin, että ne olisivat kenelle vain luettavissa.
Gradussa on kaksi matemaattisesti haastavampaa kappaletta. Toisessa johdetaan keskeinen uusiutumislause ja todistetaan se, ja toisessa johdetaan uusiutumislause epätäydelliseksi uusiutumislauseeksi, ja osoitetaan, kuinka uusiutumisteoria on mukana vakuutusmatematiikan riskiteoriassa.
Keskeisen uusiutumislauseen todistus tehdään niin, että ensin johdetaan tämä lause yksinkertaisemmista uusiutumislauseista ja määritellään uusiutumisfunktio. Tämän jälkeen määritellään Blackwellin uusiutumislause ja todistetaan se. Tämän jälkeen voidaan osoittaa, että lauseet ovat matemaattisesti ekvivalentteja sopivin oletuksin, ja kun se on osoitettu, on keskeinen uusiutumislause todistettu.
Työn lopussa käsitellään esimerkkejä. Yksi näistä on koneiden hajoamiseen liittyvä uusiutumisteoreettinen tehtävä, ja sen lisäksi esitetään kaksi uusiutumisteoriaan liittyvää paradoksia. Vaikka näissäkin voi olla haastaviakin todistuksen osia, erityisesti molempien paradoksien todistuksissa, on jokainen esimerkki muotoiltu jokaiselle luettavaan muotoon. Nämä kaksi kappaletta ovat ne kappaleet, jotka kannattaa lukea, jos ei ole ikinä kuullut uusiutumisteoriasta.
Yllä mainitussa esimerkissä on tilanne, jossa on tehdas ja tehtaassa on kone, jossa on yksi kriittinen osa, joka hajoaa helposti. Jos osa huolletaan ennen hajoamista, maksaa se 200 euroa. Jos taas osa ehtii hajota ennen huoltoa ja se pitää korjata, hajottaa se samalla konetta, ja kustannukseksi tulee tällöin 2600. Koneen osan hajoaminen on tasajakautunutta kahden vuoden ajanjaksolle. Tällöin uusiutumisteorian avulla on mahdollista ratkaista, mikä on optimaalisin huoltoväli koneelle. |
fi |
ethesis.isPublicationLicenseAccepted |
false |
|
ethesis.language.URI |
http://data.hulib.helsinki.fi/id/languages/fin |
|
ethesis.language |
suomi |
fi |
ethesis.language |
Finnish |
en |
ethesis.language |
finska |
sv |
ethesis.thesistype |
pro gradu -tutkielmat |
fi |
ethesis.thesistype |
master's thesis |
en |
ethesis.thesistype |
pro gradu-avhandlingar |
sv |
ethesis.thesistype.URI |
http://data.hulib.helsinki.fi/id/thesistypes/mastersthesis |
|
dct.identifier.ethesis |
E-thesisID:37f94998-c441-49f0-8dfb-3f0a6cc780ab |
|
dct.identifier.urn |
URN:NBN:fi:hulib-202206152706 |
|
ethesis.facultystudyline |
Matematiikka ja soveltava matematiikka |
fi |
ethesis.facultystudyline |
Mathematics and applied mathematics |
en |
ethesis.facultystudyline |
Matematik och tillämpande matematik |
sv |
ethesis.facultystudyline.URI |
http://data.hulib.helsinki.fi/id/SH50_MAST-MSM |
|
ethesis.mastersdegreeprogram |
Matematiikan ja tilastotieteen maisteriohjelma |
fi |
ethesis.mastersdegreeprogram |
Master 's Programme in Mathematics and Statistics |
en |
ethesis.mastersdegreeprogram |
Magisterprogrammet i matematik och statistik |
sv |
ethesis.mastersdegreeprogram.URI |
http://data.hulib.helsinki.fi/id/MH50_001 |
|