Skip to main content
Login | Suomeksi | På svenska | In English

Axiomatizing modal inclusion logic

Show simple item record 2022-09-01T10:45:26Z 2022-09-01T10:45:26Z 2022-09-01
dc.title Axiomatizing modal inclusion logic en
ethesis.faculty Matemaattis-luonnontieteellinen tiedekunta fi
ethesis.faculty Faculty of Science en
ethesis.faculty Matematisk-naturvetenskapliga fakulteten sv
ethesis.faculty.URI Helsingin yliopisto fi University of Helsinki en Helsingfors universitet sv
dct.creator Häggblom, Matilda
dct.issued 2022
dct.abstract Modal inclusion logic is modal logic extended with inclusion atoms. It is the modal variant of first-order inclusion logic, which was introduced by Galliani (2012). Inclusion logic is a main variant of dependence logic (Väänänen 2007). Dependence logic and its variants adopt team semantics, introduced by Hodges (1997). Under team semantics, a modal (inclusion) logic formula is evaluated in a set of states, called a team. The inclusion atom is a type of dependency atom, which describes that the possible values a sequence of formulas can obtain are values of another sequence of formulas. In this thesis, we introduce a sound and complete natural deduction system for modal inclusion logic, which is currently missing in the literature. The thesis consists of an introductory part, in which we recall the definitions and basic properties of modal logic and modal inclusion logic, followed by two main parts. The first part concerns the expressive power of modal inclusion logic. We review the result of Hella and Stumpf (2015) that modal inclusion logic is expressively complete: A class of Kripke models with teams is closed under unions, closed under k-bisimulation for some natural number k, and has the empty team property if and only if the class can be defined with a modal inclusion logic formula. Through the expressive completeness proof, we obtain characteristic formulas for classes with these three properties. This also provides a normal form for formulas in MIL. The proof of this result is due to Hella and Stumpf, and we suggest a simplification to the normal form by making it similar to the normal form introduced by Kontinen et al. (2014). In the second part, we introduce a sound and complete natural deduction proof system for modal inclusion logic. Our proof system builds on the proof systems defined for modal dependence logic and propositional inclusion logic by Yang (2017, 2022). We show the completeness theorem using the normal form of modal inclusion logic. en
dct.subject dependence logic
dct.subject team semantics
dct.subject inclusion logic
dct.subject modal logic
ethesis.isPublicationLicenseAccepted true
ethesis.language englanti fi
ethesis.language English en
ethesis.language engelska sv
ethesis.thesistype pro gradu -tutkielmat fi
ethesis.thesistype master's thesis en
ethesis.thesistype pro gradu-avhandlingar sv
dct.identifier.ethesis E-thesisID:dab174c4-8736-4699-ae3b-8fee6d2672f0
dct.identifier.urn URN:NBN:fi:hulib-202209013408
ethesis.facultystudyline Matematiikka fi
ethesis.facultystudyline Mathematics en
ethesis.facultystudyline Matematik sv
ethesis.mastersdegreeprogram Matematiikan ja tilastotieteen maisteriohjelma fi
ethesis.mastersdegreeprogram Master 's Programme in Mathematics and Statistics en
ethesis.mastersdegreeprogram Magisterprogrammet i matematik och statistik sv

Files in this item

Files Size Format View
Haggblom_Matilda_thesis_2022.pdf 647.0Kb PDF

This item appears in the following Collection(s)

Show simple item record