Skip to main content
Login | Suomeksi | På svenska | In English

Cold quark matter in perturbative QCD

Show simple item record 2022-12-05T14:22:05Z 2022-12-05T14:22:05Z 2022-12-05
dc.title Cold quark matter in perturbative QCD it
ethesis.faculty Matemaattis-luonnontieteellinen tiedekunta fi
ethesis.faculty Faculty of Science en
ethesis.faculty Matematisk-naturvetenskapliga fakulteten sv
ethesis.faculty.URI Helsingin yliopisto fi University of Helsinki en Helsingfors universitet sv
dct.creator Nurmela, Mika
dct.issued 2022 xx
dct.abstract We study a system of cold high-density matter consisting purely of quarks and gluons. The mathematical construction of Quantum Chromodynamics (QCD) introduces interactions between the fields, which modify the thermodynamic properties of the system. In the presence of interactions, we can not solve the thermodynamic properties of the system analytically. The method is to expand the result in a series in terms of the QCD coupling constant. This is referred to as the perturbation theory in the context of thermal field theory (TFT). The coupling constant describes the strength of the interaction. We introduce the basic calculation methods used in the QCD and the TFTs in general. We will also include the chemical potential associated with the number of quarks in the system in the calculation. In the case of zero temperature, quarks form a Fermi-sphere such that energy states lower than the chemical potential will be Pauli blocked. The resulting fermionic momentum integrals are modified as a consequence. We can split these integrals into two parts, referred to as the vacuum and matter parts. We can split the calculation of the pressure into two distinct contributions: one from skeleton diagrams and one from ring diagrams. The ring diagrams have unphysical IR divergences that we can not cancel using the counterterms. This is why hard thermal loop (HTL) effective field theory (EFT) is introduced. We will discuss this HTL framework, which requires the computation of the matter part of the gluon polarization tensor, which we will also evaluate in this thesis. en
dct.subject quantum chromodynamics
dct.subject thermal field theory
dct.subject hard thermal loop
dct.subject gluon self-energy
ethesis.isPublicationLicenseAccepted true
ethesis.language englanti fi
ethesis.language English en
ethesis.language engelska sv
ethesis.thesistype pro gradu -tutkielmat fi
ethesis.thesistype master's thesis en
ethesis.thesistype pro gradu-avhandlingar sv
dct.identifier.ethesis E-thesisID:35c214a2-e53c-43f7-8a05-c03abf5943e4
dct.identifier.urn URN:NBN:fi:hulib-202212053950
dct.alternative Kylmä kvarkkiaine QCD häiriöteoriassa fi
ethesis.facultystudyline Teoreettinen fysiikka fi
ethesis.facultystudyline Theoretical Physics en
ethesis.facultystudyline Teoretisk fysik sv
ethesis.mastersdegreeprogram Teoreettisten ja laskennallisten menetelmien maisteriohjelma (Theoretical Calculation Methods) fi
ethesis.mastersdegreeprogram Master 's Programme in Theoretical and Computational Methods en
ethesis.mastersdegreeprogram Magisterprogrammet i teoretiska och beräkningsmetoder sv

Files in this item

Files Size Format View
Nurmela_Mika_ProGradu_2022.pdf 1.094Mb PDF

This item appears in the following Collection(s)

Show simple item record