Skip to main content
Login | Suomeksi | På svenska | In English

Künnethin kaava tulokohomologialle

Show full item record

Title: Künnethin kaava tulokohomologialle
Author(s): Lassila, Mira
Contributor: University of Helsinki, Faculty of Science
Degree program: Master 's Programme in Mathematics and Statistics
Specialisation: Mathematics and applied mathematics
Language: Finnish
Acceptance year: 2023
Abstract:
Tutkielma keskittyy algebralliseen topologiaan ja vielä tarkemmin homologian ja kohomologian tutkimiseen. Tutkielman tavoite on todistaa Künnethin kaava tulokohomologialle, jota varten ensin esitellään homologia ja siitä johdettuna dualisaation kautta kohomologia. Homologia ja kohomologia tutkielmassa esitellään singulaarisessa muodossa. Johdannon jälkeen tutkielma aloitetaan esittelemällä kategoriateorian perusteet. Kategoria kappaleessa annetaan esimerkkejä kategorioista, joita käytetään pitkin tutkielmaa. Kategoria käsitteen esittelyn jälkeen jatketaan määrittelemään kuvaus jolla pystytään siirtymään kategoriasta toiseen eli funktorit. Funktorit jaetaan kovariantteihin ja kontravariantteihin riippuen siitä säilyttääkö se morfismien suunnan. Funktoreista esille nostetaan Hom-funktori, jonka kontravarianttia muotoa hyödyntämällä saadaan myöhemmin muodostettua kohomologia. Funktoreiden käsittelyn myötä pystytään niiden välille muodostamaan kuvauksia, jonka vuoksi esitellään luonnollinen transformaatio. Toisen luvun viimeisimpänä aihealueena käsitellään eksakteja jonoja. Toinen kappale kokoaa tarvittavat esitiedot, jotta voidaan siirtyä käsittelemään homologiaa ja kohomologiaa. Kolmas kappale käy läpi homologian ja kohomologian käsitteistöä. Homologia ja kohomologia esitellään pääasiassa singulaarisessa muodossa. Homologiasta käydään läpi peruskäsitteet, jonka jälkeen siirrytään singulaariseen homologiaan. Tässä yhteydessä määritelmään muun muassa simpleksi, jotta voidaan avata singulaarisen homologian perusteita. Singulaarisesta homologiasta edetään singulaariseen kohomologiaan, joka saadaan aiemmin esitellyn Hom-funktorin avulla homologiasta. Singulaarisen kohomologia kappaleen lopuksi esitellään vielä uusi laskutoimitus kohomologiaryhmille eli kuppitulo. Tutkielman viimeinen kappale käsittelee itse Künnethin kaavan ja sen todistuksen. Lisäksi käydään läpi muita tarvittavia esitietoja kaavan todistuksen ymmärtämiselle, jotka eivät ole vielä nousseet esille aikaisemmissa luvuissa. Tutkielma päättyy Künnethin kaavan todistukseen.
Keyword(s): Künneth homologia kohomologia


Files in this item

Files Size Format View
Lassila_Mira_tutkielma_2023.pdf 417.4Kb PDF

This item appears in the following Collection(s)

Show full item record