Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "photosynthesis"

Sort by: Order: Results:

  • Kemppinen, Jasmin (2020)
    Reactive oxygen species (ROS) are one of the prominent groups of signal compounds that are produced in stress conditions such as excess light. Nuclear protein RADICAL-INDUCED CELL DEAT (RCD1) is sensitive to ROS and controls the expression of organelle components, e.g. mitochondrial alternative oxidases (AOX), thus balancing the redox-status of a plant cell. Plants have fast responses to fluctuating light conditions that happen even before gene expression: i.e. readjusting the capability to receive light energy between the two photosystems by state transitions and increasing the capacity to remove excess energy by non-photochemical quenching (NPQ). Various small auxiliary proteins function in these fast acclimation events. However, many of them are identified on gene level only. The goal of this master’s thesis is to describe the role of a hypothetical protein, PPD8 in Arabidopsis thaliana. We evaluate how PPD8 is associated with RCD1 and a chloroplast thiol-regulator enzyme NTRC. We created double (rcd1 ppd8) and triple mutant plant lines (rcd1 ppd8 ntrc) by crossing single knockout lines ppd8, rcd1 and ntrc. Photosynthetic performance, NPQ and sensitivity to ROS were observed in each line by using two different chlorophyll fluorescence measurement methods: pulse-amplitude-modulation (PAM) and novel OJIP imaging fluorometry. The leaves were exposed to methyl viologen (MV), which accelerates the chloroplastic ROS production in light, and also to hypoxic conditions in order to study how the effect of MV is altered in low concentrations of oxygen. Additionally, we examined the amount of photosynthetic proteins and stoichiometry of photosystems in ppd8, rcd1 and rcd1 ppd8 by immunological methods. Finally, PPD8 gene with attached hemagglutinin encoding tags was generated by cloning and reintroduced back to the ppd8 knockout lines. Plants lacking RCD1 are very tolerant against MV and ROS, but when rcd1 was crossed with ppd8 the resistance was suppressed. Both rcd1 ppd8 and ppd8 exhibited elevated chlorophyll fluorescence and NPQ values. The removal of PPD8 gene had an impact on the abundance and the stoichiometry of photosynthetic proteins reducing the plants’ performance. When RCD1, PPD8 and NTRC were simultaneously absent the plants had major defects: their NPQ and fluorescence values were drastically increased. Furthermore, several results hinted towards possible issues in the function of ATP synthase in ppd8 background plants. It is also known that NTRC regulates ATP synthase: taken together, the results suggest that PPD8 is necessary for a fully operative ATP synthase and photosynthetic machinery. By reintroducing PPD8 to knockout line ppd8, the phenotype could be reverted back to wild type -like, thus confirming the significance of the PPD8 gene product in plant.
  • Kiviluoma, Tomi (2021)
    Education research has for decades acknowledged that prior knowledge is a strong predictor of academic success. This idea is largely based on constructivist theory of learning which postulates that all learning occurs by actively building on existing knowledge. When this prior knowledge conflicts with the normative scientific understanding, students are dealing with incompatible knowledge structures, or misconceptions. Misconceptions need to be revised and sometimes even replaced through a learning process called conceptual change. Research shows that the level of prior knowledge can determine students’ academic success and performance. Undergraduate biology students enrol to university with diverse levels of prior knowledge and concepts regarding topics such as photosynthesis, cellular respiration, primary production in ecosystems, and Darwinian evolution. These topics present challenges for learning because of their complexity. At the same time, a robust understanding of them is essential. These topics are at the heart of mitigating and resolving the climate crisis and other global natural threats. This study explored the level of prior knowledge and the nature of misconceptions held by undergraduate biology students at the beginning of their academic degree in fall of 2019, and further sought to describe how their conceptual understanding developed during the first academic year. Students (N = 41) completed a questionnaire consisting of eight open-ended questions that were designed to assess declarative knowledge of facts and meaning, and procedural integration and application of knowledge. This pre-test measurement was conducted in September 2019. In the post-test measurement, the same questionnaire was repeated a year later. The data were analysed with a mixed methods approach where the answers were quantitatively scored as well as qualitatively analysed for misconceptions. The qualitative content analysis of the answers relied both on existing literature and on the content of the answers themselves. Results showed that the students’ prior knowledge was relatively poor in the beginning of their studies. Most students performed well in tasks measuring knowledge of facts and meaning but struggled in tasks measuring integration and application of knowledge. During the first academic year, the students’ understanding generally improved as demonstrated by the improvement in mean scores of the tasks. Misconceptions were robust and pervasive. The most pervasive misconceptions reflected difficulties in understanding emergent properties and processes. Misconceptions related to the process of Darwinian evolution became more prominent in the post-test. Persistent misconceptions became integrated with the new conceptual frameworks that the students acquired during the first academic year. If students held no misconceptions in the post-test, they performed significantly better in both tests than those with misconceptions. During this first academic year learning seemed to be mainly additive as conceptual change turned out to be rare. The need for more encompassing biology teaching at least in the University of Helsinki became evident. Introductory courses should acknowledge the large degree of variation in students’ prior knowledge and assess the most common and serious misconceptions even over course theme disciplines to ensure more equal learning outcomes.