Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "Elinkaariarviointi"

Sort by: Order: Results:

  • Lahtinen, Oskari (2022)
    Agriculture is emitting ~6.2 Gt CO2-Eq. annually, which accounts for ~12 % of the total annual net anthropogenic greenhouse gas (GHG) emissions globally. Agriculture emits N2O and CH4, and it is responsible globally for ~79% of N2O emissions and ~40% CH4 emissions. These emissions are vital since N2O and CH4 are 273- and 27-times greater GHG than CO2, respectively. There are many different food production systems developed to reduce these emissions. One of the most promising systems is agroforestry. Agroforestry is a complex system where trees and/or shrubs are interacting with crops and/or animals. Agroforestry is an old practice which can provide plenty of advantages, e.g., increased yields, increased biodiversity, and increased carbon sequestration. Therefore, the interest towards it has been increasing in the last decades. In this master’s thesis the different maize production systems in Zambia were studied. The comparison was conducted between low-input maize monoculture where only external input was maize seed for sowing; high-input maize monoculture where mineral fertilizers and seeds for sowing were used; and maize-Faidherbia albida agroforestry system where only external input was maize seed for sowing. The goal of this master’s thesis was to find out, which production system is having the lowest climate change potential in the Central Province of Zambia. To conduct this study, Life Cycle Assessment (LCA) -method was used. Two cases were used in LCA, i.e., Case 1 with functional unit (FU) of 1000 kg d.m. maize grain, and Case 2 with FU of 3 ha maize field. Also, four sensitivity analyses were conducted. The result from this study indicates that agroforestry system had the lowest climate change potential in both cases, and in most of the sensitivity analyses. Only exception was found in the sensitivity analysis where above-ground biomass of F. albida was substituting hydropower. In this sensitivity analysis the monoculture without external inputs had the lowest climate change potential. Since the food production in Zambia must increase in the future to reduce the hunger, the high-input system or agroforestry system are more favourable options as they produce higher crop yields. When taking the climate change potential into account, according to the results of this thesis, the agroforestry system provides more benefits. The results of this thesis can provide new knowledge which could be used in the future decision-making processes. Yet, in the future studies, more complex agroforestry systems with more sustainability pillars should be considered to provide improved information for decision-making.
  • Lahtinen, Oskari (2022)
    Agriculture is emitting ~6.2 Gt CO2-Eq. annually, which accounts for ~12 % of the total annual net anthropogenic greenhouse gas (GHG) emissions globally. Agriculture emits N2O and CH4, and it is responsible globally for ~79% of N2O emissions and ~40% CH4 emissions. These emissions are vital since N2O and CH4 are 273- and 27-times greater GHG than CO2, respectively. There are many different food production systems developed to reduce these emissions. One of the most promising systems is agroforestry. Agroforestry is a complex system where trees and/or shrubs are interacting with crops and/or animals. Agroforestry is an old practice which can provide plenty of advantages, e.g., increased yields, increased biodiversity, and increased carbon sequestration. Therefore, the interest towards it has been increasing in the last decades. In this master’s thesis the different maize production systems in Zambia were studied. The comparison was conducted between low-input maize monoculture where only external input was maize seed for sowing; high-input maize monoculture where mineral fertilizers and seeds for sowing were used; and maize-Faidherbia albida agroforestry system where only external input was maize seed for sowing. The goal of this master’s thesis was to find out, which production system is having the lowest climate change potential in the Central Province of Zambia. To conduct this study, Life Cycle Assessment (LCA) -method was used. Two cases were used in LCA, i.e., Case 1 with functional unit (FU) of 1000 kg d.m. maize grain, and Case 2 with FU of 3 ha maize field. Also, four sensitivity analyses were conducted. The result from this study indicates that agroforestry system had the lowest climate change potential in both cases, and in most of the sensitivity analyses. Only exception was found in the sensitivity analysis where above-ground biomass of F. albida was substituting hydropower. In this sensitivity analysis the monoculture without external inputs had the lowest climate change potential. Since the food production in Zambia must increase in the future to reduce the hunger, the high-input system or agroforestry system are more favourable options as they produce higher crop yields. When taking the climate change potential into account, according to the results of this thesis, the agroforestry system provides more benefits. The results of this thesis can provide new knowledge which could be used in the future decision-making processes. Yet, in the future studies, more complex agroforestry systems with more sustainability pillars should be considered to provide improved information for decision-making.
  • Kyttä, Venla (2019)
    Global growing demand to produce more food with less inputs and energy without causing greenhouse gas emissions challenges the current practice of using mineral fertilizers which are produced from new and partly non-renewable raw materials with considerable amount of energy. On the other hand recycled fertilizers made of different side streams and biomasses also need to be processed before usage or the amount needed per area is so great that the environmental advantages might be lost. The aim of this study was to discover and compare the energy consumption and greenhouse gas emissions of recycled fertilizers (ammonium sulfate, biogas digestate and meat bone meal) and mineral fertilizer in production of oat by using Life Cycle Assessment (LCA). All recycled fertilizers were found to cause less greenhouse gas emissions and consume less energy than mineral fertilizer. The least emissions caused the usage of ammonium sulfate and the best energy efficiency was achieved with biogas digestate fertilization. Considered relative to global increase in food and energy consumption and control of climate change and recycling of raw materials recycled fertilizers proved to be effective compared to mineral fertilizer. Also on the grounds of land use and yield recycled fertilizers turned out to be potential substitute for mineral fertilizers. Further studies are still needed due to large number of raw materials and constantly increasing amount of processing techniques of recycled fertilizers.