Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "Q10"

Sort by: Order: Results:

  • Lakka, Hanna-Kaisa (2013)
    Lepidurus arcticus (Pallas, 1793) is a keystone species in High Arctic ponds, which are exposed to a wide range of environmental stressors. This thesis provides information on the ecology of this little studied species by paying particular focus on the sensitivity of L. arcticus to acidification and climate change. Respiration, reproduction, olfaction, morphology, salinity and pH tolerance of the species were studied in the laboratory and several environmental parameters were measured in its natural habitats in Arctic ponds. Current global circulation models predict 2–2.4 °C increase in summer temperatures on Spitsbergen, Svalbard, Norway. The L. arcticus respiration activity was tested at different temperatures (3.5, 10, 16.5, 20, 25 and 30 °C). The results show that L. arcticus is clearly adapted to live in cold water and have a temperature optimum at +10 °C. This species should be considered as stenothermal, because it seems to be able to live only within a narrow temperature range. L. arcticus populations seem to have the capacity to respond to the ongoing climate change on Spitsbergen. Changes can be seen in the species' reproductive capacity and in the individuals' body size when comparing results with previous studies on Spitsbergen and in other Arctic areas. Effective reproduction capacity was a unique feature of the L. arcticus populations on Spitsbergen. L. arcticus females reached sexual maturity at a smaller body size and sexual dimorphism appeared in smaller animals on Spitsbergen than anywhere else in the subarctic or Arctic regions. L. arcticus females were able to carry more eggs (up to 12 eggs per female) than has been observed in previous studies. Another interesting feature of L. arcticus on Spitsbergen was their potential to grow large, up to 39.4 mm in total length. Also cannibalistic behaviour seemed to be common on Spitsbergen L. arcticus populations. The existence of different colour morphs and the population-level differences in morphology of L. arcticus were unknown, but fascinating characteristic of this species. Spitsbergen populations consisted of two major (i.e. monochrome and marbled) and several combined colour morphs. Third interesting finding was a new disease for science which activated when the water temperature rose. I named this disease to Red Carapace Disease (RCD). This High Arctic crustacean lives in ponds between the Arctic Ocean and glaciers, where the marine environment has a strong impact on the terrestrial and freshwater ecosystems. The tolerance of L. arcticius to increased water salinity was determined by a LC50 -test. No mortality occurred during the 23 day exposure at low 1–2 ‰ water salinity. A slight increase in water salinity (to 1 ‰) speeded up the L. arcticus shell replacement. The observations from natural populations supported the hypothesis that the size of the animals increases considerably in low 1.5 ‰ salt concentrations. Thus, a small increase in water salinity seems to have a positive impact on the growth of this short-lived species. Acidification has been a big problem for many crustaceans, invertebrates and fishes for several decades. L. arcricus does not make an exception. Strong acid stress in pH 4 caused a high mortality of mature L. arcticus females. The critical lower limit of pH was 6.1 for the survival of this acid sensitive species. Thus, L. arcticus populations are probably in danger of extinction due to acidification of three ponds on Spitsbergen. A slight drop (0.1–1.0) in pH values can wipe out these L. arcticus populations. The survival of L. arcticus was strongly related to: (1) the water pH, (2) total organic carbon (TOC) and pH interaction, (3) the water temperature and (4) the water salinity. Water pH and TOC values should be monitored in these ponds and the input of acidifying substances in ponds should be prevented.
  • Kerojoki, Otto (2013)
    Kaakkois-Aasiassa sijaitsee yli puolet maailman trooppisista soista, joiden kokonaispinta-ala on 0,44 milj. km-2. Viime vuosikymmeninä luonnontilaisten trooppisten suosademetsien muuttaminen muuhun käyttöön on kasvanut huomattavasti: Kaakkois-Aasian trooppisten soiden alkuperäisestä pinta-alasta noin 60 % on kuivatettu ja vain noin 10 % on enää luonnontilassa. Maankäyttömuutos Kaakkois-Aasian trooppisilla soilla on merkittävä kasvihuonekaasupäästöjen lähde ja on arvioitu että vuosittain kuivatetuilta soilta vapautuu 600 – 700 Mt hiilidioksidia turpeen hajoamisesta. Huolimatta maankäyttömuutosten laajuudesta trooppisia soita ja niillä tapahtuvia prosesseja on tutkittu varsin vähän verrattuna muiden ilmastovyöhykkeiden soihin. Kasvihuonekaasupäästöjen tutkimus on tähän asti pääasiallisesti ollut selvittää pistemäisillä mittauksilla maankäyttömuodon ja päästöjen välistä yhteyttä. Lukuun ottamatta vedenpinnan syvyyden ja kasvihuonekaasujen yhteyden tarkastelua, tutkimuksissa ei ole juuri paneuduttu muiden ympäristötekijöiden tai turpeen ominaisuuksien vaikutuksiin turpeen hajotusnopeuteen. Tämän tutkimuksen tarkoituksena on selvittää maankäyttömuutoksen aiheuttaman turpeen lämpötilan nousun vaikutusta turpeen hajotuksesta johtuviin hiilidioksidi-, metaani- ja typpioksiduulivoihin kuivatetuilla turvemailla. Maankäyttömuutosta simuloitiin kahdella eri maankäyttöhistorian omaavalla turvemaalla, maatalousmaalla sekä useasti palaneella avoturvemaalla, keinotekoisella varjostuksella, jonka avulla turpeeseen muodostui lämpötilaeroja. Lisäksi tutkittiin onko lannoituksella vaikutusta turpeen hajotuksen ja hajotuksen lämpötilavasteeseen, sillä ravinnelöyhät turvemaat vaativat lannoitusta satojen tuottamiseksi. Hiilidioksidivuo määritettiin kahdella menetelmällä: infrapunaspektrometrisellä sekä kaasukromatografisella menetelmällä. Metaani ja typpioksiduulivuot määritettiin kaasukromatografisesti. Turpeen lämpötilaa mitattiin useilta syvyyksiltä automaattisilla lämpötila-antureilla tunnin välein ja käsikäyttöisillä lämpömittareilla kaasumittausten yhteydestä. Lisäksi kaasumittausten yhteydessä mitattiin vedenpinnan taso sekä otettiin turvenäytteet josta määritettiin turpeen vesipitoisuus, pH ja tiheys. Lämpötilalla havaittiin olevan merkittävä vaikutus hiilidioksidivoihin maatalousmaalla, jossa turpeen pintalämpötilan 10 °C nousun havaittiin pitkän aikavälin hiilidioksidivoiden keskiarvoilla kaksinkertaistavan hajotuksen. Lannoitus lisäsi keskimääräisiä hiilidioksidipäästöjä maatalousmaalla noin 40 %:lla, mutta vähensi niitä palaneella avoturvemaalla. Lannoituksen havaittiin lisäävän lämpötilan vaikutusta hajotukseen huomattavasti maatalousmaalla; hiilidioksidivuot hajotuksesta kymmenkertaistuivat koealan lannoitetussa lohkossa turpeen lämpötilan kasvaessa 10 °C:lla. Palaneella turvemaalla hiilidioksidivuon lämpötilavastetta ei havaittu. Metaanilla ja typpioksiduulilla lämpötilavastetta ei havaittu, vaan vedenpinnan taso vaikutti olevan lämpötilaa huomattavasti merkittävämpi kaasuvoiden suuruutta säätelevä tekijä. Lannoitus lisäsi typpioksiduulipäästöjä merkittävästi maatalousmaalla, mutta ei palaneella avoturvemaalla. Lannoituksella ei ollut vaikutusta metaanipäästöjen suuruuteen. Erojen hajotuksesta johtuvien hiilidioksidipäästöjen lämpötilavasteessa koealojen välillä oletetaan johtuvan erilaisesta maankäyttöhistoriasta. Maatalousmaalla turvetta on lannoitettu pitkä aika kun palanutta avoturvemaata ei ole lannoitettu koskaan. Lannoitus on saattanut muuttaa maatalousmaan maaperän mikrobistoa niin, että se pystyy hajottamaan pitkälle hajonnutta, hyvin ligniinipitoista, turvetta tehokkaammin sekä hyödyntämään lisätyt mineraaliravinteet hajotustoiminnassa. Turpeesta mitatut ympäristötekijät (pH, tiheys, vesi- ja ravinnepitoisuus) eikä turpeen aiemmin mitattu kemiallinen koostumus selittänyt eroa lämpötilavasteessa koealojen välillä. Jos hiilidioksidin lämpötilavaste pitkällä aikavälillä on havaittua suuruusluokkaa, lämpötila saattaa olla merkittävä turpeen hajotukseen vaikuttava tekijä ainakin pitkään lannoitetuilla turvemailla. Lisätutkimusta hajottajaeliöstön mahdollisista eroista ja pidempi aikaisia mittauksia lämpötilan vaikutuksesta hajotukseen kuitenkin tarvitaan erilaisilta maankäyttömuodoilta ja kuivatussyvyyksiltä lämpötilavasteen selvittämiseksi tarkemmin.