Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "backpropagation"

Sort by: Order: Results:

  • Linnainmaa, Seppo (2020)
    Algoritmien kumulatiivista pyöristysvirhettä liukuvan pilkun aritmetiikassa pyritään analysoimaan kehittämällä tämä yksittäisten pyöristysvirheiden Taylor-kehitelmäksi. Tähän tarkoitukseen esitetään sekä analyyttinen että tietokoneelle soveltuva menetelmä. Yksittäiselle suhteelliselle pyöristysvirheelle konstruoidaan tilastollinen malli. Sovellutuksina käsitellään pienalgoritmia a² -b² = (a+b)·(a-b) sekä Horner-shemaa ja Gauss-Jordanin matriisinkääntöalgoritmia. Sovellutuksiin liittyvät ohjelmat on ajettu IBM 7094-tietokoneella.
  • Junell, Niklas (2021)
    Hippocampal place fields play a key role in spatial navigation. New place fields are formed during exploratory behavior through long-term potentiation (LTP) and long-term depression (LTD) of synaptic inputs to place cells located in hippocampal CA1. Recently, a novel form synaptic plasticity termed behavioral time scale plasticity (BTSP) has been demonstrated to occur in CA3–CA1 synapses in vitro. BTSP can potentiate synapses that were active several hundred milliseconds before or after a priming event such as a strong and prolonged somatic depolarization. This plasticity rule could be an important complement to well-established spike timing dependent plasticity (STDP) which associates neuronal inputs with outputs at a time scale less than a few tens of milliseconds. The aim of this thesis was to determine whether high frequency antidromic stimulation can act as a priming event that enables BTSP induction in CA1 pyramidal neurons. The underlying assumption was that antidromic stimulation could prime BTSP via action potential backpropagation. High frequency bursting of CA1 neurons in hippocampal slices was achieved with 100 Hz antidromic stimulation of CA1 axons in the alveus. Schaffer collaterals were stimulated 500 ms before or after CA1 burst firing with intensities that were subthreshold for LTP when unpaired. I found that high frequency firing did not enable LTP induction during either of the two experimental protocols, suggesting that neuronal output alone is insufficient for priming BTSP.
  • Junell, Niklas (2021)
    Hippocampal place fields play a key role in spatial navigation. New place fields are formed during exploratory behavior through long-term potentiation (LTP) and long-term depression (LTD) of synaptic inputs to place cells located in hippocampal CA1. Recently, a novel form synaptic plasticity termed behavioral time scale plasticity (BTSP) has been demonstrated to occur in CA3–CA1 synapses in vitro. BTSP can potentiate synapses that were active several hundred milliseconds before or after a priming event such as a strong and prolonged somatic depolarization. This plasticity rule could be an important complement to well-established spike timing dependent plasticity (STDP) which associates neuronal inputs with outputs at a time scale less than a few tens of milliseconds. The aim of this thesis was to determine whether high frequency antidromic stimulation can act as a priming event that enables BTSP induction in CA1 pyramidal neurons. The underlying assumption was that antidromic stimulation could prime BTSP via action potential backpropagation. High frequency bursting of CA1 neurons in hippocampal slices was achieved with 100 Hz antidromic stimulation of CA1 axons in the alveus. Schaffer collaterals were stimulated 500 ms before or after CA1 burst firing with intensities that were subthreshold for LTP when unpaired. I found that high frequency firing did not enable LTP induction during either of the two experimental protocols, suggesting that neuronal output alone is insufficient for priming BTSP.