Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "bioenergy"

Sort by: Order: Results:

  • Joas, Markus (2014)
    The Finnish forest industries are going through heavy adjustments as especially the western world is moving towards a more digitalized model where the amount of paper and pulp consumed is diminishing. It is obvious that the whole industry is in need for new solutions. These new solutions and innovations can be found from the field of bioenergy. Finland is rich with forest-based raw material which can provide a long-term and local source of energy. In the future this will be of primary importance as the prices of the non-renewable energy sources will climb higher as the deposits of the fossil fuels dry up. The usage of the renewable energy sources are also very important in order to prevent the global climate change and to achieve the goals regulated for Finland in the Kyoto Protocol and the European RES-E directive. This Master’s Thesis takes a look at the current state and the future trends of the Finnish wood pellet industries. The domestic wood-based pellet industries are studied with a concise literature review and a SWOT analysis based on the earlier literature. The analysis is linked to the future expectations and current retailer perspectives with a survey conducted between June and October 2013. The sample consists of 39 low, medium and high sales volume wood pellet manufacturers and retailers whom mostly do only domestic pellet trading business. Most of the strengths of the domestic wood-based pellet industries are related to different kinds of ecological aspects or different kinds of raw material related issues. In the future especially the prices of the raw materials, prices of other energy sources and prices of the end-product will be in a crucial role. Most of the survey participants underlined the significance of the governmental acts concerning the future of the whole business in Finland: a favorable taxing policy and different subsidies can make Finland truly a greener economy but this have not happened yet, much due to the unfavorable domestic politics. According to the survey respondents, in the future the demand of wood-based pellet services, especially tailored and ready-to-use services from maintenance to deliveries are going to increase.
  • Huisman-Dellago, David (2020)
    Dairy farms account for a large portion of the greenhouse gas emissions in the planet. Since cow manure provides a good medium for anaerobic digestion, this study analyzes the economic feasibility of installing a biogas plant adjacent to a 200-cow farm in Finland. The farms in this study produce only cow manure and grass silage to feed the digester. This paper focuses in comparing different scenarios such as electricity production for farm needs and the production of biofuels such as compressed biomethane as an additional business activity. After designing the farm economic model and the biogas installation, we provide an economic analysis of each scenario. The first one shows that it is not feasible to run the biogas business model based only on electricity savings for the farm. The second one proves that additional revenue streams such as biofuel production can revitalize and strengthen the financial model of the plant. Then, the sensitivity and reliability of the model is discussed by providing reasons (i.e. Finnish electricity tariff system) for the outcome of the results. The model reinforces the idea that farms must base their biogas business model on alternative side-streams and do not rely on energy production only. For further research, it is recommended that real life farm business models are incorporated as input data and a proven plant and CHP engine energy balance is secured.
  • Huisman-Dellago, David (2020)
    Dairy farms account for a large portion of the greenhouse gas emissions in the planet. Since cow manure provides a good medium for anaerobic digestion, this study analyzes the economic feasibility of installing a biogas plant adjacent to a 200-cow farm in Finland. The farms in this study produce only cow manure and grass silage to feed the digester. This paper focuses in comparing different scenarios such as electricity production for farm needs and the production of biofuels such as compressed biomethane as an additional business activity. After designing the farm economic model and the biogas installation, we provide an economic analysis of each scenario. The first one shows that it is not feasible to run the biogas business model based only on electricity savings for the farm. The second one proves that additional revenue streams such as biofuel production can revitalize and strengthen the financial model of the plant. Then, the sensitivity and reliability of the model is discussed by providing reasons (i.e. Finnish electricity tariff system) for the outcome of the results. The model reinforces the idea that farms must base their biogas business model on alternative side-streams and do not rely on energy production only. For further research, it is recommended that real life farm business models are incorporated as input data and a proven plant and CHP engine energy balance is secured.
  • Toivio, Matti (2011)
    Finnish forest industry is in the middle of a radical change. Deepening recession and the falling demand of woodworking industry´s traditional products have forced also sawmilling industry to find new and more fertile solutions to improve their operational preconditions. In recent years, the role of bioenergy production has often been highlighted as a part of sawmills´ business repertoire. Sawmilling produces naturally a lot of by-products (e.g. bark, sawdust, chips) which could be exploited more effectively in energy production, and this would bring more incomes or maybe even create new business opportunities for sawmills. Production of bioenergy is also supported by government´s climate and energy policies favouring renewable energy sources, public financial subsidies, and soaring prices of fossil fuels. Also the decreasing production of domestic pulp and paper industry releases a fair amount of sawmills´ by-products for other uses. However, bioenergy production as a part of sawmills´ by-product utilization has been so far researched very little from a managerial point of view. The purpose of this study was to explore the relative significance of the main bioenergy-related processes, resources and factors at Finnish independent industrial sawmills including partnerships, cooperation, customers relationships and investments, and also the future perspectives of bioenergy business at these sawmills with the help of two resource-based approaches (resource-based view, natural-resource-based view). Data of the study comprised of secondary data (e.g. literature), and primary data which was attracted from interviews directed to sawmill managers (or equivalent persons in charge of decisions regarding bioenergy production at sawmill). While a literature review and the Delphi method with two questionnaires were utilized as the methods of the study. According to the results of the study, the most significant processes related to the value chain of bioenergy business are connected to raw material availability and procurement, and customer relationships management. In addition to raw material and services, the most significant resources included factory and machinery, personnel, collaboration, and geographic location. Long-term cooperation deals were clearly valued as the most significant form of collaboration, and especially in processes connected to raw material procurement. Study results also revealed that factors related to demand, subsidies and prices had highest importance in connection with sawmills´ future bioenergy business. However, majority of the respondents required that certain preconditions connected to the above-mentioned factors should be fulfilled before they will continue their bioenergy-related investments. Generally, the answers showed a wide divergence of opinions among the respondents which may refer to sawmills´ different emphases and expectations concerning bioenergy. In other words, bioenergy is still perceived as a quite novel and risky area of business at Finnish independent industrial sawmills. These results indicate that the massive expansion of bioenergy business at private sawmills in Finland is not a self-evident truth. The blocking barriers seem to be connected mainly to demand of bioenergy and money. Respondents´ answers disseminated a growing dissatisfaction towards the policies of authorities, which don´t treat equally sawmill-based bioenergy compared to other forms of bioenergy. This proposition was boiled down in a sawmill manager´s comment: “There is a lot of bioenergy available, if they just want to make use of it.” It seems that the positive effects of government´s policies favouring the renewables are not taking effect at private sawmills. However, as there anyway seems to be a lot of potential connected to emerging bioenergy business at Finnish independent industrial sawmills, there is also a clear need for more profound future studies over this topic.
  • Osborne, Nathaniel (2013)
    Increasing fossil fuel prices, concerns about domestic energy security and demand for environmentally friendly, low carbon energy sources are renewing interest in using wood for energy. State and federal government have responded to increased interest with legislation that promotes renewable energy. Logging residues important role as an energy feedstock and environmental component has been a central topic of discussion for the growing forest energy sector in the United States. Over the last five years, I have studied forest harvest residues in the southern United States and abroad. My principle research focus has been the rapid inventory of residues, determination of their stocking and the identification of factors influencing that stocking. This composite report provides a detailed account of three studies based on five years of data in North Carolina, Georgia and southern Sweden. Provided in the report is an adapted method to inventory scattered and piled forest harvest residues, the relationship of harvest residues and harvest systems and a wood energy recovery rate for low end biomass within intensively managed loblolly pine forests. The goal of providing these studies is to contribute useful observations to the ongoing discussion about forest harvest residues and to provide a sampling framework others can employ to do similar studies.
  • Muhonen, Olli (2012)
    Forest energy harvesting has increased significantly in recent years. The extraction of forest energy is usually done with conventional forwarders. The productivity of extraction work is, however, quite poor due to a low material density, which results in a small load size. The objective of the study was to increase the productivity of forest energy extraction via solutions that increase the load size. The first method that was studied involved widening the load space hydraulically. The other solution was based on compressing the load with hydraulically tiltable stakes. The study was conducted as a development study. The field studies were carried out in the summer and autumn of 2011 on harvesting sites managed by Metsähallitus and Metsäliitto in the Jyväskylä region. The study material comprises a total of 139 loads. There was a significant difference in raw density between the logging residues and stump pieces for the widening and compressing load space solutions. For this reason, it does not make sense to compare the two load space solutions to each other. The analyses were based on the reported load scale tonnes. Both load space alternatives increased the load size by 20-30 per cent depending on the assortment. For logging residues, the increase in efficient hour productivity for extraction was 13 per cent and for stump pieces it was 30 per cent. With the compressing load space, the efficient hour productivity for full trees increased by 17 per cent. For logging residues, the increase was 5 per cent and for stump pieces it was 12 per cent. Compression was not a successful method for stump pieces and even for logging residues the benefits were mainly based on the increased load space. Compressing the load is mainly beneficial when extracting full trees. The project was carried out together with Osuuskunta Metsäliitto (now Metsä Group), Metsä-Multia Oy and Ponsse Oyj. The modelling work was done by Metsäteho Oy. This study shows results of Metsähallitus project “Maastokuljetuksen kehittäminen”. The project is part of the EffFibre (Value through Intensive and Efficient Fibre Supply) research and development programme coordinated by Forestcluster Ltd.
  • Tolmatsova, Anastasia (2012)
    The role of wood-based bioenergy has improved over the past few years after the European Union’s climate and energy directive came into effect. The main aim of the policy is to substitute fossil fuel with biofuels aim-ing to reduce greenhouse gas emissions, increase energy security and support the development of rural com-munities. To achieve this aim it is necessary to pursue more efficient energy use in living, construction and transport. Most of the EU countries have undertaken to participate in these actions by increasing the use of renewable energy such as wood-based bioenergy. Currently, wood-based bioenergy is highly supported with subsidies and other political decisions that act as the main market driver. Furthermore, the increasing prices of fossil fuels create favorable conditions for future bioenergy market developments. Nevertheless, the role of bioenergy is growing even though the market has its own challenges due to fluctuating forest industry cycles. To better understand the wood-based bioenergy market and its current situation, this Master’s thesis has ga-thered up-to-date information on three different market areas which will assist in finding potential delivery destinations within the Baltic Sea area for wood-based bioenergy produced in the Leningrad region. In addi-tion, this thesis introduces, on a broad scale, the central concepts of wood-based bioenergy and discusses the political drivers affecting bioenergy markets. The theoretical framework is mainly based on the Information Environment Model by Juslin and Hansen (2002), an instrument for investigating the bioenergy market from both macro and micro environment aspects, and on the Relationship Commitment and Trust theory by Morgan and Hunt (1994), which examines how relationships between buyers and sellers are established and discusses the role of two variables - trust and commitment. Both models were applied when collecting both the primary data from bioenergy customers through interviews and the secondary data from research articles, publications and Internet sources. The study also includes a discussion part as well as development proposals related to future customer relationship man-agement. Wood-based bioenergy is an important energy source fighting against climate change. However, to fulfill the targets set by the European Union and country-specific politics there is still a need for more opera-tors working in bioenergy field. Based on the results, it is necessary to support good communication, coopera-tion and trust between raw-material buyers and sellers in order to achieve functional raw-material exchange circumstances. The study is conducted as a qualitative research project.
  • Siintola, Asko (2012)
    Climate change has been found to be one of the most serious challenges humankind has to face in the future. The link between climate change and forests is based on trees’ ability to use carbon dioxide as a raw material for growth. The growing stock sequesters carbon dioxide from the air to itself and ultimately as the forest is harvested the carbon stored is released and it moves from carbon pool of forests to another carbon pool. As the concept of emissions’ trading is applied to the investigation, a price for sequestered and released carbon can be determined. With the market price for carbon dioxide known, a net present value for the revenues and costs during the forest’s rotation period can be calculated. Using wood for different purposes, however, can result in various climatic benefits. These climatic benefits are described in this study by carbon displacement factors which can be used in determining how much the costs of releasing carbon from forests can be deducted. This study investigates the significance of forest management in a stand level from the climate change mitigation point of view in three Norway spruce (Picea abies, L.) and three Scots pine (Pinus Sylvestris, L.) stands as the previous carbon accounting aspects are taken into consideration. Stand Management Assistant (SMA) software is used in the optimization and simulation calculations. The SMA software is used for calculating the carbon accounting net present values and average carbon storages during the rotation periods of the stands included in the study with different intensities of bioenergy biomass harvesting. This way the level of biomass harvesting for bioenergy that returns with the highest net present value for carbon accounting and/or the highest average carbon storage can be calculated. The calculations are made with two interest rates, two carbon dioxide prices and with climatic benefits from bioenergy or with climatic benefits from bioenergy and forest products included. According to the results it can be stated that the intensification of forest biomass recovery for bioenergy production does not always result in the optimal climate change mitigation. The use of Norway spruce is considered of being the most potential forest-based bioenergy source in Finland. As the climatic benefits from bioenergy use were only taken into consideration, the intensification of recovery of Norway spruce biomass for bioenergy seemed to be most profitable. If, however, the climatic benefits from forest products are included in the investigation as well, the bioenergy use of Norway spruce is no longer optimal for the climate change mitigation. The climatic benefits from Norway spruce material use exceed the benefits from bioenergy use. This means that biomass recovery for bioenergy production does not necessarily result in optimal climate change mitigation.