Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "hiPSC-CMs"

Sort by: Order: Results:

  • Pohjavaara, Saana (2021)
    Dilated cardiomyopathy is a non-ischemic cardiac disorder predisposing to heart failure, and the characteristics of dilated cardiomyopathy emerge under normal loading conditions. Dilated cardiomyopathy can be consequence of various conditions e.g. genetic mutations, virus infection or toxin exposures. One of the significant causes of familial dilated cardiomyopathy in Finland is mutation S143P in LMNA-gene, coding for A type lamins. Current drug therapy for dilated cardiomyopathy aims to alleviation of symptoms, prevention of complications and progression of the disease, however, efficacy of current therapy is insufficient, and novel therapy strategies are urgently required. Transcription factors are fundamental regulators of gene expression, and GATA4 is a crucial transcription factor both in embryonic and in adult heart and thus an intriguing target for therapeutic manipulation. Compounds targeting GATA4 have shown anti-hypertrophic and cardioprotective effects. Here, effects of two different hypertrophic stimuli, endothelin-1 and mechanical stretch, on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were examined with high-content analysis and quantitative reverse transcription PCR (qRT-PCR), respectively. One hiPSC-CM line was used as a healthy control, whereas the other carried the S143P mutation in LMNA-gene (DCM-CMs). Additionally, effects of GATA4-targeting compound C-2021 on cardiomyocytes were investigated. In summary, according to proBNP staining, DCM-CMs are more hypertrophied at baseline. DCM-CMs seemed to be less susceptible to mechanical stretch-induced enhancement in BNP gene expression. In addition, compound C 2021 may have anti-hypertrophic properties suggesting it to be a potential drug candidate in cardiac diseases. Finally, lamin A seemed to mislocalize to nucleoplasm instead of nuclear lamina in DCM-CMs.
  • Pohjavaara, Saana (2021)
    Dilated cardiomyopathy is a non-ischemic cardiac disorder predisposing to heart failure, and the characteristics of dilated cardiomyopathy emerge under normal loading conditions. Dilated cardiomyopathy can be consequence of various conditions e.g. genetic mutations, virus infection or toxin exposures. One of the significant causes of familial dilated cardiomyopathy in Finland is mutation S143P in LMNA-gene, coding for A type lamins. Current drug therapy for dilated cardiomyopathy aims to alleviation of symptoms, prevention of complications and progression of the disease, however, efficacy of current therapy is insufficient, and novel therapy strategies are urgently required. Transcription factors are fundamental regulators of gene expression, and GATA4 is a crucial transcription factor both in embryonic and in adult heart and thus an intriguing target for therapeutic manipulation. Compounds targeting GATA4 have shown anti-hypertrophic and cardioprotective effects. Here, effects of two different hypertrophic stimuli, endothelin-1 and mechanical stretch, on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were examined with high-content analysis and quantitative reverse transcription PCR (qRT-PCR), respectively. One hiPSC-CM line was used as a healthy control, whereas the other carried the S143P mutation in LMNA-gene (DCM-CMs). Additionally, effects of GATA4-targeting compound C-2021 on cardiomyocytes were investigated. In summary, according to proBNP staining, DCM-CMs are more hypertrophied at baseline. DCM-CMs seemed to be less susceptible to mechanical stretch-induced enhancement in BNP gene expression. In addition, compound C 2021 may have anti-hypertrophic properties suggesting it to be a potential drug candidate in cardiac diseases. Finally, lamin A seemed to mislocalize to nucleoplasm instead of nuclear lamina in DCM-CMs.