Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "hippocampus"

Sort by: Order: Results:

  • Alafuzoff, Aleksander (2016)
    Background. Birth asphyxia is a pathological state that occurs if fetal gas exchange is disrupted for an extended period of time during delivery. Prolonged birth asphyxia causes brain damage and can even lead to death, but which in mild and moderate cases causes motor and cognitive disability. One of the brain regions often damaged is the hippocampus, which is known to play a major role in memory processing. Thus, damage to the hippocampus may in part explain the long-term cognitive consequences of birth asphyxia. In the neonatal brain hippocampal network activity is discontinuous, dominated by sharp waves and oscillatory bouts, of which the former are thought to be important for memory consolidation in the adult brain. Later in development sharp waves exhibit fast oscillations called ripples that organise hippocampal activity after learning. The aim of this thesis was to establish how sharp wave signalling in the neonatal hippocampus is affected by birth asphyxia. Methods. A rat model developed at the Laboratory of Neurobiology, University of Helsinki, was used to study birth asphyxia and a putative therapeutic strategy. Neonatal rat pups aged 5-8 days were used in the study. These animals were randomly assigned to one of four experimental groups: naive control, sham control, asphyxia, and graded restoration of normocapnia. Hippocampal network activity was measured in vivo under urethane anaesthesia using local field potential (LFP) recordings 24 hours after the asphyxic insult. Sharp waves were detected and analysed in terms of event counts, timing, size, shape and ripple properties. Results and conclusions. After asphyxia, sharp waves occurred more frequently within clusters than in isolation. In addition, sharp wave ripples were detected for the first time during early neonatal development. In asphyxiated animals, the number and magnitude of detected ripples was statistically significantly decreased. Interestingly, animals that underwent graded restoration of normocapnia after asphyxia were no different from controls, suggesting a protective effect of the treatment. The abnormal SPW development after birth asphyxia may form a mechanism contributing to the emergence of cognitive deficits.
  • Hedström, Anna (2020)
    The ability to regulate release of noradrenaline, dopamine and GABA is one of the most important roles of the nicotinic receptors. The release of neurotransmitters following stimulation of nicotinic receptors is addressed in the thesis, with focus on dopamine and noradrenaline. Release of neurotransmitters, mediated through nicotinic receptors, has been researched using various methods, including brain slices, microdialysis and synaptosomes. Research using synaptosomes have provided valuable information regarding nicotinic receptors and their ability to regulate neurotransmitter release. Research using receptor specific antagonists have provided information regarding the stoichiometry of nicotinic receptor in different regions of the brain. The primary focus in the thesis, was the characterization of [3H]dopamine release following stimulation of nicotinic receptors with varenicline and acetylcholine, using synaptosomes from mouse striatum. Using a-conotoxin-MII, the [3H]dopamine release was divided into a-conotoxin- MII-resistant and -sensitive release. [3H]Dopamine release was mediated through a6b2*- and a4b2*-receptors from striatal synaptosomes. The involvement of other receptors could not be ruled out, but based on these results and results from previous studies, the involvement of other nicotinic receptors is supposedly low.
  • Hedström, Anna (2020)
    The ability to regulate release of noradrenaline, dopamine and GABA is one of the most important roles of the nicotinic receptors. The release of neurotransmitters following stimulation of nicotinic receptors is addressed in the thesis, with focus on dopamine and noradrenaline. Release of neurotransmitters, mediated through nicotinic receptors, has been researched using various methods, including brain slices, microdialysis and synaptosomes. Research using synaptosomes have provided valuable information regarding nicotinic receptors and their ability to regulate neurotransmitter release. Research using receptor specific antagonists have provided information regarding the stoichiometry of nicotinic receptor in different regions of the brain. The primary focus in the thesis, was the characterization of [3H]dopamine release following stimulation of nicotinic receptors with varenicline and acetylcholine, using synaptosomes from mouse striatum. Using a-conotoxin-MII, the [3H]dopamine release was divided into a-conotoxin- MII-resistant and -sensitive release. [3H]Dopamine release was mediated through a6b2*- and a4b2*-receptors from striatal synaptosomes. The involvement of other receptors could not be ruled out, but based on these results and results from previous studies, the involvement of other nicotinic receptors is supposedly low.
  • Kaarela, Tiina (2022)
    Kainate type glutamatergic receptors (KARs) modulate synaptic transmission and neuronal excitability depending on their subunit composition and localization. Developmental expression of KARs in the immature hippocampus is suggested to promote activity dependent synchronization of neuronal networks, yet the exact mechanisms are still unclear. Here we asked how local manipulation of KAR subunit GluK1 at CA3 pyramidal cells modulates synchronous network activity in postnatal hippocampus in vitro. We hypothesized that local KAR enhancement will promote functional connectivity and synchronous activity in the networks. Multichannel recordings were used to study spatio-temporal profile of network activity in organotypic hippocampal slice cultures. We show, that local GluK1 enhancement is affecting spontaneous activity patterns and that the population discharges recruit the whole network more efficiently compared to control. In addition, the activities at the site of GluK1 overexpression are more correlated to CA1 and DG regions. Our data suggests that facilitated spatial propagation of population discharges promote synchronization of network activity in KAR expressing slices. These findings support and supplement the previous hypothesis that KARs might play essential role in the functional integration of neurons in hippocampal circuitries.
  • Kaarela, Tiina (2022)
    Kainate type glutamatergic receptors (KARs) modulate synaptic transmission and neuronal excitability depending on their subunit composition and localization. Developmental expression of KARs in the immature hippocampus is suggested to promote activity dependent synchronization of neuronal networks, yet the exact mechanisms are still unclear. Here we asked how local manipulation of KAR subunit GluK1 at CA3 pyramidal cells modulates synchronous network activity in postnatal hippocampus in vitro. We hypothesized that local KAR enhancement will promote functional connectivity and synchronous activity in the networks. Multichannel recordings were used to study spatio-temporal profile of network activity in organotypic hippocampal slice cultures. We show, that local GluK1 enhancement is affecting spontaneous activity patterns and that the population discharges recruit the whole network more efficiently compared to control. In addition, the activities at the site of GluK1 overexpression are more correlated to CA1 and DG regions. Our data suggests that facilitated spatial propagation of population discharges promote synchronization of network activity in KAR expressing slices. These findings support and supplement the previous hypothesis that KARs might play essential role in the functional integration of neurons in hippocampal circuitries.
  • Wakade, Anushka (2023)
    Temporal lobe epilepsy (TLE), a condition defined by unprovoked and recurrent seizures originating from the temporal lobe, is among the most ubiquitous of the various forms of epilepsy. Despite being chronic and highly prevalent, the available treatment options concerning the same remains a critical issue. Since the current therapeutic condition of epilepsy requires more development, renewed focus studying its molecular mechanisms and therapies is imminent. One of the longstanding theories trying to decode the molecular perturbations in TLE has been deficits in GABAergic inhibition resulting in abnormal neuronal activation. K+ - Cl- co-transporter (KCC2) activity is vital for maintaining a hyperpolarizing GABA response. The past decades have intimately and causally linked the prognosis of the seizures observed in TLE with deficits in KCC2 functioning. However, the precise mechanisms relevant to the disruption of KCC2 activity are still blurry. Here we show how KCC2 de-stabilization/localization in the neuronal bilayer is a characteristic of epileptic animal tissue. With the help of co-immunoprecipitation assays, western blot, and mass spectrometry, we found that in normal healthy brain tissue, GM1 ganglioside present in the membrane has specific and direct interactions with the KCC2 cotransporter. However, in the pilocarpine model of TLE, the interaction of this complex was significantly disturbed, primarily in the hippocampus and to some extent in the cortex. Our results act as an extension to previous research which stated that the structural association of the KCC2 clusters with neuronal lipid rafts is crucial for the functionality of the KCC2 cotransporter. Having learned about the unique nature of the pathophysiology of TLE, it is imminent to note that additional research in the direction of studying its biochemical pathways is required. The findings of this experimental study support the claim that KCC2 and GM1 as a complex are closely associated in the epileptic conditions and hence, this research paves the way to further explore the role of KCC2 and GM1 as a consequential complex in the pathophysiology of TLE.
  • Saaristo, Jenni (2023)
    Tapahtumasegmentaatio jäsentää sekä arkista kokemustamme että muistiamme. Parhaillaan meneillään olevan tapahtuman hahmotus ja prosessointi tapahtuu todennäköisesti aivokuorella, mutta ilman toimivaa hippokampusta tilanteesta ei voi syntyä pysyvää muistoa. On olennainen kysymys, missä kohtaa ja miten hippokampus osallistuu tapahtumien prosessointiin ja mieleen painamiseen. Aiemmin on magneettikuvaustutkimuksin osoitettu, että hippokampus reagoi tapahtumien välisiin rajoihin aktivaatiopiikein. On ehdotettu, että ne ilmentäisivät aistimodaliteetista riippumattoman tason prosessia, jossa hippokampus kokoaa yhteen ja vahvistaa koetun tilanteen kokonaisrepresentaation, jotta se voidaan painaa muistiin. Aiemmat tutkimukset on kuitenkin toteutettu yksinomaan audiovisuaalisilla ärsykkeillä, ja koska hippokampuksen tiedetään osallistuvan myös visuaaliseen prosessointiin, ei ole täysin selvää, etteivätkö havaitut aktivaatiot voisi selittyä alemman, aistitietoa käsittelevän tason prosesseilla. Tämän kysymyksen ratkaisemiseksi tässä tutkimuksessa selvitettiin reagoiko hippokampus tapahtumarajoihin puhtaasti auditiivisessa ärsykkeessä. Ärsykkeenä oli 71-minuuttinen tarinallinen äänikirja, jonka osallistujat kuuntelivat passiivisesti fMRI-rekisteröinnin aikana, ja jonka tapahtumarajat määriteltiin kokeellisesti erillisen koehenkilöryhmän avulla. Aivokuvausaineisto analysoitiin aivoalueittain sekä hippokampuksesta että eksploratiivisesti myös kaikilta aivokuoren alueilta. Hippokampuksen havaittiin reagoivan tapahtumarajoihin aktivaatiopiikein. Aivokuorella voimakkaasti reagoivia alueita olivat mm. posteriorinen mediaalinen aivokuori, ventromediaalinen prefrontaalialue, parahippokampaalinen poimu sekä etummainen pihtipoimu. Monien näistä alueista uskotaan osallistuvan meneillään olevan tapahtuman mallintamiseen ja hahmottamiseen, ja osa mahdollisesti osallistuu huomion siirtämiseen sisäisen ja ulkoisen välillä. Etummaisen pihtipoimun tiedetään osallistuvan odotusten ja havaintojen välisten konfliktien monitorointiin, mikä saattaisi tukea teoriaa, jonka mukaan segmentaatio olisi riippuvaista havaituista ennustevirheistä. Tätä ei kuitenkaan tämän tutkimuksen perusteella voida varmasti päätellä, vaan asiaa tulisi tutkia tarkemmin. Tämän tutkimuksen tulokset tukevat näkemystä, jonka mukaan hippokampuksen lisääntynyt toiminta tapahtumarajoilla liittyy korkean tason abstraktiin segmentaatioon ja mahdollisesti episodisen muiston luomiseen. Tämä prosessi mahdollisesti tapahtuu yhteistyössä aivokuoren aktiivisten alueiden kanssa, mutta kausaaliset suhteet ja informaation kulku näiden alueiden välillä on selvitettävä myöhemmissä tutkimuksissa.