Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "nanoerythrosome"

Sort by: Order: Results:

  • Ilvonen, Petra (2020)
    Extracellular vesicles (EVs) are a very heterogeneous group of cell originated nanoparticles that act as mediators of intercellular communication. Accurate characterization of EVs is essential to enable their wider use and development as possible biomarkers, drug carriers, and vaccines. There is no validated reference material with EV-like properties currently available. A validated reference material would improve the reliability and reproducibility of EV studies. Nanoerythrosomes (NanoE) have been studied as a possible option for biological reference material. We aimed to further characterize and compare properties of NanoEs and erythrocyte-derived EVs (EryEV) and assess their stability concerning concentration and size distribution at most commonly applied storage temperatures, +4°C, -20°C, and -80°C for 12 weeks. Characterization was done using nanoparticle tracking analysis and flow cytometry. In addition, we studied the surface protein expression including CD235a, CD47, and CD41 of NanoEs and EryEV and conducted a preliminary cellular uptake test using PC-3 cells, CFSE-labeled NanoE, and EryEV particles. For both, NanoE and EryEV samples, 20°C was the worst storage condition. NanoEs stay stable at +4°C for a month and at -80°C, there were some drops in concentration during the 12 weeks of the experiment. EryEVs stay stable at +4°C and -80°C for 12 weeks. Both NanoE and EryEV particles seemed to be taken into the PC-3 cells, but due to problems with autofluorescence we conclude that confirming studies with different labeling protocols or another method need to be conducted. Both NanoEs and EryEVs samples had a significant number of CD47-positive particles.
  • Ilvonen, Petra (2020)
    Extracellular vesicles (EVs) are a very heterogeneous group of cell originated nanoparticles that act as mediators of intercellular communication. Accurate characterization of EVs is essential to enable their wider use and development as possible biomarkers, drug carriers, and vaccines. There is no validated reference material with EV-like properties currently available. A validated reference material would improve the reliability and reproducibility of EV studies. Nanoerythrosomes (NanoE) have been studied as a possible option for biological reference material. We aimed to further characterize and compare properties of NanoEs and erythrocyte-derived EVs (EryEV) and assess their stability concerning concentration and size distribution at most commonly applied storage temperatures, +4°C, -20°C, and -80°C for 12 weeks. Characterization was done using nanoparticle tracking analysis and flow cytometry. In addition, we studied the surface protein expression including CD235a, CD47, and CD41 of NanoEs and EryEV and conducted a preliminary cellular uptake test using PC-3 cells, CFSE-labeled NanoE, and EryEV particles. For both, NanoE and EryEV samples, 20°C was the worst storage condition. NanoEs stay stable at +4°C for a month and at -80°C, there were some drops in concentration during the 12 weeks of the experiment. EryEVs stay stable at +4°C and -80°C for 12 weeks. Both NanoE and EryEV particles seemed to be taken into the PC-3 cells, but due to problems with autofluorescence we conclude that confirming studies with different labeling protocols or another method need to be conducted. Both NanoEs and EryEVs samples had a significant number of CD47-positive particles.