Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "pyrolysis"

Sort by: Order: Results:

  • Mäki, Ilona (2022)
    Biochar is a porous, carbon-rich material, made from organic material by pyrolysis in low oxygen conditions, and it can be used to sequester carbon into the soil. This review aspires to give an overview of the economic dimensions of using biochar in Finnish (Boreal and sub-boreal) forests. A literature review was conducted to collect and summarize the information about studies and applications elsewhere, and how we could possibly apply them into Finnish forest ecosystems. This thesis is done as part of Helsus Co-Creation Lab -project, where our group was tasked with looking into how biochar could enhance biodiversity in soil and accelerate transformation to low carbon economy. From this larger topic, this paper is looking into the economic side, and whether it is economically viable to use biochar to enhance and uphold biodiversity. This is evaluated by reviewing and categorizing 164 papers and conducting a literature review. My conclusions are that the current biochar applications show lower economic efficiency than other carbon dioxide abatement technologies. The stability of biochar in soil is a key factor, as the half-lives of biochars may not be as long as commonly suggested. Furthermore, competition for biomass resource use can restrict the availability of feedstock, and make it more expensive. Subsidies for biochar application are required if biochar is to be- come a significant part of the national or global climate mitigation policy. The results in different articles are quite variable and there is currently no standard approach to them. There is a need for specific research on what kind of biochar benefits what soil and vegetation, which is expensive. A primary goal is to incorporate a consistent and standardized testing or analysis method for biochar stability into the certification programs run and administered by the International and the European Biochar Initiatives. In the foreseeable future, biochar by itself is unlikely to play a significant role in climate mitigation strategies. Biochar might be just one of several alternatives in a bundle strategy to re- duce carbon emissions. However, its potential use must still be researched more.
  • Mäki, Ilona (2022)
    Biochar is a porous, carbon-rich material, made from organic material by pyrolysis in low oxygen conditions, and it can be used to sequester carbon into the soil. This review aspires to give an overview of the economic dimensions of using biochar in Finnish (Boreal and sub-boreal) forests. A literature review was conducted to collect and summarize the information about studies and applications elsewhere, and how we could possibly apply them into Finnish forest ecosystems. This thesis is done as part of Helsus Co-Creation Lab -project, where our group was tasked with looking into how biochar could enhance biodiversity in soil and accelerate transformation to low carbon economy. From this larger topic, this paper is looking into the economic side, and whether it is economically viable to use biochar to enhance and uphold biodiversity. This is evaluated by reviewing and categorizing 164 papers and conducting a literature review. My conclusions are that the current biochar applications show lower economic efficiency than other carbon dioxide abatement technologies. The stability of biochar in soil is a key factor, as the half-lives of biochars may not be as long as commonly suggested. Furthermore, competition for biomass resource use can restrict the availability of feedstock, and make it more expensive. Subsidies for biochar application are required if biochar is to be- come a significant part of the national or global climate mitigation policy. The results in different articles are quite variable and there is currently no standard approach to them. There is a need for specific research on what kind of biochar benefits what soil and vegetation, which is expensive. A primary goal is to incorporate a consistent and standardized testing or analysis method for biochar stability into the certification programs run and administered by the International and the European Biochar Initiatives. In the foreseeable future, biochar by itself is unlikely to play a significant role in climate mitigation strategies. Biochar might be just one of several alternatives in a bundle strategy to re- duce carbon emissions. However, its potential use must still be researched more.
  • Rautiainen, Mari (2014)
    Carbonization is thermochemical conversion, where biomass is thermally degraded in the absence of oxygen. Solid char, pyrolysis oil and non-condensable gases are produced from the biomass. Torrefaction is early phase of the carbonization in temperatures of 220–300 °C. Torrefied wood is promising as a renewable fuel for industrial use in coal co-combustion and gasification-combustion. Torrefaction and carbonization increase the higher heating value and fuel properties of wood compared to untreated wood. There’s a lack of knowledge in torrefaction and carbonization effects to higher heating value, carbon content and turn from endothermic to exothermic reaction of conifer zone wood species. Raw material was stemwood of birch (Betula pubescens) and pine (Pinus sylvestris) including bark. Trees were harvested from the Helsinki district and chipped, particle size 16 ? 8 mm. Samples were torrefied and carbonized at 250, 300, 350, 400 and 450 ?C without nitrogen flow. Carbon content (%), higher heating value (MJ/kg), mass yield (%) and turn of endothermic to exothermic reaction were inspected. Carbon content of untreated birch and pine increased from 47 % to 82 % (at 450 ?C). Higher heating value exceeded 26 MJ/kg at 300 ?C and 28 MJ/kg at 400 ?C, reaching bituminous coal’s values. Mass yield declined to 45–54 % of the initial mass at 300 °C. In low temperature, gradual exothermic peak was observable. In higher temperatures peak was evident. Carbonization and torrefaction improved the higher heating value and carbon content of wood but decreased the solid char yield.
  • Rautiainen, Mari (2014)
    Carbonization is thermochemical conversion, where biomass is thermally degraded in the absence of oxygen. Solid char, pyrolysis oil and non-condensable gases are produced from the biomass. Torrefaction is early phase of the carbonization in temperatures of 220–300 °C. Torrefied wood is promising as a renewable fuel for industrial use in coal co-combustion and gasification-combustion. Torrefaction and carbonization increase the higher heating value and fuel properties of wood compared to untreated wood. There’s a lack of knowledge in torrefaction and carbonization effects to higher heating value, carbon content and turn from endothermic to exothermic reaction of conifer zone wood species. Raw material was stemwood of birch (Betula pubescens) and pine (Pinus sylvestris) including bark. Trees were harvested from the Helsinki district and chipped, particle size 16 ≤ 8 mm. Samples were torrefied and carbonized at 250, 300, 350, 400 and 450 ˚C without nitrogen flow. Carbon content (%), higher heating value (MJ/kg), mass yield (%) and turn of endothermic to exothermic reaction were inspected. Carbon content of untreated birch and pine increased from 47 % to 82 % (at 450 ˚C). Higher heating value exceeded 26 MJ/kg at 300 ˚C and 28 MJ/kg at 400 ˚C, reaching bituminous coal’s values. Mass yield declined to 45–54 % of the initial mass at 300 °C. In low temperature, gradual exothermic peak was observable. In higher temperatures peak was evident. Carbonization and torrefaction improved the higher heating value and carbon content of wood but decreased the solid char yield.