Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "validation"

Sort by: Order: Results:

  • Grönfors, Helle (2023)
    The literature review focused on liquid chromatographic-mass spectrometric (LC-MS) methods used to quantify B12 vitamers in food matrices. Various MS methods have been used for the detection of B12, offering more specificity than other commonly used analysis techniques. This thesis aimed to develop a method for quantifying the native forms of B12 in different food matrices and avoiding the commonly used conversion to cyanocobalamin during extraction. In the experimental study, an ultra-high-performance LC-tandem MS (UHPLC-MS/MS) method was developed and validated for selectivity, specificity, recovery, repeatability, reproducibility, trueness, and measurement uncertainty to determine B12 vitamers in fermented plant-based foods and microbial cell supernatants. The development was initiated by setting up mass spectrometer conditions and selecting transitions for multiple reaction monitoring (MRM) to achieve selective and sensitive detection method for individual B12 vitamers. This was followed by developing the UHPLC method utilizing a reversed-phased C18 column and gradient elution with 0.5% formic acid and 0.5% FA in methanol. The vitamers were ionized using electrospray ionization in a positive ion mode and detected in an MRM mode using hydroxocobalamin, cyanocobalamin, adenosylcobalamin, and methylcobalamin. All B12 vitamers were detected and separated with the developed and optimized UHPLC-MS/MS method. The internal standard calibration method was necessary to overcome matrix effects when analyzing food samples. The calibration curve content range was 0.2–200 pg/µL, and the results showed good linearity. The instrumental method was selective, precise, repeatable, and reproducible with detection and quantitation limits of 0.03–0.4 pg/µL and 0.2–2 pg/µL, respectively. The measurement uncertainty of the instrumental method varied between 10% and 20%. For the entire method, recoveries for the B12 vitamers ranged from 40% to 200%, and measurement uncertainties from 40% to 60%. Results for the total B12 content in food samples deviated from those determined using a conventional UHPLC-PDA method: Recovery for tempeh was over 90%, but for fortified bread only 20%. These results indicate the need for further development of sample pretreatment. The instrumental method was successfully validated and separated matrix compounds from B12 vitamers in food samples to some extent. The developed sample pretreatment method is a good starting point for developing more effective sample pretreatment methods in the future.
  • Haajanen, Hanna (2020)
    3-Chloro-1,2-propanediol (3-MCPD), 2-chloro-1,3-propanediol (2-MCPD) and 2,3-epoxy-1-propanol (glycidol) and their fatty acid esters are contaminants formed during processing fat containing foodstuffs at high temperatures. Mainly MCPD and glycidyl esters have been found to be formed in the deodorization process of oils, and in vegetable oils, such as palm oil, they have been measured at high concentrations. In accordance with the restrictions imposed by the European Commission, the levels of glycidyl esters must be especially monitored, as they have been identified as potentially carcinogenic compounds. The aim of the study was to introduce and validate a gas chromatographic analysis method for glycidyl esters and MCPD esters for the Customs Laboratory. The method was validated for two matrices: first for oils and then for powdered infant formulas. In addition, the success of the validation was examined by analyzing various oil samples previously received by the Customs Laboratory. The Customs Laboratory is also involved in the activities of the European Union Reference Laboratory, for which it was intended to participate in the reference measurement organized by the EU Reference Laboratory. The method for the determination of 3-MCPD, 2-MCPD and glycidyl esters in oils and infant formulas was carried out according to the guidelines of the European Union Reference Laboratory for Contaminants (EURL-PC). Determination of MCPD and glycidyl ester concentrations in oils and infant formulas included the following steps: fat extraction by liquid-liquid extraction (for infant formulas), addition of standards, solid-phase extraction, conversion of glycidyl esters to 3-MBPD esters, transesterification, neutralization, salting out, derivatization and analysis with gas chromatography-mass spectrometry system. Concentrations were determined using internal standard method. The method was validated for the following parameters: specificity, selectivity, limit of detection and quantitation, reproducibility, repeatability, trueness, linearity and working range, stability and measurement uncertainty. The analytical method developed for the determination of MCPD and glycidyl esters was successfully validated for oils and powdered infant formulas. The developed method proved to be specific and selective. The limit of determination was found to be 6.3 µg/kg, 1.3 µg/kg and 0.8 µg/kg for the oil matrix 3-MCPD, 2-MCPD and glycidyl esters. The limits of determination for the infant formula were 5.4 µg/kg, 3.0 µg/kg and 1.6 µg/kg for 3-MCPD, 2-MCPD and glycidyl esters. Recoveries for MCPD and glycidyl esters in the oil and powdered infant formulas were 83-105%. R2 for calibration lines were greater than 0.99, and the lines were linear over the entire measurement range of 2-1000 µg/kg. The relative standard deviation of repeatability and reproducibility was less than 20% for both matrices. The expanded measurement uncertainty for the MCPD and glycidyl esters of the oil and powdered infant formula was less than 50%. For all parameters, the requirements set by the Customs Laboratory and the performance requirements of Regulation (EU) 1881/2006 were met. A method validated for two matrices can then be accredited. The customs laboratory may use the developed method in the future to control 3-MCPD, 2-MCPD and glycidyl esters levels of oils and powdered infant formulas. In the future, the method could also be validated for new matrices, such as liquid infant formulas.
  • Haajanen, Hanna (2020)
    3-Chloro-1,2-propanediol (3-MCPD), 2-chloro-1,3-propanediol (2-MCPD) and 2,3-epoxy-1-propanol (glycidol) and their fatty acid esters are contaminants formed during processing fat containing foodstuffs at high temperatures. Mainly MCPD and glycidyl esters have been found to be formed in the deodorization process of oils, and in vegetable oils, such as palm oil, they have been measured at high concentrations. In accordance with the restrictions imposed by the European Commission, the levels of glycidyl esters must be especially monitored, as they have been identified as potentially carcinogenic compounds. The aim of the study was to introduce and validate a gas chromatographic analysis method for glycidyl esters and MCPD esters for the Customs Laboratory. The method was validated for two matrices: first for oils and then for powdered infant formulas. In addition, the success of the validation was examined by analyzing various oil samples previously received by the Customs Laboratory. The Customs Laboratory is also involved in the activities of the European Union Reference Laboratory, for which it was intended to participate in the reference measurement organized by the EU Reference Laboratory. The method for the determination of 3-MCPD, 2-MCPD and glycidyl esters in oils and infant formulas was carried out according to the guidelines of the European Union Reference Laboratory for Contaminants (EURL-PC). Determination of MCPD and glycidyl ester concentrations in oils and infant formulas included the following steps: fat extraction by liquid-liquid extraction (for infant formulas), addition of standards, solid-phase extraction, conversion of glycidyl esters to 3-MBPD esters, transesterification, neutralization, salting out, derivatization and analysis with gas chromatography-mass spectrometry system. Concentrations were determined using internal standard method. The method was validated for the following parameters: specificity, selectivity, limit of detection and quantitation, reproducibility, repeatability, trueness, linearity and working range, stability and measurement uncertainty. The analytical method developed for the determination of MCPD and glycidyl esters was successfully validated for oils and powdered infant formulas. The developed method proved to be specific and selective. The limit of determination was found to be 6.3 µg/kg, 1.3 µg/kg and 0.8 µg/kg for the oil matrix 3-MCPD, 2-MCPD and glycidyl esters. The limits of determination for the infant formula were 5.4 µg/kg, 3.0 µg/kg and 1.6 µg/kg for 3-MCPD, 2-MCPD and glycidyl esters. Recoveries for MCPD and glycidyl esters in the oil and powdered infant formulas were 83-105%. R2 for calibration lines were greater than 0.99, and the lines were linear over the entire measurement range of 2-1000 µg/kg. The relative standard deviation of repeatability and reproducibility was less than 20% for both matrices. The expanded measurement uncertainty for the MCPD and glycidyl esters of the oil and powdered infant formula was less than 50%. For all parameters, the requirements set by the Customs Laboratory and the performance requirements of Regulation (EU) 1881/2006 were met. A method validated for two matrices can then be accredited. The customs laboratory may use the developed method in the future to control 3-MCPD, 2-MCPD and glycidyl esters levels of oils and powdered infant formulas. In the future, the method could also be validated for new matrices, such as liquid infant formulas.
  • Pusfitasari, Eka Dian (2019)
    Urine can be used to determine human exposure to nerve agents through the analysis of specific biomarkers. Isopropyl methylphosphonic acid (IMPA) is an important marker of sarin nerve agent, a highly toxic chemical regulated under the Chemical Weapons Convention (CWC). A methodology for sensitive, reliable, and selective determination of IMPA in urine matrix was developed and validated, using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The sample preparation method employs normal phase–solid phase extraction (NP-SPE) using silica based cartridge. Before conducting IMPA analysis, the instrument performance was controlled using a quality control sample. Three different ion sources, namely electrospray ionization (ESI), Unispray, and atmospheric pressure chemical ionization (APCI), were compared in order to define the best method for trace analysis of targeted IMPA. Parameters affecting the ionization process such as cone voltage, capillary voltage, impactor pin voltage, corona voltage, and mobile phase flow rate were optimized. Negative ion mode was selected as the best method for IMPA identification in all three ion sources, and multiple reactions monitoring (MRM) was employed to improve sensitivity and selectivity. The APCI source was shown to be the least sensitive and least efficient ionization technique for IMPA identification. In contrast, using ESI and Unispray resulted in satisfactory data with excellent limit of detection (LOD), limit of quantification (LOQ), precision, and accuracy. The two latter ion sources share the same values of those parameters, i.e. 0.44 ng/mL, 1.46 ng/mL, < 4% precision bias, < 5% accuracy bias, for ESI; and 0.42 ng/mL, 1.38 ng/mL, < 4% precision bias, < 4% accuracy bias, for Unispray. Nonetheless, the Unispray shows better performance in comparison to ESI in producing higher signal intensity/peak area and has lower matrix effect.
  • Syvähuoko, Jenna (2015)
    The literature review focused on the chemical properties of Fusarium mycotoxins and their masked forms, analytical methods for their determination and the toxicological and legislative aspects. In the experimental study, a multi-method was developed and validated for the simultaneous quantification of several Fusarium toxins and their masked forms in barley, oats and wheat using liquid chromatography-tandem mass spectrometry (LC-MS/MS) technique. The simple “dilute-and-shoot” sample preparation procedure was applied, where the extraction was performed with a mixture of acetonitrile, water and acetic acid (79:20:1, v/v/v). Moreover, the aim was to obtain new data on the occurrence of the masked mycotoxins in barley, oats and wheat by analysing 95 cereal grain samples. The type A trichothecenes T-2 and HT-2 toxins (T-2 and HT-2) and the type B trichothecenes deoxynivalenol (DON) and nivalenol (NIV) as well as zearalenone (ZEN), together with 11 masked forms of them, were included based on their importance for the food safety in northern Europe. The analytes were separated on a reversed-phase column and detected in selected reaction monitoring (SRM) mode. Better peak shapes for the early eluting compounds and shorter analysis time were obtained with acetonitrile than methanol as the organic phase, thus it was chosen for the method. The method was validated according to the criteria set in the legislation. The limits of quantification varied from 0.3 to 15.9 ?g/kg. The recoveries were 92?115%, thus being within the tolerable ranges established in the legislation. The inter-day precisions (4?27%) were under the maximum permissible values. Therefore, the method proved to fit for the purpose. In this study, occurrence data on the masked mycotoxins in Finland were obtained for the first time. The presence of ZEN-16-glucoside (ZEN-16-G) and NIV-3-glucoside (NIV-3-G) were reported for the first time worldwide in some of the cereals. The most frequently found toxins were DON, NIV and HT-2. All of the masked mycotoxins included in the method were determined, the most common being DON-3-glucoside (DON-3-G), HT-2-glucoside (HT-2-G) and NIV-3-G.
  • Lee, Hei Shing (2021)
    In atmospheric sciences, measurements provided by remote-sensing instruments are crucial in observing the state of atmosphere. The associated uncertainties are important in nearly all data analyses. Random uncertainties reported by satellite instruments are typically estimated by inversion algorithms (ex-ante). They can be incomplete due to simplified or incomplete modelling of atmospheric processes used in the retrievals, and thus validating random uncertainties is important. However, such validation of uncertainties (or their estimates from statistical analysis afterwards, i.e. ex-post) is not a trivial task, because atmospheric measurements are obtained from the ever-changing atmosphere. This Thesis aims to explore the structure function method – an important approach in spatial statistics – and apply it to total ozone column measurements provided by the nadir-viewing satellite instrument TROPOMI. This method allows us to simultaneously perform validation of reported ex-ante random uncertainties and to explore of local-scale natural variability of atmospheric parameters. Two-dimensional structure functions of total ozone column have been evaluated based on spatial separations in latitudinal and longitudinal directions over selected months and latitude bands. Our results have indicated that the ex-post random uncertainties estimated agree considerably well with the reported ex-ante random uncertainties, which are within 1-2 DU. Discrepancies between them are very small in general. The morphology of ozone natural variability has also been illustrated: ozone variability is minimal in the tropics throughout the year, whereas in middle latitudes and polar regions they attain maxima in local spring and winter. In every scenario, the ozone structure functions are anisotropic with a stronger variability in the latitudinal direction, except at specific seasons in polar regions where isotropic behaviour is observed. Our analysis has demonstrated that the structure function method is a remarkable and promising tool for validating random uncertainties and exploring natural variability. It has a high potential for applications in other remote sensing measurements and atmospheric model data.
  • Kallio, Arttu (2014)
    Cytochrome P450 (CYP) -enzymes are one of the most important enzymes in the metabolism of xenobiotics. Because many xenobiotics are metabolized with each other by the same CYP-enzymes, it is possible that metabolic interactions will take place. These interactions can be the inhibition or induction of the metabolism of another xenobiotic. The interaction can be harmful e.g. when it causes an accumulation of a toxic metabolite or when it inhibits the metabolism of an active drug substance. The aim of this study was to develop a quantitative method for determining metabolic interactions between drugs and environmental chemicals in human liver microsome (HLM) incubations. HLMs contain high concentrations of CYP-enzymes, enabling the use of CYP-model reactions for observing interactions. The model reactions chosen for this study were O-deethylation of phenacetin (CYP1A2), 7-hydroxylation of coumarin (CYP2A6), 4'-hydroxylation of diclofenac (CYP2C9), 1'-hydroxylation of bufuralol (CYP2D6) and 6β-hydroxylation of testosterone (CYP3A4). Michaelis-Menten constants (Km) and maximal enzymatic activities (Vmax) were determined for each model reaction. The suitability of the model reactions for inhibition studies was assessed with specific inhibitors. The quantitative method was developed for an ultra-high performance liquid chormatograph (UPLC) and for a quadrupole time of flight mass spectrometer (QTOF). Samples were ionized with electrospray ionization (ESI) using positive mode. Device parameters were the same for all the metabolites. The analytical method validation was partly performed according to ICH (International Conference on Harmonisation) guidelines. A sufficient linearity (R2>0,99) and specificity was achieved for the quantitative method. The achieved limits of quantitation (LOQ) were low enough (1-120 nM) for quantitation of the small concentrations of the metabolites formed in the inhibition assays. The measurement reproducibility and the reproducibility and accuracy of the method did not fulfill the acceptance criteria for all the metabolites. Improvement of the results should be tried by e.g. exploring different device parameters. 1'-hydroxydiclofenac was found likely to degrade in the matrix solution because of the acidic conditions, making the reliability of the results poor for this metabolite. The Km value obtained for coumarin differed markedly from literature values, which can be due to a too long incubation time. Therefore, incubation conditions should be optimized for this model reaction in coming studies. The Km values obtained for the model reactions of CYP1A2, CYP2D6 and CYP3A4 were similar to those found in literature. Also the IC50 values were quite well within the range of values reported in literature for the inhibitors of the above mentioned model reactions. The effects of four different polymers, F68, F127, Tetronic 1307 and polyvinyl alcohol (PVA) on the enzyme activities were also studied, at a concentration of 1 mg/ml. In principal, at this concentration the polymers did not cause significant changes in the enzyme activities, although inhibition of the CYP2C9 could have been significant. However, the reliability of CYP2C9 model reaction was found to be poor with the used method. In the future this developed method should be further validated, and the incubation conditions for the model reaction of CYP2A6 should be optimized. After this, the IC50 values for the polymers could be studied to get more reliable information about their potential CYP-inhibition properties.
  • Kilpiö, Tommi (2021)
    Plant cell culture can be used for the production of valuable secondary metabolites. Inspired by the previous studies focusing on capsaicinoid production, this study aimed for establishing plant cell cultures of Capsicum chinense to produce capsinoids. Capsinoids are non-pungent capsaicinoid analogues with potential health benefits. Another aim of this study was to determine the α-solanine content in Capsicum plants and cell cultures to ensure that no toxic amounts are formed during the cell culture. Cell cultures of non-pungent Capsicum chinense cultivars, Trinidad Pimento and Aji Dulce strain 2, were established, and the cultures were fed with intermediates, vanillin and vanillyl alcohol, to enhance the production. In addition, cell cultures of extremely pungent Trinidad Scorpion cultivar were established and they were fed with vanillyl alcohol to study if this would result in formation of capsinoids instead of capsaicinoids. A high-performance liquid chromatography (HPLC) method with UV detection was validated for determining the capsiate contents of the cell culture samples and fruit samples for comparison. To analyze the α-solanine content of the cell culture samples and leaves and flowers of three cultivars belonging to three different Capsicum species, an HPLC-UV method was validated for this purpose as well. Despite validating a sensitive and specific method for capsiate analysis, no detectable amounts of capsiate were detected in any of the cell culture samples. Cell cultures of pungent cultivars did not produce detectable amounts of capsaicinoids either. Results from analyzing the real fruit samples were in accordance with previous literature reports, and Aji Dulce fruits were found to contain higher amounts of capsiate compared to Trinidad Pimento, although having only one indoor grown Aji Dulce fruit analyzed limits the reliability. The analytical method for determining α-solanine content had problems with internal standard and specificity. This method could be used for making rough estimates about the possible α-solanine content. No hazardous amounts were detected in any of the cell culture samples. Only one sample consisting of Aji Dulce young leaves could contain α-solanine slightly above the limits set for commercial potatoes. Results with flowers of Rocoto San Pedro Orange (C. pubescens) and Aji Omnicolor (C. baccatum) were inconclusive and it couldn’t be ruled out that they might contain large amounts of α-solanine. The reason why capsinoids, or even capsaicinoids, were not detected in the cell culture samples remains unsolved, but it could be speculated that capsinoids might degrade in the cell culture environment or that selection of cultivar or cell line is critical. This study gave further proof to the previous assumptions that chili leaves are safe and should not contain notable amounts of α-solanine.
  • Kilpiö, Tommi (2021)
    Plant cell culture can be used for the production of valuable secondary metabolites. Inspired by the previous studies focusing on capsaicinoid production, this study aimed for establishing plant cell cultures of Capsicum chinense to produce capsinoids. Capsinoids are non-pungent capsaicinoid analogues with potential health benefits. Another aim of this study was to determine the α-solanine content in Capsicum plants and cell cultures to ensure that no toxic amounts are formed during the cell culture. Cell cultures of non-pungent Capsicum chinense cultivars, Trinidad Pimento and Aji Dulce strain 2, were established, and the cultures were fed with intermediates, vanillin and vanillyl alcohol, to enhance the production. In addition, cell cultures of extremely pungent Trinidad Scorpion cultivar were established and they were fed with vanillyl alcohol to study if this would result in formation of capsinoids instead of capsaicinoids. A high-performance liquid chromatography (HPLC) method with UV detection was validated for determining the capsiate contents of the cell culture samples and fruit samples for comparison. To analyze the α-solanine content of the cell culture samples and leaves and flowers of three cultivars belonging to three different Capsicum species, an HPLC-UV method was validated for this purpose as well. Despite validating a sensitive and specific method for capsiate analysis, no detectable amounts of capsiate were detected in any of the cell culture samples. Cell cultures of pungent cultivars did not produce detectable amounts of capsaicinoids either. Results from analyzing the real fruit samples were in accordance with previous literature reports, and Aji Dulce fruits were found to contain higher amounts of capsiate compared to Trinidad Pimento, although having only one indoor grown Aji Dulce fruit analyzed limits the reliability. The analytical method for determining α-solanine content had problems with internal standard and specificity. This method could be used for making rough estimates about the possible α-solanine content. No hazardous amounts were detected in any of the cell culture samples. Only one sample consisting of Aji Dulce young leaves could contain α-solanine slightly above the limits set for commercial potatoes. Results with flowers of Rocoto San Pedro Orange (C. pubescens) and Aji Omnicolor (C. baccatum) were inconclusive and it couldn’t be ruled out that they might contain large amounts of α-solanine. The reason why capsinoids, or even capsaicinoids, were not detected in the cell culture samples remains unsolved, but it could be speculated that capsinoids might degrade in the cell culture environment or that selection of cultivar or cell line is critical. This study gave further proof to the previous assumptions that chili leaves are safe and should not contain notable amounts of α-solanine.
  • Tauriainen, Tuuli Kyllikki (2021)
    Mycotoxins are toxic secondary metabolites of fungi which have adverse health effects on humans and animals. Among the mycotoxins, aflatoxin B1 (AFB1) and fumonisin B1 (FMB1) are one of the biggest threats to food safety and often co-occur in cereals with possible synergistic toxic effects. Due to the climate change, it is predicted that mycotoxin-producing fungi will spread in their geographical distribution and consequently threaten food quality and availability to a whole new level. The aim of this study was to optimize and validate an in-house quantification method for AFB1 and FMB1 in cereals using wheat bran as a representative matrix for matrix-matched calibration. The method was based on ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) using the multiple reaction monitoring (MRM) technique for quantification. AFB1 and FMB1 were extracted with 70% acetonitrile containing 1% formic acid using horizontal shaking for 30 min. The purification was done using hexane and the QuEChERS method. The chromatographical separation of mycotoxins was performed in Acquity UPLC BEH C18 column and the detection was carried out with a quadrupole time-of-flight (QTOF) mass spectrometer. AFB1 showed a severe ion suppression (matrix effect: 20%) and FMB1 a slight ion enhancement (matrix effect: 108%) in the wheat bran matrix. These alterations of the ionization were successfully compensated by 13C-labeled internal standards and matrix-matched calibration. Quantification was performed by considering the peak area ratio and concentration ratio of the target analyte (AFB1 and FMB1) and its internal standard. Both AFB1 and FMB1 showed good linearity (R2 ≥ 0.995), high recoveries (89-92%) in spiking experiments and the low relative standard deviation within and between different days (3.3-6.9%). The method quantification limit was 1.0 ng/g for both mycotoxins. Uncertainty of the analysis for FMB1 in reference material was 644 ± 86 ng/g (k = 2, providing an approximate 95% confidence level when normal distribution was assumed). The validated LC-QTOF-MS method using wheat bran as a representative matrix fulfilled the performance criteria of Commission Regulation (EC) No 401/2006 and showed good performance for oat bran and maize flour.
  • Tauriainen, Tuuli Kyllikki (2021)
    Mycotoxins are toxic secondary metabolites of fungi which have adverse health effects on humans and animals. Among the mycotoxins, aflatoxin B1 (AFB1) and fumonisin B1 (FMB1) are one of the biggest threats to food safety and often co-occur in cereals with possible synergistic toxic effects. Due to the climate change, it is predicted that mycotoxin-producing fungi will spread in their geographical distribution and consequently threaten food quality and availability to a whole new level. The aim of this study was to optimize and validate an in-house quantification method for AFB1 and FMB1 in cereals using wheat bran as a representative matrix for matrix-matched calibration. The method was based on ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) using the multiple reaction monitoring (MRM) technique for quantification. AFB1 and FMB1 were extracted with 70% acetonitrile containing 1% formic acid using horizontal shaking for 30 min. The purification was done using hexane and the QuEChERS method. The chromatographical separation of mycotoxins was performed in Acquity UPLC BEH C18 column and the detection was carried out with a quadrupole time-of-flight (QTOF) mass spectrometer. AFB1 showed a severe ion suppression (matrix effect: 20%) and FMB1 a slight ion enhancement (matrix effect: 108%) in the wheat bran matrix. These alterations of the ionization were successfully compensated by 13C-labeled internal standards and matrix-matched calibration. Quantification was performed by considering the peak area ratio and concentration ratio of the target analyte (AFB1 and FMB1) and its internal standard. Both AFB1 and FMB1 showed good linearity (R2 ≥ 0.995), high recoveries (89-92%) in spiking experiments and the low relative standard deviation within and between different days (3.3-6.9%). The method quantification limit was 1.0 ng/g for both mycotoxins. Uncertainty of the analysis for FMB1 in reference material was 644 ± 86 ng/g (k = 2, providing an approximate 95% confidence level when normal distribution was assumed). The validated LC-QTOF-MS method using wheat bran as a representative matrix fulfilled the performance criteria of Commission Regulation (EC) No 401/2006 and showed good performance for oat bran and maize flour.