Skip to main content
Login | Suomeksi | På svenska | In English

Aritmeettinen derivaatta

Show full item record

Title: Aritmeettinen derivaatta
Author(s): Rosama, Veera
Contributor: University of Helsinki, Faculty of Science, Department of Mathematics and Statistics
Discipline: Teaching of Mathematics
Language: Finnish
Acceptance year: 2013
Abstract:
Tutkielman tarkoituksena on tutkia aritmeettista derivaattaa. Aritmeettinen derivaatta on määritelty vasta muutamia kymmeniä vuosia sitten, vaikka sen alkuperä saattaa hyvinkin olla kaukana historiassa. Luvun aritmeettinen derivaatta perustuu luvun alkutekijöihin jakoon. Alun perin aritmeettisessa derivaatassa on ollut kyse juuri luonnollisten lukujen ominaisuuksista ja jaosta alkutekijöihin. Tekijöihin jaon avulla voidaan selvittää yksiselitteinen muoto derivaatan lausekkeelle ja laajentaa tätä koskemaan myös negatiivisia kokonaislukuja. Myöhemmin käsitettä on laajennettu koskemaan sekä rationaalilukuja, että joitain irrationaalilukuja. Tutkielman alussa esitellään yleisiä määritelmiä, joita käytetään myöhemmin hyväksi. Tämän jälkeen määritellään aritmeettinen derivaatta luonnollisilla luvuilla käyttäen hyväksi Leibnizin sääntöä tulon derivaatalle. Määrittelyn jälkeen tutkitaan aritmeettisen derivaatan ominaisuuksia. Luvussa tutkitaan myös osamäärän derivaattaa sekä laajennetaan määritelmä negatiivisille kokonaisluvuille. Seuraavassa luvussa on tarkoitus laajentaa aritmeettisen derivaatan määritelmää koskemaa myös rationaalilukuja. Luvussa löydetään yleinen laskukaava aritmeettisen derivaatan laskemiselle sekä pohditaan myös muutamien raja-arvojen olemassaoloa. Määritelmän laajennusta jatketaan logaritmin derivaattaan, potenssien derivaattaan sekä myös joidenkin irrationaalilukujen derivaattaan. Viimeisissä luvuissa keskitytään aritmeettisen derivaatan soveltamiseen. Ensin tutkitaan eräitä differentiaaliyhtälöitä ja keskitytään lähinnä ratkaisuiden lukumäärien selvittämiseen. Lopuksi esitellään kaksi käsitettä: Sophie Germainin alkuluku ja Cunninghamin ketju. Näiden kahden ominaisuuksia valotetaan hieman aritmeettisen derivaatan avulla. Viimeisenä tutkielmassa esitellään vielä muutama avoin tutkimusongelma.


Files in this item

Files Size Format View
Aritmeettinen derivaatta.pdf 3.562Mb PDF

This item appears in the following Collection(s)

Show full item record