Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by master's degree program "Mikrobiologian ja mikrobibiotekniikan maisteriohjelma"

Sort by: Order: Results:

  • Hanski, Kirsi (2021)
    Antibiotic resistance is a growing threat to global health due to overuse and misuse of antibiotics leading to untreatable or difficult to treat infections. Natural environments are an important reservoir of antibiotic resistance. The release of antibiotics into the environment promotes the development of antibiotic resistant bacteria and environmental occurrence of antibiotic resistance genes (ARGs). ARGs are common in nature and prevalent in aquatic environments such as surface waters and effluent. Cyanobacteria are widely found in marine, freshwater, and terrestrial environments. Since their ubiquitous presence in water environments cyanobacteria are exposed to antibiotic pollution and are in contact with resistant bacteria. The role of cyanobacteria in the antimicrobial resistome and dissemination of ARGs has only been studied recently. This work aimed to evaluate the antibiotic susceptibilities of 51 cyanobacterial strains against different classes of antibiotics, using liquid batch cultures, antibiotic discs, and bioinformatics approaches. Cyanobacterial strains used in this work were sensitive to most of the tested antibiotics. However, majority of the strains also showed resistance against trimethoprim and novobiocin. Overall, there was little variation in the antibiotic resistances observed between strains but differences in sensitivity to different antibiotics was observed between species and strains with most differences seen with Nostoc spp. According to bioinformatic tools used (CARD database and BLASTp) FosA protein was found only in strains showing resistance against fosfomycin but not in any sensitive phenotypes and therefore fosA gene was selected as the most promising putative resistance gene for subsequent assays. To determine whether the fosA from cyanobacteria could confer resistance to fosfomycin, the fosA gene from Nostoc sp. XPORK 5A was cloned into pET28a(+) expression vector under the control of T7 promoter and subsequently native cyanobacterial promoter. The ability of Escherichia coli BL21 (DE3) carrying each plasmid constructs to grow in the presence of fosfomycin was determined with agar plates and growth curve assay. E. coli transformants containing the fosA gene and T7 promoter conferred high-level resistance to fosfomycin showing ability to grow at the highest concentrations tested (1mg/ml) on agar plates and (500 µg/ml) in growth curve assay. FosA protein expression from the native cyanobacterial promoter appeared to be weaker and conferred lower-level resistance to fosfomycin (≥ 10 µg/ml). The results of this study provide more information about the antibiotic susceptibility of cyanobacteria. In addition, replicating a horizontal transfer of the fosA gene from cyanobacteria to proteobacteria conferred resistance to fosfomycin and these results may indicate that also nonpathogenic cyanobacteria could act as a source of fosA antibiotic resistance genes.
  • Suominen, Juulia (2020)
    Sourdoughs are a natural habitat for microbial communities predominated by lactic acid bacteria (LAB) and yeasts. How microbial communities assemble and function is, to a large extent, determined by inter-species interactions. However, evidence for LAB-yeast interactions in rich environments, such as sourdough, is yet largely unavailable. In this study, a set of LAB and yeast species was isolated from rye and wheat sourdoughs. While mainly typical sourdough species were identified, Pediococcus parvulus was, to the best of our knowledge, for the first time isolated from sourdoughs. The isolates were characterized in rich chemically defined culture conditions and screened for interactions. Potential interactions were discovered where LAB growth was enabled by a yeast, or where stable communities were formed despite competition. These findings, the resource of naturally co-occurring species, and the designed chemically defined growth medium present the grounds for future research for uncovering the underlying mechanisms of LAB-yeast interactions in rich environments. LAB and yeasts commonly co-occur rich environments of fermented food processes and also in human gut and soil microbiomes. Therefore, the outcomes of this study support not only the optimization of food fermentations but provide also model systems for complex communities directly influencing human health.
  • Erjama, Melina (2024)
    Saprotrophic wood-decaying fungi access nutritional carbon by degrading lignocellulosic biomass with ligninolytic and carbohydrate active enzymes. Research of species-species level interactions of the fungi is crucial to understand ecosystem functions and carbon cycling. Furthermore, research results of wood-decaying fungi and interspecific fungal interactions can be beneficial for development of biotechnological applications. In this study, two brown rot species Fomitopsis pinicola and Fomitopsis betulina, two white rot species Phlebia radiata and Fomes fomentarius and one soft rot species Schizophyllum commune were studied in combination cultures on birch wood substrate for 12 weeks. Interactions of the fungi were studied by analysing laccase, manganese peroxidase, xylanase, and iron reduction activities, and by analysing the expression of genes coding for lignocellulose-degrading enzymes. pH of the cultures was measured to estimate the metabolic activity of the fungal species. Suppression of xylanase and iron reduction activities demonstrated dominance of the white rot species over the other decay type species in the co-cultures. In addition to the depressed enzyme activities, increase in white rot production of laccase and manganese peroxidase activities indicated combative interactions in the co-cultures. This study evidenced species and growth-time dependent changes in signature enzyme activities and in gene expression of wood-decaying fungi during interspecific fungal interactions.
  • Malmgren, Rasmus Albert (2021)
    The COVID-19 pandemic of 2019 has had a huge impact on the hospitality industry, decreasing production by 35.4% in Q4 of 2020. To keep the industry functional, new safety solutions have to be studied and developed for mitigation of the pandemic. In this study, airborne transmission of viruses in an indoor space was studied, and air purifiers and space dividers were tested as potential intervention methods against SARS-CoV-2 by using a non-pathogenic model virus phi 6. Filtered air purifiers were found to work as a possible solution for the mitigation of viruses spreading through aerosols in public spaces such as restaurants, however, the positioning of the devices is crucial, as the air flow to them may increase the concentration of viruses locally. Space dividers were found to increase the possibility of infection via aerosols. Other types of air purifiers were also tested: an ionizer prototype and a hydroxyl radical emitting unit, of which the ionizer prototype proved to be efficient in reducing the virus concentrations in the air. Most importantly, it was confirmed that enveloped viruses resembling coronaviruses are capable of spreading via aerosol transmission indoors.
  • Gyanwali, Rashwita (2023)
    Semliki Forest virus (SFV) is a well-studied model virus of medically important mosquito-borne alphaviruses, like chikungunya virus and Sindbis virus. SFV replicates within membrane invaginations called spherules at the host plasma membrane, facilitated by the virus-encoded nsP1 protein. The objectives of this MSc thesis were to identify candidate host proteins interacting with nsP1 based on previous proteomics work and develop a screening workflow to identify stable nsP1 interactors. The overarching aim is to improve our understanding of the roles of host proteins in spherule formation and replication complex functions. The screening workflow involved knockdown assays to assess the antiviral and proviral effects of potential host interactors, followed by cell viability assays for toxicity assessment. Selected promising hits were further investigated for protein interaction with nsP1, which required cloning for mammalian expression and tagging with Myc epitope. Knockdowns resulted in several statistically significantly proviral and antiviral host factors, and all the knockdowns were non-toxic to the cells. Among the significant proviral hits, four promising candidate host proteins were cloned and expressed. Pull-down assays did not reveal stable interactions, suggesting transient or indirect interactions between these host proteins and nsP1. The lack of co-localisation with SFV replication complex supported this finding. This work sheds light on possible transient or indirect interactors of nsP1. The screening workflow effectively identified protein-protein interactions and can be applied to screen additional proteins. Future studies should employ methods suitable for studying transient interactors to gain further insights. This would enhance our understanding of key host proteins in SFV spherule formation and replication, potentially leading to novel antiviral therapies targeting alphavirus replication.
  • Farrar, Zoe May (2020)
    Mycosporine-like Amino Acids (MAAs) are small, secondary metabolites, with the ability to absorb UV light. They are produced by cyanobacteria to act as a sunscreen. The aim of this study was to catalogue MAA genetic and chemical diversity in strains of the cyanobacterial genus Nostoc. MAAs were detected in 21 of the 68 Nostoc strains using LC/MS. Fifty four different MAAs were detected across the Nostoc strains. Glycosylated MAAs were detected in 17 of the 21 strains with hexose being the most commonly occurring sugar. Surprisingly, two structurally distinct MAAs were detected from a lichen symbiont strain, Nostoc sp. UHCC 0926. Chemical analysis detected a theoretical methylated and glycosylated variant (m/z 583, C23H39N2O15), and a suspected tri-core variant (m/z 757, C34H53N4O15) with three chromophore rings as opposed to one which is typically found. The glycosylated MAA was predicted to have a hexenimine core which was methylated and had two hexose moieties. The tri-core consisted of 2 aminohexenone cores, one on either side of a central aminohexenimine core. An 8.3 Mb draft genome sequence was obtained to identify the MAA biosynthetic gene cluster responsible for the biosynthesis of these two unusual MAAs. This resulted in the detection of two gene clusters mysA-B-C1 and mysD-C2-C3. This gene cluster organisation was compared with those of other Nostoc strains. The gene cluster organization in Nostoc sp. UHCC 0926 was unique because it was the only strain to have two gene clusters and three mysC genes despite one of the other Nostocs having the ability to produce a tri-core MAA. The strain was cultured and harvested to allow for the extraction and purification of the target MAAs. The tri-core MAA structure was confirmed by NMR. However only a putative structure for the glycosylated MAA was made. The UV absorption spectrum of the tri-core MAA had an absorption maximum at 312 nm while the glycosylated and methylated MAA had an absorption maximum at 336 nm. The investigation into the MAA production of UHCC strains expands the known chemical and genetic diversity of MAAs produced by strains of the Nostoc genus.
  • Plavec, Zlatka (2019)
    OBJECTIVES and RESEARCH QUESTION. Human parechovirus 3 (HPeV3) is a (+)ssRNA icosahaedrally symmetric virus which causes meningoencephalitis and sepsis in children and neonates. As it causes the most severe symptoms among parechoviruses it is attracting more attention (4). Currently there are no approved broad treatment strategies against parechoviruses, however recent research by Rhoden et al., 2017, reported the antiviral activity of posaconazole (PSZ) against HPeV3 in cell culture. Posaconazole is an antifungal drug approved for use against Candida and Aspergillus infections. It targets lanosterol-14alpha-demethylase and prevents the production of ergosterol, a lipid vital for fungal membranes not present in mammalian cells (24). In mammalian cells PSZ accumulates at the endoplasmic reticulum (ER) and binds to the oxysterol-binding protein (OSBP) and Niemann-pick type C1 (NPC1) (59, 28, 30). The drug may affect cellular components and thusly block parechoviral infection or could bind to the viral capsid. METHODS. To test viral capsid-binding hypothesis PSZ activity was tested in a range of concentrations against two HPeV3 isolates and HPeV1 Harris in Vero and HT29 cell lines. HPeV3 isolate 152037 was purified on a CsCl step gradient and imaged by cryo electron microscopy (cryo-EM). Single particle analysis was done in Scipion (40) and acquired density maps visualized in UCSF Chimera (49). Atomic model of a different isolate of HPeV3 (PDB ID: 6GV4, 16) was changed at 6 sites and fitted to density maps from this work in Coot (52). Maps were subtracted in search of density that would represent PSZ. RESULTS. PSZ was effective against both HPeV3 isolates at 1 μM in Vero cells when added to the virus prior to infection, however not in HT29 cells. At higher concentrations (>10 μM) PSZ formed crystals which limited the concentration that can be used for cryo-EM. In order to test the hypothesis of PSZ being a capsid binder 3 datasets were collected, HPeV3 control, HPeV3+DMSO and HPeV3+PSZ (4 μM) with final resolutions after single particle analysis of 3.3 Å, 3.9 Å and 3.4 Å respectively. Subtraction of maps yielded no difference that would represent PSZ. DISCUSSION and CONCLUSION. PSZ does not appear to be a capsid binder although it appears to work early in the infection. Absence of PSZ density in HPeV3+PSZ density map could be due to low saturation and images containing PSZ were filtered out in image processing. Another possibility is low affinity of PSZ for the capsid. As PSZ binds various membranes it is possible that it blocks HPeV3 infection by targeting cell components. Additional experiments could be performed in the future in order to provide insight into which stages of infection PSZ affects.
  • Pankka, Salla (2023)
    The objective of this thesis was to isolate and characterize new bacteriophages (phages) against clinical Klebsiella pneumoniae strains for phage therapy. K. pneumoniae is causing an emerging threat to global health due to its broad antibiotic resistance profile and hypervirulent strains. New treatment options are urgently needed to defeat the crisis. Phage therapy could provide one option to treat multiresistant K. pneumoniae infections. In this thesis, five new phages were isolated and characterized from Finnish wastewater and Georgian river water against two clinical K. pneumoniae strains. The three phages from Georgian river water, fMtkKpn01, fMtkKpn03, and fMtkKpn04, resembled Drulisviruses based on phylogenetic analysis. The two phages from Finnish wastewater, fJoKpn03 and fJoKpn05 were phylogenetically distinct. fJoKpn03 couldn’t be classified. fJoKpn05 resembled Weberviruses. Based on sequence analysis, none of the phage genomes included any harmful genes that would prevent their use in phage therapy. All phages demonstrated a 6-hour total inhibition to host bacterial growth. Their host range was determined to be narrow, only infecting their respective host strains from the 80 bacterial strains tested. All the phages tolerated high pH well. fJoKpn03 was the only one tolerating very low pH. All phages showed a synergistic effect on the inhibition of bacterial growth when applied together with piperacillin. In conclusion, all five phages proved potential for phage therapy. They demonstrated inhibitory action against K. pneumoniae strains with capsule types against which there previously were no phages in our collection. Due to their narrow host range, they could be suited for personalized phage therapy or used in combination therapy with antibiotics to increase efficacy and duration of action. fJoKpn03 could provide an opportunity for oral administration due to its broad pH stability profile.
  • Marttila, Heli (2021)
    Global warming affects permafrost in the Arctic regions, where melting organic carbon storages will increasingly contribute to the emission of greenhouse gases. Little is known about tundra soil microbial communities, but Acidobacteria and viruses seem to have important roles there. Here, for the first time, we isolated five Acidobacteria infecting viruses from Kilpisjärvi tundra soils using host strains previously isolated from the same area. Three viruses were isolated on Edaphobacter sp. X5P2, one on Edaphobacter sp. M8UP27, and one on Granulicella sp. X4BP1. The viruses had circular double-stranded DNA genomes 63,196–308,711 bp in length and 51–58% GC content. From 108 to 348 putative ORFs were predicted, 54–72% of which were sequences unique to each virus. Annotations indicated that all five phages most likely have tailed virions. The diversity of viruses present in the studied soils was estimated with the metagenome analysis. Only 0.1% (627) of all assembled metagenomic contigs were phage-positive. The gene-sharing network analysis showed approximately genus-level clustering between the virus isolates and a few metagenomic viral contigs, but overall, all (except one) viral contigs clustered only with each other, not with any known viruses from the NCBI database. No taxonomical assignments could be done for the metagenomic viral contigs, highlighting overall undersampling of soil viruses. Further detailed studies on virus-host interactions are needed to understand the impact of viruses on host abundance and metabolism in Arctic soils, as well as the microbial input into biogeochemical cycles.
  • Mustonen, Markus (2024)
    The increase of antibiotic resistance is one of the major healthcare threats globally. One potential way to battle against antibiotic resistant bacterial infections is to treat them with the natural opponents of bacteria, bacteriophages, known as phage therapy. The aim of this thesis was to identify new bacteriophages against clinically notable bacterial species such as Escherichia coli, Burkholderia cepacia, Enterococcus faecalis and Enterococcus faecium. Bacteriophages were screened from various origins such as hospital sewage samples, soil samples and manure samples, collected in between 2019 and 2022. The isolated bacteriophages were then initially characterized to evaluate their potential use in phage therapy. In this thesis, two phages (fHo-Eco16, fHo-Eco17) against clinical E. coli isolate and one phage (fHo-Efa06) against clinical E. faecalis isolate were found from the recently collected Finnish hospital sewage sample pool. Both E. coli phages were classified as Felixounaviruses belonging to family of Ounavirinae and class of Caudoviricetes. Enterococcus phage fHo-Efa06 was characterized as Saphexavirus belonging to class of Caudoviricetes. Preliminary genome annotation did not reveal any characteristics of lysogenic lifecycle, or antibiotic resistance or bacterial toxin genes, which would prevent the use of phages in phage therapy. Both E. coli phages (fHo-Eco16, fHo-Eco17) showed narrow host range infecting only the primary host bacterial isolate but none of 29 other tested clinical E. coli isolates. Phage fHo-Efa06 showed relatively broad host range properties infecting nine tested E. faecalis isolates out of 20 tested E. faecalis isolates but no infection capabilities against six tested clinical E. faecium isolates. In conclusion, freshly collected hospital sewage seemed to be optimal environment to find bacteriophages against clinical bacterial isolates. Furthermore, phages fHo-Eco16, fHo-Eco17 and fHo-Efa06 did not display any strictly unsuitable properties which could prevent their use in phage therapy. In turn, to obtain the definitive certainty on the usability of the phages in therapeutic use, in-depth host range screening together with detailed functional and structural annotation for the phage genomes of fHo-Efa06, fHo-Eco16 and fHo-Eco17 should be completed.
  • Gomez-Raya Vilanova, Miguel Vicente (2019)
    Bacteriophages are viruses that infect bacteria. With the ever-increasing threat of antibiotic resistance, they have emerged as a promising alternative treatment. Many phage genomes contain modified bases. They prevent digestion by restriction enzymes allowing the resistance of these viruses to bacterial defence mechanisms. YerA41, a phage that infects Yersinia ruckeri, contains a genome that could not be amplified using any of the DNA polymerases available in the market. Neither restrictions enzymes were able to digest it. These properties led to the assumption that YerA41 genome is not conventional and is likely to contain modified nucleotides. In order to replicate its genome, YerA41 should possess its own DNA polymerase that would be able to use, YerA41 genome as template. If so, it would be able to use other modified genomes as well. Hence, this DNA polymerase could become a very valuable biotechnological tool. In this study we isolated and optimised the purification of DNAP01, one of the putative DNA polymerases encoded by YerA41 genome. In addition, this work shows, with the help of different experiments, how DNAP01 is a novel DNA polymerase able to use YerA41 DNA as template. This is the first time an enzyme of this nature has been described and isolated.
  • Hepo-oja, Pilvi (2020)
    Fecal microbiota transplantation (FMT) is used to treat recurrent Clostridioides difficile infection (rCDI), and its potential as a treatment for other inflammatory conditions, like inflammatory bowel diseases (IBD), or irritable bowel syndrome (IBS), has been extensively studied lately. It has been noticed that some bacteria in fecal transplants do not require physical contact with intestinal epithelium to alleviate inflammation, and extracellular vesicles (EVs) have been proposed to carry the anti-inflammatory properties of those beneficial bacteria. In this thesis project, an isolation protocol was set up to isolate EVs from two fecal-originated Bacteroides isolates, Bacteroides ovatus and Bacteroides vulgatus, which had shown anti-inflammatory potential in previous studies. Isolation of EVs succeeded, and both isolates were confirmed to produce EVs. To study the anti-inflammatory potential, human colon epithelial cells (HT-29) were treated with several dilutions of isolated EVs, and then challenged with lipopolysaccharide (LPS) to induce inflammation. Amount of produced interleukin (IL-) 8 was measured as a marker of inflammation. EVs of both Bacteroides isolates continuously showed anti-inflammatory potential, but statistically significant conclusions could not be made. EVs have a potential to be used as a treatment in different inflammatory conditions and as adjuvant factors in synthetic FMT. To study the immunomodulatory potential of EVs of Bacteroides species more, proteomic analysis of contents of EVs, as well as potential to improve intestinal barrier are suggested. Also, testing the ability to alleviate production of other inflammatory markers could reveal more anti-inflammatory potential.
  • Partanen, Veera (2018)
    Coevolution, the reciprocal evolution of species, is a significant evolutionary phenomenon, and it has been known since the days of Darwin. These days it can be studied using experimental evolution in laboratory-regulated environments where the “fossil populations” which are preserved during the experiments can be compared with contemporary populations and with each other. Bacteria and unicellular eukaryotic predators are suitable for the research of predator-prey interactions including of antagonistic coevolution. This is due to their short generation time and thus the fast evolution. In my Master’s thesis, I examined the changes caused by antagonistic coevolution in a log-term predator selection experiment in the bacterium Pseudomonas fluorescens and the ciliate Tetrahymena thermophila. I examined the ecological stability between the populations using time-shift experiments. I also examined growth curve parameters for the bacterial population as well as its metabolic activity, diversity through colony morphology, and the ability of the non-evolved and coevolved ciliate to consume bacteria. Part of the experiments were performed using as control a bacterial population which had evolved without predator. Based on previous research, I hypothesized that coevolution would increase the stability of the community and the diversity of the bacterial populations. I expected the carrying capacity, maximum growth rate, and metabolic activity, in turn, to decrease over time. I observed that coevolution stabilized the dynamics, as was expected, and this was associated with increased diversity in the prey population. As the latter has been observed to be the reason for increased stability, the results here support earlier observations. The carrying capacity and area under the growth curve decreased as expected, but the maximum growth rate did not change over time. There was also no difference in the growth of the ciliates, regardless of evolutionary history, on the bacteria from different time points. Because of uncertainties arising from the experimental design, some of the results cannot be confirmed to have been caused by coevolution. The results increase the knowledge regarding the effects (co)evolutionary history can have on ecology and the phenotypic traits of populations. The differences and similarities in the results compared to earlier studies indicate that the effects of coevolution change in time and differ between short-term and long-term settings. Further studies are required to provide more unequivocal support for the presence of coevolution and elucidate its precise phenotypic and molecular drivers.
  • Rämä, Silja (2022)
    Sorghum (Sorghum bicolor) and amaranth (Amaranthus spp.) are gluten-free cultivated crops native to Africa, and thanks to their drought-tolerating capabilities and adaptive nature, they provide an energy source in areas where cultivation of wheat is not possible. There is a need to exploit these indigenous crops and develop food products with better technological and nutritional properties to battle malnutrition on the continent. Exopolysaccharides (EPS) produced by lactic acid bacteria (LAB) have shown promising properties in improving the technological quality of gluten-free foods. The aim of this project was to identify naturally occurring LAB and yeasts from red sorghum grain, amaranth grain and amaranth leaf flour and from spontaneously fermented sourdoughs made from these flours. Possible EPS-producing LAB were of special interest. The sourdough pH and total titratable acidity were recorded daily, and microbial densities were calculated on selective media. Isolates were selected for sequencing based on morphology and biochemical properties. Twenty seven bacterial isolates, twelve of which produced EPS, were identified by partial 16S rRNA and pheS gene sequencing, and seven yeast isolates were identified by sequencing the variable D1/D2 region of the large subunit rDNA. The identified LAB belonged to five genera: Enterococcus, Lactiplantibacillus, Leuconostoc, Pediococcus and Weissella. The yeasts belonged to the genera Meyerozyma, Pichia and Rhodotorula. In general, many studies focusing on sourdough microbial communities usually concentrate on LAB, with little information on the yeasts currently being available. To the best of the author’s knowledge, this is the first report on sourdough made from amaranth leaves and its native microbial content, with 9/12 isolates producing EPS. This provides an excellent starting point for further study of the technological side of creating a gluten-free baked product using starter bacteria native to the flour itself.
  • Nihtilä, Hanna (2019)
    Brewers’ spent grains (BSG) are by-products of the brewing industry. Utilization of BSG in food applications is challenging, due to its poor technological characteristics. Because of their water retaining properties, interactions with matrix components and impact on texture formation, bacterial exopolysaccharides (EPS) represent a promising tool for improvement of BSG properties. Among bacterial exopolysaccharides, dextran produced in situ by lactic acid bacteria (LAB) during fermentation has shown major improvements in technological and sensorial features of products prepared from various types of plant materials. The nutritious composition of BSG may support the growth of LAB and enable in situ dextran production. The aim of this study was to establish and examine the synthesis of dextran by LAB in BSG. Sixteen dextran producing LAB strains were screened for viscosity formation in BSG fermentation. The strains showing the highest viscosity formation were further assessed for fermentation performance. The more suitable fermentation temperature was traced by comparing the viscosifying performance of selected starters at 20 and 25 °C. Dextran amount was determined semi-quantitatively from selected fermented samples showing optimal results, and the presence of oligosaccharides was assessed. Sucrose, glucose, maltose and fructose amounts were analyzed to observe the relation between sugar consumption and dextran and oligosaccharides formation. Weissella confusa strains A16 and 2LABPTO5 and Leuconostoc pseudomesenteroides strain DSM20193 appeared the most promising starters for viscosity formation and thus dextran synthesis in this matrix. From the examined fermentation temperatures, strains showed the highest potential for dextran synthesis at 25 °C. The amount of synthesized dextran ranged from 1.1 to 1.7 % w/w (of the wet weight of the whole sample matrix). The rheological properties of BSG were modified via LAB fermentation and dextran synthesis, resulting in more viscous texture, and its applicability in food systems was thus potentially enhanced.
  • Laisi, Tiia (2021)
    The aim of this master’s thesis was to examine university teachers’ professional vision and misconceptions from the perspective of the role of students’ prior knowledge in learning. We also examined how participants’ professional vision and concepts changed during the pedagogical course. University students can also have a lot of misconceptions which differ from scientific view. Those misconceptions can make learning harder and even hinder it. Teachers should recognise these misconceptions and they should be able to support students’ conceptual change in their teaching. Participants (N=73) were life science university teachers. They were selected to this study because they participated in two university pedagogical courses with the same content. Participants’ professional vision, conceptions and beliefs were investigated with a video annotation and two questionnaires. Study is quasi-experimental research with pretest-posttest design. Video annotation and one of the questionnaires were tested before and after the pedagogical course. The delayed questionnaire was collected six months after the course. Purpose of the delayed questionnaire was to know if the teachers have been using the things they learn in a course in their own teaching. At the analysis phase participants were divided in to three groups according to their previous teaching experience and pedagogical courses (novices, experienced teachers, and most experienced teachers). Then we were able to compare these three groups and examine if the teaching experience had any effect on the answers. This study utilized a mixed methods approach and analysis was made with both quantitative and qualitative methods. The results show that pedagogical course changed teachers’ concepts considering learning and teaching. All participants’ groups got better scores in professional vision after the pedagogical course despite their previous teaching experience or pedagogical courses. Novices got lowest scores in the pretest which was expected because they didn’t have any previous experience. Their answers changed significantly in all research aspects. Experienced and most experienced teachers also got better scores in posttest especially in professional vision. Developed professional vision was related to more constructivist beliefs of learning. These findings support previous studies that even short pedagogical course can change teachers’ beliefs and concepts about teaching and learning.
  • Ahlqvist, Kati (2022)
    Common sexually transmitted pathogens like human papillomavirus (HPV) and Chlamydia trachomatis have profound effects on sexual health of women ranging from acute genital tract infections to cancer and infertility. These infections are often asymptomatic, increasing the risk of being left untreated and thus increasing the probability of complications. Most cervical cancer cases are caused by persistent HPV infection and would be preventable by timely HPV detection. Cervical cancer screening using HPV nucleic acid detection has proven efficient and is used in many European countries, including Finland. Chlamydia trachomatis and Neisseria gonorrhoeae infections can lead to upper genital tract infection and increased risk of ectopic pregnancy and infertility. C. trachomatis infections are also associated to increased risk of epithelial ovarian cancer. Due to lack of national screening program and often asymptomatic nature of these infections, many of them are left untreated. In order to streamline cervical cancer screening and to include C. trachomatis and N. gonorrhoeae analysis in the same package with HPV, a liquid-based cytology sample medium, BD SurePath™ was validated for use with cobas® 4800 HPV and CT/NG nucleic acid detection tests. Work presented here shows that HPV and CT/NG tests and cytological analysis can all be done from a single sample in an efficient, reliable and cost-beneficial way. Based on the results, Vita Laboratoriot will be able to offer the package analysis to their customers.
  • Dadashzadehabdol, Mina (2023)
    Lignocellulosic biomass is an abundant and sustainable resource to produce valuable products through biorefinery processes. However, the challenge of lignin degradation remains complex. My thesis aimed to investigate the potential of Pleurotus ostreatus, a white rot fungus, for use in biorefinery applications. This study investigated the capability of P. ostreatus to grow and consume technical lignin (organosolv) with great potential for utilization in lignocellulose biorefineries. To further enhance its bioconversion potential, the study also explored the metabolic engineering of P. ostreatus to produce protocatechuate. Additionally, the P. ostreatus PC9 monokaryon strain was found to be suitable for genetic engineering using the CRISPR Cas9 system; however, the inability to disrupt the KU80 gene may have contributed to the lower efficiency of gene targeting observed in this study. The lignin degradation potential of P. ostreatus secretomes was investigated by measuring enzyme activities and using model compounds. The use of P. ostreatus secretomes has shown potential for improving lignin degradation in co-culture with an engineered Aspergillus niger strain which accumulates the protocatechuate, and the addition of nucleophilic thiols, such as L-cysteine, showed promise in promoting lignin bioconversion.
  • Venkat, Vinaya (2021)
    The COVID-19 pandemic has brought into discussion the role of airborne transmission in infectious diseases. Many studies on enveloped viruses such as influenza suggest that respiratory viruses can be transmitted with large or small droplets formed when the patients talk, breathe, sneeze or cough. This comes under the category of direct contact. These droplets may also be transmitted indirectly as fomites through contact with contaminated surfaces. It has been difficult to prove that aerosols' transmission as the methods to capture virus in the air are not very sensitive. SARS-CoV-2 is a novel coronavirus affecting millions of people since 2019, and it has been challenging to contain the spread of this virus. Hence it is of vital importance to understand the transmission of the virus through aerosol and droplets. In this study, aerosol samples were collected from patients in the Surgical Hospital in Helsinki and patients at home in quarantine using various bioaerosols sampling devices like Biospot, Dekati, Button, and Andersen samplers, and passive sampling techniques to capture aerosols and droplets in the air. Such samples were subjected to cell culture on TMPRSS2 expressing Vero E6 cells to check for infectious viruses and RT-PCR using the N-gene targeting method to detect the presence of SARS-CoV-2 RNA in the samples. Out of the 32 saliva samples collected, 19 samples were tested positive by RT-PCR, but cell culture was not always positive. Bioaerosol samples collected using Dekati, Button, and Biospot samplers were negative by PCR. However, Andersen samplers showed positive results along with various passive aerosol samples collected on MEM, indicating aerosols' production of small sizes that can be transmitted air in the air to far distances and settling due to gravity. A relation between saliva samples and symptom days indicates the decrease in saliva viruses' infectivity with the prolonged infection as seen from the RT-PCR. From these findings, it can be concluded that SARS-CoV-2 can be spread by airborne and fomite transmission, and more so by patients with symptoms day 2-7 who are proven to be more infectious. Additionally, it was inferred that the Six Stage Andersen impactor would be the most efficient for aerosol sampling. Further studies are still needed to understand the characteristics of the spread and extent of infection caused by the variants of SARS-CoV-2.
  • Saarinen, Eero (2023)
    The emergence of antibiotic resistance is a growing concern globally. The horizontal spread of antimicrobial resistance genes (ARG) causes multi drug resistant strains that can be harmful to human- and animal health. This risk must be considered when new bacterial strains are used in the plant protection industry, therefore this master’s thesis presents a new bioinformatical method to evaluate the potential of ARG to horizontally transfer to another bacteria. This thesis will walk through analyses that can be used to hunt for ARGs and mobile genetic elements (MGE) in bacterial whole genome sequence data. Also, this thesis presents a new computational analysis tool called MGEradar that reveals MGEs that are linked to a specific ARG. Also, this thesis presents a simple metod for studying the prevalence of an ARG among other bacterial strains of the suspect species. MGEradar, the prevalence analysis and the bioinformatical pipeline can be helpful tools to evaluate the intrinsicness and mobility of an ARG. For the evaluation of the bioinformatical method, the genomes of Escherichia coli and Bacillus thuringiensis are examined to determine the MGEs associated with two ARGs, mcr-1 and fosB.